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Cocfﬁc1cnts of Generic Conductln g

‘and Dlelectnc Wedgcs Using FDTD
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Abstract— Classical theories such as the uniform ' geometrlcal
theory of diffraction (UTD) utilize analytical expressions for

coefficient of the two-dimensional (2-D) infinite perfect electrical

and the 2-D infinite lossy dielectric wedge for incident TM and

TE polanzatlon and a 90° wedge angle. We compare our FDTD
results in the far-field region for the infinite PEC wedge to the

well-known analytical solutions obtained using UTD. There is

very good agreement between the FDTD and UTD results. The

power of this approach using FDTD goes well beyond the simple
problems dealt with in this paper. It can, in principle, be extended
to calculate diffraction coefficients for a variety of shape and .

material dlscontmultles, even in three dimensions.

Index Terms—-Electromagnetlc scattermg, FDTD methods

- L INTRODUCTION -

‘simple problems, it is difficult, if not impossible, to extend

‘them to wedges composed of dielectric and imperfectly con-
ducting materials. In fact, the classical problem of diffraction
from an infinite lossless dielectric wedge has not been solved
analytically. In this paper, we present a numerical approach

~using the finite-difference time-domain (FDTD) method [2],

[3], which can, in principle, be used to obtain the diffraction

“coefficients of scatterers of arbitrary shape and composmon

Although FDTD has been proposed recently to numeri-
cally determine diffraction coefficients [4] as an alternative
to numerous existing methods [5]-[13], this paper follows a

different strategy that exploits the temporal causality inherent
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diffraction coefficient for canonical problems such as the mﬁmte_
perfectly conducting wedge [1]. In this paper, we present a nu-
merical approach to this problem using the finite-difference time-
domain (FDTD) method. We present results for the diffraction

conductor (PEC) wedge, the 2-D infinite lossless dielectric wedge,

LASSICAL theories such as the umform geometncal
theory of diffraction (UTD) utilize analytical expressions |
for diffraction coefficient for canonical problems such as
the infinite perfectly conducting wedge [1]. Although these
theories predict the fields accurately in the far-field region for

- where, for example the t1me-doma1n UTD approach [12] 1S
~useful. -

‘We first present results for the numerical diffraction coef-

' ficient of the two-dimensional (2-D) infinite perfect electrical

conductor (PEC) wedge at some representative observation
points for incident TM and TE polarization for a given incident

~angle and a 90° wedge angle. A very good correspondence
~ between these results and the analytical diffraction coefficient
in the far-field region indicates the validity of our approach.

Then, following the procedure used for the PEC wedge,

‘'we compute the numerical diffraction coefficients for the 2-

D infinite lossless right-angle dielectric wedge and the 2-D

infinite lossy right-angle dielectric wedge for different values

of pcrmrttwrty and conduct:wrty

- II DESCRIPTION OF THE METHOD

‘In thlS analysrs we assume that our system 1s llnear In

- order to find the diffraction coefficient of a canonical 2-D
scatterer for plane wave incidence with either TM or TE
polarization, we first find the diffracted impulse response

field of the scatterer hyym(p, @,t) numerically using FDTD.
The observation point (p,¢) and scatterer size is chosen
such that the incident, reflected, near-edge diffracted and

- far-edge diffracted waveforms can be separated out using
time-gating. This ensures that the diffracted impulse response

houm(p, ®,t) represents only the effect of diffraction from
the desired edge. The Fourier transform of the diffracted
impulse response Hpum(p, ¢, w) thus gives the variation of
the diffracted field obtained for an unit amplitude plane wave
illumination over a wide range of frequencies. The numerical

~ diffraction coeff cient D,y as a function of frequency and
; observatlon pos1t10n can be found usmg

. num(pa (b, w) num(pa ¢a w)\/"egﬁr . (1)

" in FDTD modeling. The proposed method is well applied to where 7 1is the dlstance of the observatlon pomt from the

straight-wall wedge-type scatterers regardless of the length of

the walls. It may not be applicable to curv d. o ceatterers
o PP cab P curved weose scatierers " in the above equation arises from thc nature of the Green’s

'-functlon in two d1mens1ons

scattering edge and 8 = w,/fio€o. The Fourier transform has
been defined using the e~7“* convention. The factor /re""

In this analysis, we can also ﬁnd the dlffracted ﬁeld for an

' arbltrary incident wave (TM or TE polarized) as a function

“of time and observatlon position by convolving hnum(p, o,1)
with the time history of the incident wave. If the observation

point for a scatterer 15 such that the 1nc1dent reﬂected and

- 0018—926X/97$1000 © 1997 IEEE
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Fig. 1. Two-dimensional geometry of the grid and scatterer.

diffracted fields cannot be separated in time, the incident or

reflected fields can be found and subtracted from the total field,

above.

- III. DIFFRACTION COEFFICIENT FOR PEC WEDGE ‘

‘We apply the general approach outlined above to numeri- ;

cally determine the diffraction coefficient of the PEC wedge

with a 90° wedge angle. The 2-D geometry of the grid and

square-wedge scatterer is shown in Fig. 1. Vertex A in the

'be the origin of the cylindrical coordinate system used for the
calculation of the diffraction coefficient. The infinite extent of
the scattering wedge in the horizontal plane is simulated by

choosing the side length of the square scatterer to be such

that for the incident angles and observation points considered,

the diffracted field from edge A can be causally separated
from the incident and reflected fields (1f present) and from the
diffracted fields of the other vertices. The observation point
can be thought of as being in one of the three regions shown
" in Fig. 1: Region I (incident, reflected, and diffracted fields
present), Region II (incident and drffracted ﬁelds only), and _

Region III (diffracted field only). .
The incident illumination (Fig. 2) is a pulsed plane wave of

center frequency 850 MHz and a Gaussian envelope of 1.3-ns
~duration (full width at half maximum). This wave effectlvely_ '

simulates an unnormalized pseudo delta function and has

substanual spectral content from 300 MHz to 1.3 GHz. For the
TM (TE) polarized incident wave, an electric- (magnetic-) field

source Xinc(t) is used and the diffracted electric (magnetic)

field Xgit(p, P,t) is ‘computed at representative points in
Regions I, II, and ITI for various angles of illumination using a

2-D FDTD code wrth Berenger perfectly matched layer (PML)

and the diffraction coefficients can be calculated as de scnbed "

figure 1s shown as the scattering edge and is hence chosen to o - e - o
' ' [14] absorbing boundary condition. In the FDTD code, we use
'square grid cells of side length of resolution Ag/20 or smaller
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Frg 3. Time variation of electric field scattered from PEC wedge for the

TM polarization case at observation point E (p = 8.32 m, ¢ = 49.56°).
lefracted field from vertex A 1S separated in time from the other ﬁelds '

to minimize numerical errors, where Ao is the wavelength
at 850 MHz. Since the incident illumination Xj,c(p, @,1) is
unnormahz.cd the F ourier transform of the diffracted field

1mpulsc response H num(p, ¢:, w) is glven by

f{ch( 6,0}

Thus the numerlcal dlffractlon coefﬁcrent Doum from (1) 1s

num(pa ¢a w) (2) ..

' grven by

f{Xdlf(p7 ¢1 )} eJ,@p . .
F{Xinc(0, 9, )} \/_ >

where p 1S the drstance of the observatron pomt from the
scattering edge. e e
We compare our FDTD e sults in the far-ﬁeld region for

num(p, ¢>, w)

the infinite PEC wedge to the well-known analytical solutions
“obtained using UTD. References [1] and [15] provide asymp- .
‘totic analytical expressions for the diffraction coefficient as
“a function of the positions of the source and the observation
points and the wave frequency. The diffraction coefficient D,
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‘ for ™ (soft) polanzatlon and the- dtffractton coefﬁcrent Dh f

for TE (hard) polanzatlon are glven by

s(fw ¢> w)

Dh(pa ¢a¢ CU)

+ (oo ) P €
oot (5 ) F(B (s+>>)] '

where f"’ =¢+¢, 6 =¢— qS’ the wedge factor n = 1 5
for a nght-angle wedge and F (X ) is the Fresnel’s transition

. functlon given by

Yo ©)

F(X) = 23\/—eax /ﬁ .

- We used the FORTRAN complltef program presented in
[15] and [16] to compute the diffraction coefficients described
above as a function of frequency. To compute Fresnel’s

~ transition function, the followrng asymptotrc expressrons (for
- large and small arguments) were used: ‘

)= ( /7% - 2X eﬂm = "Z“X 2 _“/4) eJ(w/4+X)
. 1 3 15' 75
(forX>55)

calculate this function. . -
- We now present results for the drffractron coefﬁcrent at two

(p = 8.32 m, ¢ = 49.56°) in Region 1 and point F (p = 6.30
O |
m, ¢ = 262.37°) in Region 3. The plane wave e;gttat;?gl l; phase charactensttcs than those generated for the TM case
‘shows the time variation of the total electric field at point £ ' . o i o - '
for the TM case. This figure illustrates the procedure of time-

a TE or TM polarized incident wave with ¢’ -

gating to extract the diffracted electric field X ait(p, @,t). We

* compare the amplitude of the diffraction coefficient obtained as
a function of frequency using FDTD and (4)—-(6) at observatron -

point £ in Fig. 4 and F in Fig. 5. There is very good
~ agreement to within 1% in the frequency range 30 MHz to
1.3 GHz of the asymptotic and FDTD results. Addlttonal

studres have shown exactly the same level of agreement in

@

(for X <0. 3) (7a) .

- case requrres slightly higher FDTD gnd resolution than the
(7b) TM case to achieve approximately the same accuracy for the
- For intermediate arg uments a lmear 1nterpolatron was used to ] ~ This is in splte of the theory [17] that shows that the numerical

o dispersion prOperttes of the TE and the TM grids are identical

for the same grid resolutlon This interestin g observation
 representative observation points shown in Fig. 1: point £
is currently being studied by our group. We speculate that

- diffracted waves generated for the TE case have more sensrtrve
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Flg 5 Companson of the asyrnptotrc and FDTD results for the drffracuon

' cocfﬁcrent for PEC wedge at observation point F' (p = 6.30 m, ¢ = 262.37°)

in Reg1on I for TE (Ao / 25 gnd resolutlon) and TM (Ao / 20 gnd resolutlon)

o polanzauons

-. Regron II where only the 1nC1dent and drffracted ﬁelds are
- - present Our numerlcal expenments have shown that the TE |

same geometry at 850 MHz (\o/25 as opposed to Ao/20).

V. DIFFRACTION COEFFICIENT
~ FOR INFINITE DIELECTRIC WEDGES'

We apply the numencal method usmg FDTD described
above to determine the dlffracuon coefﬁC1ent for infinite

“lossless and lossy dielectric wedges with a 90° wedge angle
~ for TM and TE polanzauon We modify the 2-D FDTD codes

'used for the PEC wedge by changing the material properties
.- of the scatterer For plane wave mcrdent 1llunnnatron (Fl g 2)
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Fig. 6. FDTD computed dlffractlon coefﬁment for infinite lossless dlelectnc
wedge at observation point F (p = 6. 30 m, ¢ = 262.37°) for the TM

polarization case. Results are shown for €= 2 €=29,e=T for a ﬁxed-gnd
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Fig. 7. FDTD computed diffraction coefﬁment for infinite lossless dielectric
wedge at observation point F' (p = 6. 30 m, ¢ = 262.37°) for the TE

polarization case. Results are shown for £ =2, €= 5 eE="T for a ﬁxed-gnd

resolution Ag / 20.

with the time dependence Xinc (t) the total ﬁelds are computed
using FDTD at various representatlve observatlon points. We
present results for the diffraction coefficient at observatlon
~ point F' which is in the forward scattering region and is of
practical interest for diffraction problems. For S1mphclty the
plane wave illumination angle (¢ = 80°) and the material

are chosen such that the refracted wave inside the dlelcctnc |

undergoes total internal reﬂecuon from face AD of the wedge,
shown in Fig. 1. This ensures that the transmltted ﬁelds
through the dielectric do not reach pomt F, allowmg us to

easily find Xait(p, P, t) usmg time gating. For a general case
where the refracted wave cannot be eliminated using total

internal reflection, the diffraction coefﬁment can be calculated

by first subtractmg the transmitted field (Wthh can be found

analytically) from the total field. Figs. 6 and 7 show the

observation point F as a function of frequency for TM and

TE polarization, respectlvely, for selected lossless dielectric
parameters. The grid resolution is fixed at \g/20 for each case.
Figs. 8 and 9 show the variation of the amplltude of the
' dlffracnon coefﬁcrent at observanon 1nt F as a function

~ Diffraction Coefficient

fixed (¢ =
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case. Results are shown for fixed dielectric constant (s = 7) and varymg
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- Fig. 9 FDTD computed dlffracnon coefficient for 1nﬁmte dlelectnc wedge

at observation point F' (p = 6.30 m, ¢ = 262.37°) for the TE polanzatlon
case. Results are shown for fixed dielectric constant ( e = 7) and varying

N conductmty for a ﬁxed—gnd resolution Ao /20.

- of frequency for T™ and TE polarization, respectively, for

selected lossy dielectric parameters. The permittivity is kept
7), while the conductivity is varied from zero

(lossless case) to a very large value (metal). As expected,
Figs. 8 and 9 indicate that as the conductivity is increased,
the diffraction coefﬁclent converges to the value obtamed for

the PEC wedge

V. CONCLUSION
" In this paper, we presentcd a numerical approach using the

FDTD method to obtain diffraction coefficients for scatterers
in two dimensions. We illustrated the accuracy of this method

for an infinite nght-angle 2-D PEC wedge for selected key

observatlon regions, and extended the method to mﬁmte r1 ght-

| a.ngle lossless and lossy dielectric wedges.
variation of the amplitude of the diffraction coefficient at

B dlffractlon coefficients of generic wedges with arbitrary wedge
angles using the contour-path FDTD approach described in
[18]. Further, the diffraction coefficient can be found at any

In principle, this method can be extended to calculate

far-field observation position since the contributions of the
1nC1dent reﬂected and transmltted fields to the total field can .
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be determined (numerically or theoretically) and subtracted
from the total field. Also, the near- to far-field transformations

described 1n [19] can be used to find the diffraction coefficients

at any distance away from the scatterer using the numerical
fields obtained near the scatterer.

A desirable goal of this research is to calculate a library
of numerical diffraction coefficients for a variety of shape
and material discontinuities, even in three dimensions. For
the most interesting practical applications, i.e., observation
points in far-field shadow regions, the assumption of 1/./r
behavior of the diffracted field holds and the library/table

approach. In combination with ray-tracing software, this could

be valuable in the accurate estimation of the propagation of

electromagnetic fields in an urban environment, a problem
that is especially interesting to the cellular and personal
communications industry. ' ‘
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