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Calculation of lef raction Coefficients of Three-
Dimensional Inﬁmte Conductmg Wedges Usmg FDTD

Veeraraghavan Anantha and Allen Taflove

to obtain the three-dimensional (3-D) dyadic diffraction coefficient of

by a plane wave. The FDTD results are in good agreement with the

of wedge angles and compositions. .

Index Terms——Electromagnetic scattering, FDTD -methods.

‘We extend the two-dimensional (2-D) approach discussed in [1]

to obtain numerically the three-dimensional (3-D) dyadic diffrac-

tion coefficients for right-angle perfect electrical conductor (PEC)
wedges. This method exploits the temporal causality inherent in finite-
difference time-domain (FDTD) modeling. In principle, this method

- can be extended to calculate diffraction coefficients for 3-D infinite

material wedges having a variety of wedge angles and compositions.
Diffraction from a PEC wedge illuminated by an obliquely incident

plane wave can be described by a dyadic diffraction coetficient [2]. By

choosing the apprOpnate ray-fixed coordinates [Fig. 1(a) and (b)], the

diffraction coefficient is described as a sum of two dyads [2], which,

in matrix notation, is represented by a diagonal 2 x 2 matrix. The
two nonvanishing elements are the soft and the hard scalar diffraction

coefficients D, and D;. Fig. 1(a) shows the edge-fixed plane of
incidence (§',¢é) with the ray-fixed unit vectors B4 and ¢’ parallel -
and perpendicular to it, respectlvely Also shown 1s the edge-fixed
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Abstract—The ﬁmte-dlfference tlme-domam (FDTD) method is apphed -
~ infinite right-angle perfect electrical conductor (PEC) wedges illuminated

well-known asymptotic solutions obtained using the uniform theory of
diffraction (UTD). In principle, this method can be extended to calculate
diffraction coefficients for 3-D infinite material wedges havmg a vanety

: plane of dlffracuon (s,

- of incidence and diffraction are given by §'
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F1 g. 1. (a) Three-dimensional geometry of the PEC scatterer showing the

- edge-fixed plane of incidence and diffraction, the ray-fixed coordinate system,

and the FDTD coordinate system. (b) To_p view of the scattering edge showing

‘the angles made by the projections of the incident and diffracted wavevectors
in plane ABEF. ' '

¢) with the ray-fixed unit vectors Bo and ¢
parallel and perpendlcular to it, respectlvely The radial unit vectors

= ¢ X/@o and § = ¢></30 '
In order to obtain the numerical dyadic diffraction coefﬁaent,

we first find the diffracted-field impulse response of the scatterer
‘numerically using FDTD. By illuminating the wedge with a pulsed

plane wave having an electric field (E-field) component parallel
to the plane of incidence, we obtain the diffracted-field 1mpulse

response gy, num polanzed parallel to the plane of diffraction.

An analogous procedure is performed with the incident E-field

- component perpendlcular to the plane of incidence, yielding h¢, num
- polarized perpendicular to the plane of diffraction. The Fourier
transforms of these diffracted-field impulse responses H gy num and

H s num, give the corresponding spectra of the diffracted fields. D,
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Fig. 2. Comparison of FDTD computed and asymptotic results for

the soft and hard diffraction coefficients at a fixed observation point

Ao(s = 3)Xo,¢ = 100°,8p = 70°) as a function of frequency for an
obliquely incident plane wave at (8, = 70°,¢' = 150°).

and Dy can be calculated numerically as

(1a)
(1b)

D FDTD(S 6. (b, (AJ) = Hﬁo num(5'9 d) w)\/_ejkos
Dy, FDTD(S 0. gb,w) = Hy num(s,0, ¢, w)\/—efkos

where s is the distance of the observation point from the scattering

edge and ko = w./po€o. The Fourier transform has been defined

using the e ’“! convention. The factor, /s eﬂ”f’3 In the above
equation arises from the nature of the Green’s function in two
dimensions. ' '

Fig. 1 shows the 3-D geometry of the scatterer and the coordinate
system used in the FDTD code. This figure also shows the edge-ﬁxed
spherical angles made by the incident ray (G5, ¢') and the diffracted

ray (Bo,¢). Keller’s law of edge diffraction implies that 3; = Bo.
The unit vectors (85, ') and ( ﬁo, ) are descnbed in terms of the
FDTD coordinate system (z £.0f, ks) usmg '

B34 =—c059fcos¢fzf ——cosﬁfsmdbfjf+s1n9fkf (2a)
é' = — sin ¢’fzf -+ COS ¢f.7f ' _ ~ (2b)

- Bo =cosﬁfcosqﬁfzf+cosﬁfsm¢fjf--smdfkf o (20)
qg—-Sln(bfo -—cosqbf]f ' ' (2d)

Here, the angles (9}, o f) represent the direction of the incident plane |
wave illumination in the FDTD coordinate system. Further, the angles _
(8%, ¢ f) represent the direction of the diffracted ray from the pomt -
- of diffraction Py to the observation point P,. These angles can be

. 9f — /607'

easily denved from the edge-fixed angles usmg k 1
(}5}"""71'"-(5 andqbf—-27r-—¢ '

To minimize numerical errors in the FDTD code we use CllblC _
lattice cells of side length Ao/25, where Xo is the wavelength at
850 MHz and perfectly matched layer (PML) absorbing boundary

~ condition. The incident illumination EI2™ is a pulsed plane wave
of center frequency 850 MHz and a Gaussian envelope of 882.3-ps

duration (full width at half mammum) The observation pomts and
the side lengths of the scatterer are chosen such that the numerical

diffraction field Eg;;m from edge BC can be causally isolated in
- time from all the other fields. Using (la) and (lb) the numencal |

dlffractlon coefﬁcwnts are g1ven by

_ \s{Egll}m(t S 9f ¢f) ,80} \/_6] (08

DSFDTD(S 9f9¢f’ ) _ {En“m(t 9‘ @ ) 5 }
| | 0

1nc

- (3a)
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Fig. 3. Comparison of FDTD computed and asymptotic results for the soft
and hard diffraction coefficients at 850 MHz as a function of the observation

angle ¢ at (8o = 70°,s = 3Ao) for an obliquely incident plane wave at

(B, = 70°,¢' = 150°).

3;;1“ (t,5 0%, 9%) - 6}

\/“eﬂcgs
{Ef:;f:m (t,6° a¢’f) o'}

(3b)

Dirpr(8 af,af, )

where denotes the Founer transform Operatlon
Two cases are shown, comparing the amplitude of the FDTD

- computcd dyadic diffraction coefficient of a PEC wedge to the well-
- known asymptotic solut.xon obtained using the uniform theory of

dlffractlon (UTD) [1], [3]- For both cases, the planc wave 1llumlnat10n
is assumed to be obllquely incident at (B = 70°,¢' = 150°).

Fig. 2 shows the variation of the amphtude of the soft and hard
__ diffraction coefficients as a function of frequency at a fixed ob-

servation point Ao(s = 3Xo,¢ = 100°,ﬂo = 70°) over the
frequency range 200 MHz to 1.2 GHz. Fig. 3 shows the variation
of the amplitude of the soft and hard diffraction coefficients at
the center frequency (850 MHz) as a function of the observation

‘angle ¢ at 8o = 70° and a fixed observation distance (s = 3Ao)

from the point of dlffI'aCthIl P,;. Over the range of frequencies

and observation angles considered in these figures, the worst-case

difference between the FDTD and ‘asymptotic results is only about
- 3%. ‘Our numerical convergence studies indicate that the FDTD data
are essentially converged at a space-cell size of Ao / 25 for the cases
under cons1derat10n ,
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