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Abstract—This paper summarizes algorithms which extend the '
finite-difference time-domain (FDTD) solution of Maxwell’s equa-

tions to nonlinear optics. The use of FDTD in this field is novel.
Previous modehng approaches were aimed at modeling optical-
wave propagation in electrically long structures such as fibers and
directional couplers, wherein the primary flow of energy is along a

single principal direction. However, FDTD is aimed at modeling

compact structures having energy flow in arbitrary directions.
Relative to previous methods, FDTD achieves robustness by
directly solving, for fundamental quantities, the optical £ and H
fields in space and time rather than performing asymptotic analy-
ses or assuming paraxml propagation and nonphysical envelope
functions. As a result, it is almost completely general. It permits
accurate modeling of a broad variety of dlsperswe and nonlinear

media used in emerging technologles such as micron-sized lasers .

and optical switches.

Index Terms—FDTD methods, : nonlinear wave 'propagation. .

[. INTRODUCTION

growth of the field of nonlinear optics. This has led to

development of a variety of new devices for transmitting,
switching, and storing data using electromagnetic energy in
and near the visible spectrum. These devices include optical

fibers, couplers, switches, and amplifiers. Materials technology
and fabrication methods, particularly for semiconductors, have
advanced accordingly, allowing devices to be built on a
submicron scale with fine structural details. Pulses as fast as
a few tens of femtoseconds are being generated and guided
through these new systems at repentlon rates approachmg the
terahertz regime.

One result of this progress is the mcreased need for accurate
models for predicting the electromagnetic field behavior of

these new optical devices to permit their efficient design

without repeatedly building expensive prototypes. Fortunately,

the tremendous increase in computing power has made detailed
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ODAY’S need for faster and better means of coin- '
munication and data processing has encouraged rapid

numerical modeling available to the optical-design engineer.
An emerging modeling tool in this area is the finite-difference

- time-domain (FDTD) solution of Maxwell’s equations [1]-[3].
- While FDTD 1s now well accepted in the analysis of linear

electromagnetic problems, especially at microwave frequen-

cies, 1t 1s still a novel approach in the nonlinear optics
‘community that has long used asymptotic and paraxial wave

equation models derived from Maxwell’s equations as the
primary detailed modeling tool. As this paper will show, the
full-wave time-domain features of the FDTD field solver,
augmented by recent extensions, are particularly well-suited
to bring new insight to nonlinear optics problems.

To observe nonlinear effects in commonly used materials,

~ a high-intensity light source, such as a laser, is required. The

nonlinear behavior is due to the dependence of the polarization
P(t) on the applied electric field, F(t). Assuming an isotropic

~ and frequency-independent medium, the polarization can be
' expanded as a power series in E [4]

=¢o [xX'VE + xPE? + x(3)E3 -] _
---PL+PNL - - (1)

‘where PL-and PN L are, respecnvely, the linear and nonlinear
components of the polarization. Here, x(1) denotes the linear
- susceptlblhty of the medium, and the quantities x(2), x(®,

. are the nonlinear susceptibilities. The particular nonlinear
effect observed depends on which term is dominant in (1).
Second- and third-order nonlinear behavior, requiring less
input power to observe than higher order effects, have been

‘the topic of much study. Some second-order nonlinear effects
include sum and difference frequency generation, parametric

' amphﬁcatlon and the Pockels effect [5]. x(z) disappears for
materials with inversion symmetry such as optical-fiber glass.

In such materials, the lowest order nonlinear coefficient is x(*).
Third-order nonlinear effects include the quadratic electro-

~optic effect, third-harmonic generation, four-wave mixing,
‘intensity-dependent refractive index, stimulated Raman and
“Brillouin scattering, and two-photon absorption [5]. In most
optical materials, the refractive index n also varies with
frequency resulting in both 11near and nonhnear chromatic
~ dispersion. ' ' - '

Both analytlcal and numencal methods have been applied to
model the behav1or of llght propagatmg m a nonhnear medium.

0018-926X/97$1000 © 1997 IEEE
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Typical approaches begIn Wlth a wave equatlon " )

VzE [.l,() 60 Sr(x y': Z w E) C‘)atf _-O :

derived from Maxwell’ S equatlons where the relatIve per-

mittivity €, can be spatially varying, frequency dependent

‘and nonlinear in E. Here, the divergence of the electric
field is assumed to be negligible. The linear and nonlinear

contributions of E to the polanzatron can be treated separately
to obtain ' ' '

_ 82E 82PNL B
V2E 2 — Lo - -
HOOTO Fr = Ho T

where no is the hnear refractive Index and 82 PN ’ / 3t2
comprises the nonlinear term of interest. A

Here, most models for nonlinear optrcal processes make
any of several as sumptions. First, a preferred direction of
- energy transport may be assumed. In guided-wave problems,
the transverse modal profile may be decoupled from the

propagatton equation. Second, the variation of the electric-
field envelope E may be assumed to be small over distances
of the order of one optical wavelength. This slowly varying
envelope approxzmatzon (SVEA) permits second derivatives

of E In the pr opagatlon direction to be neglected, rcducmg
the wave equation of (3) to a simpler propagation equation

[6]. Such simplified models may have analytical or numerical
nit effective simulation of optical-pulse

solutions that per
propagation over very long distances [6], [7]. An example
where this is required is long- distance pulse propagation 1n a
single-mode fiber, where signals can travel many hundreds of
kilometers. Here, the transverse (modal) profile of the light

~ in the fiber remains constant, reducing the problem to one
spatial dimension. The reduced-order equation can then be
transformed to a reference frame that travels with the pulse

T = t — 3z, where (3 is the propagation constant [6]. The
most common case of this method results in the nonlinear

Schrodinger equation (NLSE), thch is used to study pulse

propagation in a X(3) medium

8E 1 2E

Here, ,82 1S the group velocrty dIspers10n and y is the nonlmear

coefficient. For an optical pulse prOpagaung in a fiber, for

example, the ﬁrst term of (4) gives the propagatron behaVIor . permittivity € is independent of frequency. Using Yee’s central

~ differencing in tIme and spacc [1], these relations can be

the second term accounts for the pulse spreading due to

linear dispersion, and the third term models the third-order
nonlinearity. For a very short pulse having a spectral width
comparable to its center frequency, cubic and hi gher order
dispersion effects become appreCIable and the NLSE model- o
of (4) is inadequate. Additional terms must be included to
model such higher order behavior [6]. Reference [8] showed

that a suitable N LSE model can accurately predlct the behavior

of pulses as short as 10-15 optrcal cycles for one—dlmenswnal - and the solutlon 1terated to the desrred ﬁnal observation time.

~ For a general dispersive and nonhnear medium, however, the
'FDTD computational model can retain its fully explicit nature
~1f (6¢) is replaced by the constitutive relation

(1-D) propagation problems.

Clearly, optical fibers are designed such that the transverse
mode is well confined and radIatlon losses are low. How-
ever, for wave propagation that is not totally confined in
the transverse direction, the possibility exists for transverse

3

~ difference solution of the tIme-dependent Maxwell’s equations

‘presence of material dispersions of arbitrary order and both
- instantaneous and tIme-dependent nonhneanues

- Er = f(D

365

| . energy ﬂow Consrder for example the case of optical-
 beam propagation in a bulk, nonlinear x® material. Here,
@

- the beam energy does not diverge much from its primary
' dIrectlon of prOpagatIon [91), an NLSE model analogous to (4)
can be constructed wherein the second term in the equation

by applying the paraxzal approximation (which assumes that

represents transverse beam diffraction rather than longItudI-

nal pulse dispersion. Note, however, that the assumptlon of
~paraxial propagation fundamentally Iimits such NLSE models
‘to predictions of small-angle scattering or diffraction loss.

- In contrast, the numerical FDTD method for nonlinear optics
is completely general. FDTD is an explicit full-wave finite-

‘that yields both electric and magnetic fields with a spatial

 resolution much finer than one wavelength As a result, FDTD
typrcally requlres tens of Mwords and tens of thousands of

‘time steps of solution evolution to solve practical problems .
in modern nonlinear optics. However, the results often justify
the computational burden since the number of approximations

" made is minimized and deta.Iled field solutions are provided

with an accuracy determined pnmanly by the grid resolution.
In fact for many of today s compact optical devices, which

‘span ]llSt a few optrcal wavelengths the computatlonal require-
‘ments of FDTD are not prohibitive. In the following sections,

we review selected algorithms for modeling nonlinear optical
physics via FDTD. The algorithms allow prediction of the

optical-field dynamics in complicated optical structures in the

II AN ALGORITHM FOR LINEAR DISPERSION ADAPTABLE
- TO NONLINEAR DISPERSIVE OPTICAL MATERIALS

ConSIder for s1mphc1ty a 1-D problem wrth electric and

magnettc field components E, and H, propagating in the z
direction. AssumIng first that the medIum is linear, nonperme-

able, isotropic, and nondIsperswe Maxwell’s curl equatrons

“in one dlmenSIon are

aHy 1 9E,

ot 33:
oD, 8H ' ' -
~ (5b
ot 8r - D)
where p, = vacuum permeablhty, D, = eFE,, and the

expressed as

n+1/2 o n-—-l/2

y'z+1/2 - yi2+1/2 + /J,OA.’L' (Ez'
At
n+1 n n+1/2
D l i "'"'D I +"A’;(Hylz+1/2 : .
'n-l-l — __D 'n-l—l o - (60)

&

N n+1
A Iz y

D7, - B2, ELIP7Y, ) (D)
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where f is a function to be determined. Several approaches -
have been proposed for this purpose. These may be catego-

rized into two primary groups: rccurs1ve-convolut10n methods
[3], [10]-{12] and the direct time integr

als. This section summarizes a dlrect t1mc integration method
shown to be adaptable to nonlinear opncal modeling [2].

We now consider a linear dlsperswe material characterized
by NV Lorentzmn resonances. For each vector component of

D and E we wnte ‘

D(7, t) = so (r t) + P('r t)

Here, the polanzatlon of an electnc ﬁeld vector component is

expressed as a sum of N terms (droppmg the vector component
subscnpt for 31mphc1ty) ' e o

o
. p-

=1

- where each P; term is a convolution integral

- Jo
and each y; 1s a Lorentzian in frcquency |
_ al) =273 21“’5 i - g
x ‘
Re

In (10) we assume Zero values of the electnc ﬁeld and the: _'
~ kemnel functions for t < 0. - '
Now con31der the key prOperty that dnves this formulatlon, -
namely, each kemel function y;(t) satisfies the followmg |

linear, second-order differential equatlon
Xz + 262Xc + wz X’t — 0

where it is assumed that and xz(t = 0) =0 and xz(t = 0)
G;w?(es — €co)- This property of the kernel function makes it
possible to treat the convolution 1ntegral as a new dependent

“variable. It follows immediately that a second-order ordinary

- differential equation can be derived for the linear convolution

integral by time-differentiating it. This equation determines the
polarization which can then be used to determine E'. Knowing -

N z-—-l

o s ( Z P)

- we can write for each convolutlon mtegral P-
- equation '

P”~|—25P’+w2P “wzb( ZP)
_ bz — Gi(gs - 500). _ - _

pration methods [2],
[13]-[15]. An advantage of the direct time mtei ration methods
B that they can be generahzed to nonlmear dlspcrswe materi-

Py + 263P} + w(1 + b3) Ps + wibs Py + w2bs Py =w2bsD.

(11) "

L ,(13)

~ incident on a half-space of a dispersive dielectric medium.

the dlfferentlal arbltranly chosen, mode
~ nances in the optical range. With the baseline low-frequency
 and high-frequency permittivities s =

 to be: (i = 2 x 10% Hz, & = 05f1, Gy =
(fg = 4 X 1014 Hz, 6, =
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As an example of the apphcatlon of (14) consider the case
of a material having three Lorentzian relaxations. This results .
“1n the followmg system of ordlnary dlfferentlal equatlons B

Pl + 261 P] + w?(1 +b1)P1 + wj b1P2 + wl 51P3 = W] le
- o - (153
Py + 265 Py + w3(1 + b2) Po + wibo Py + wiby Ps =wiboD

(15¢)

- (8) Applymg a second-order accurate sem1-1mp11c1t central-
difference scheme centered at time step n, this system can
~ be solved to update P, Pg, and P3 by lnvemng the followmg ~

set of equat1ons

01Pn+1 -+ Can+1 + C1 Pn+1

= Cl(Dn+1 Dn—l) _ Cl( .
' +P3“1)+4P1 +91Pn B _ -
| . : - (16a)
Pn+1 + aan+1 + CQPn+1 )
o (D™ 4 DY) (PRt
' +P3"‘)+4P2 +g2P’"”"1 ) .
o - ‘ (16b)
P"""‘l + c3P“+1 +agPptt ‘
C=cy(D" 4 DY) — cy(PP
o+ P~ 1) + 4P + g3 P2 i |
o a; --2—|-26 At+w2At2(1+b) ' (17a)
g =wiAh . am)
o gi==2 + 26; At - 2At2(1 +b). (17¢c)

Wlth the updatcd valucs P"""1 P’"""’1 and P‘"’"’1 now ava.tl- '
(12) ‘

able wc can update E from (13) as

En+1 ' 1

Pn+1 Pn+1 - Pn+1). o (18)

(Dn-l-l

. Equatlons (16)—( 1 8) are apphed n placc of (7, performmg
~ the function {D"*'} — {E™*'}. For each E component
calculated in this manner, computer storage must be provided

for two previous values of D and two prcv1ous values of each

of the N convolution functions P;. -
~ The dispersive FDTD algorithm summarized above was .

validated in [2] by modeling the reflection of a Gaussian pulse

Fig. 1 shows results for a hypothetlcal material having three
rately undamped Lorentzian reso-

the controlling parameters of the Lorentzians were assumed
0.3),
0.5 f2, G2 = 0.4), and (f3 =

O 5f3, G3 = 0. 3) The FDTD reﬂectlon o

10 and e, = 1, '
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Fig. 1. (a) Real and 1mag1nary parts of the permittivity of a Lorentz medium
having three resonances in the optical range. (b) Comparison of FDTD and

exact results from dc to 2.0 x 10*> Hz for the magnitude of the reflection

coefficient of a half-space composed of the medium of (a). Ax = 2.65 nm,

At = 8.85 as. Problem size: 20000 1-D cells, 20000 time steps. Computer

resources: . 92 MW; 1000 CPU s on a smgle processor of the Cray J9O [2].

coetficient versus frequency was computed by taking the ratio

of the dlscrete Fourier transforms of the reflected and incident

pulses. These data were then compared to the exact values

obtained by monochromatic impedance theory Agreement was

‘within 0.1% at all frcqucncy companson pomts (hterally, from

dc to light). . .

In addition to the wave reﬂected from a dlsperswe half
space, FDTD perrmts computing the pulse propagating within
~ the dispersive medium at any space-time point. H1stor1cally,

such pulse dynamics have been obtained only by asymptotic
or Laplace transform analyses, classmally by Sommerfeld
[16] and Brillouin [17], and more recently in [18] and [19].

Of particular interest in these papers has been the delicate
precursor fields [20] that can precede the main body of a
pulse propagating in a Lorentz medium. The computation of
the precursor for a single-Lorentz medium using a subset of
the above algorithm-' is reported in [15]. Here, a sinusoidal

source of frequency f = 1.59 x 10'®> Hz was assumed located

0 for material parameters
=1, fo = 6.4 x 10" Hz, § = 0.44 fo, and
1. Upon comparing the FDTD-computed Sommerfeld
precursor observed at £ = 1 um to the published asymptotic

at z = 0 and switched on at t =
Es = 2.25, €
G
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1.06  1.12 118 124
' Normallzed ttme=GVX o

Fig. 2 Cornpanson of FDTD asymptotlc and Laplace transform results for
the Sommerfeld precursor observed at x = 1um in a Lorentz-dispersive
medium for a unit-step modulated sinusoidal excitation of we = 1.0 x 101¢

catz = 0. Az = 0.0157 nm, At = 0.0523 as. Problem size: 80000 1-D

cells, 80 000 time steps. Computer resources: 1 4 MW; 965 CPU s on a single
processor of the Cray J9O [2] - _

[18] and Laplace transform [19] predictions, it was found that

~ the FDTD precursor closely agrees with the Laplace transtorm
- calculation. This 1s shown inFig. 2.

III TI-IIRD-ORDER NONLINEAR MEDIA

ThlS section reviews approaches based upon the FDTD
method that permit the direct time integration of Maxwell’s
equations for materials having third-order nonlinear behavior.
In contrast to NLSE models, the optical carrier is retained.

‘Section ITI-A reviews a relatively simple model of instanta-
' neous Kcrr—type nonlinearity. Section III-B reviews a much

more complete model that includes simultaneous linear dis-

persion, instantaneous nonlmearlty, and nonlinearity W1th a

finite-time response.

A. Instantaneous Nonlinearity '
" The FDTD model for Kerr—type materials assumes an in-
‘stantaneous nonlmear response. The nonlmeanty is modeled

- 1in the relatton D = 608E Where

(19)

Here, the linear refractive index no is dimensionless, and the

“nonlinear refractive index n, has units of m?/V2. From (19),

(7) tor the latest value of E can be expressed by the following
iteration upon the latest value of D and the old value of FE [21]:
B = —- 20

R no + 2’"»0’"'2|E|2 ( )

Knowledge of E thcn permlts another updating of H and
D, and the process repeats cychcally until time stepplng 1S

_ cornpleted
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Fig. 3. Visualization of the FDTD computed electric field of optically narrow
mutually interacting spatial solitons 1n Type-RN Coming® glass. (a) Repul-
sion for relative carrier phase = x. (b) Single coalescence and subsequent
divergence for relative carrier phase = 0. (c) Periodic beam recoalescence
after doubling the intensity beamwidth and separation parameters of the
simulated beams, but keeping the wavelength constant. Az = Ay = 52.8
nm, At = 88.1 as. Problem size: 1800 X 592 2-D cells, 3600 time steps.
Computer resources: 10.9 MW; 1340 CPU s on a single processor of the
Cray J9O [21].

The two-dimensional (2-D) FDTD modeling of spatial
optical soliton propagation and mutual deflection in a ho-
mogeneous glass medium having a Kerr-type instantaneous
third-order nonlinearity 1s reported 1n [21]. Here, the trans-
verse spreading of a simulated laser beam caused by linear
diffraction was exactly balanced by the transverse beamwidth
sharpening effect due to self-focusing caused by the assumed
nonlinearity. FDTD calculations were made for two parallel
beams spaced at 1.05 um, center to center. The beams were
assumed to be switched on at ¢ = 0 in Type-RN Coming®
glass (ng = 2.46 and ny = 1.25 x 10~!® m?%/W). Each
beam was assumed to have a carmner frequency of 2.31 X
10'* Hz (A = 1.3 um), an initial hyperbolic-secant transverse
profile with an intensity beamwidth (FWHM) of 0.65 pm,
and an initial peak F of 6.87 x 10° V/m. The choice
of these parameters yielded copropagating spatial solitons.
Fig. 3(a)—taken from [21]—illustrates a mutual repulsion tor
a carrier phase difference of w between the beams. This 1s
expected from the NLSE. Fig. 3(b) depicts the results tor 1n-
phase carriers. For this case, the NLSE predicts that the two
beams interact by alternately attracting, coalescing, repelling,
and then recoalescing. If the two beams have the appropnate
amplitudes and spacing, the attraction and repulsion is peri-
odic. In fact, [22] states that two in-phase fundamental spatial
solitons having an initial field-amplitude distribution in the
transverse direction of

Aly) = 1 [ nog 12 Y — Yo Y+ Yo
(3/) —-E{U" ;;;‘ sech T + sech —-T

(21)

oscillate in the propagation direction with a period of
2

2x0 sinh (__?_/_Q_) cosh (EJ_Q)
W W

2 2
=70 + sinh (__E_Q_)
w w

based on the NLSE theory of [23]. Here, w 1s the characteristic
width of the hyperbolic secant, yg = 1.42w, 2yo 1s the center-
to-center separation of the two beams, and o = 7 now? /A
is the soliton period. For the choice of parameters used In

Tp = (22)

the FDTD simulations of [21], the predicted repetition period

was T, = 9 um. However, as shown in Fig. 3(b), the FDTD
calculations showed only a single beam coalescence and then
subsequent beam divergence to arbitrarily large separations
for an effective x, = oco.

It was a goal to understand why the FDTD Maxwell’s
equations model did not agree with the NLSE prediction
in this case. The first possibility considered was that the
FDTD simulation was flawed because of inadequate gnd
resolution or inadequate decoupling of the beam-interaction
region from the outer-grid boundaries (second-order Mur
ABC’s were used at the time). In a series of exploratory
modeling runs, the space—time resolution of the FDTD gnd
was progressively refined and the grid was progressively
enlarged. These changes gave results identical to those of the
original FDTD model. Therefore, the original FDTD model
was concluded to be numerically converged and sufficiently
free of the outer boundary artifact to yield plausible results.

The second possibility considered was that the ratio of
beamwidth to wavelength was below the limit of applicability
of NLSE. Because it is known that additional terms 1n the
NLSE are required to model higher order effects for temporal
solitons, it was reasoned that NLSE modeling of copropagating
spatial solitons would be more physically meaningtul if the
two beams were widened relative to the optical wavelength,
while maintaining the same ratio of beamwidth-to-beam sep-
aration. This would reduce linear beam-diffraction etfects,

“hopefully bringing the test case into the region of validity for

the simple NLSE model. To test this possibility, [21] reported
two new FDTD simulations where the intensity beamwidth
B and separation parameters of the simulated beams were
each doubled and then doubled again, keeping the dielectric
wavelength Ay constant. This FDTD simulation is shown 1n
Fig. 3(c).

After the first doubling of beamwidth and beam separation,
the FDTD-predicted spatial solitons began to qualitatively
show the recoalescence behavior predicted by NLSE, but with
a 38% longer period of recoalescence than the NLSE value.
After the second doubling, the FDTD and NLSE predictions
for repetition period x,, showed much better agreement, ditfer-
ing by only 13%. A third data point (calculated for this paper)
involved, yet again, a 50% increase in beamwidth and beam
separation. This resulted in the difference between the FDTD
and NLSE calculations of z, dropping further to only 5%.
Results for these numerical experiments are shown in Table I.

It was concluded that there is a strong likelihood that co-
propagating optically narrow spatial solitons have only a single

coalescence and then indefinite separation. The FDTD model
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, TABLE I

PROGRESSIVE AGREBMENT OF FDTD AND NLSE RESULTS
FOR PERIODICITY OF COPROPAGATING SPATIAL SOLITONS AS

~ and its convolutton provrdes a macroscomc equrvalence of
~ the optical material for the ¢ quantum effects leading to the

“THE RATIO OF THE BEAMWIDTH TO WAVELENGTH INCREASES

Bi/Ay .' x,—. (um) NLSE B .x,;.._(m) FDID

B,, FWHM (um)  Difference
- 065 12 9 e 0%
26 49 1513 13%

3% 713 305 320 5%

-' appears to properly pred1ct the behavror of these solrtons '
in nonlinear media both n the regrme where the standard
NLSE model breaks down (B 1/Aa¢ < 1) and the regime
- where the standard NLSE model is valid (B;/\g > 1). The
paraxral approximation inherent to NLSE, according to 91,
accounts only for zeroth-order linear diffraction effects. Since
the FDTD model implements the fundamental Maxwell’s curl

equations, it makes no assumption about a preferred scattering

deV1ce

B. Dispersive Nonlinearity

This section reviews an algorith
for modeling the simultaneous presence of linear dispersion,
instantaneous nonlinearity, and dispersive nonlinearity (see

(5a) and (b). Now allow for nonlinearity of the dielectric by
assuming that the electric polarization consists of two parts:
a linear part P/ and a nonlinear part P¥L [6]. Maxwell’s
equations still govern, but here, £ must be related to D by
accounting for both the linear and nonhncar components of

the polarrzatton . .
- — (PL + PN l")

30050

first-order susceptibility function x'1)

O

P, t) =<, / ‘

f--OO

X (t - T)E (z, 7) d'r

where x(l) prov1des the physrcs of hnear d1spers1on norrnally .
associated with a frequency-dependent pcrrmttrvrty Further,

pN L
order susceptibility function x(*)

- PNL(:C t)--eo/ / /

| [ (33 Tl)E (5’3 Tz)Ez(iv '7'3) d7'1 dTg d’Tg

where x(3) provrdes the physrcs of a nonhnearlty with retar-

dation or memory (1 €., a dispersive nonhnearrty) Thrs kernel

o nonlrneff?_}?_'57:il

- susceptlbthty x(l) (t)

direction. It naturally accounts for energy transport in arbitrary
transverse directions and should be exact for the computed ' ' ' -
optical clectromagnetrc fields up to the limit set by the grid Further the material nonhneanty s assumed to be charac-
resolution. Reference [24] reported a similar need to use a
full-wave Maxwell’s model to properly obtain nonparaxial [29];

scattering of energy for a corrugated wavegurde beam-steenng ’

m reported in [25] and [26]

@3

Here, PL is given by the convolutmn of E, (:z: t) and the .‘

: (24) _

(25) B

. For silica, these effects ¢ occur at time scales

1-100 fs. Note that fxﬁ(3) rnay have drfferent resonances and

dampings than y(1). TR el S
Consider a materral havrng a srnglc-Lorentzran dlsperswe
x(t) haracterized by the Fourier

PRI S
wo + 2jw5 w2 T
L (ceemd i
er(w) = oo + wh + 2jw5— wz
o C(we = resonant frequency '
Where{ 6 = damping constant.

~ terized by the followmg smgle trme convolunon for PZN L
pNLo ) = eIz, 8 / gt =7)[Eu(a, 7)) dr
_ . =0 ‘ (27a)

where x( ) is the nonhnear coefﬁcrent The causal response

-functlon g(t — 'r) is norrnahzed SO that

- /mg(t) dt =1_

Com

Equatron (27) accounts for only nonresonant third-order pro-

cesses, including phonon interactions and nonresonant elcc-
‘tronic effects To model thesc responses we let .

gH)=adl)+(1-a)gal) @88

o _.where 6(t) is a Dirac delta function that models Kerr nonres-
onant virtual electronic transitions on the order of about 1fs
or lcss and g R(t) is grven by the eXponennal

_ gR(t) _ (7-1 +;'2 ) ~t/m2 gin ( t ) oo o

7'17'2 y T1

that models transient Raman scattermg Effectrvely, gr(t) .
“models a single Lorentzran hne centered on the optical-

phonon frcquency 1/71 and having a bandwidth of 1/7o,

“the reciprocal phonon lrfetrrne Note that o parameterrzes the

relative strengths of the Kerr and Raman 1nteract10ns
is given by the convolution of E, (a: t) and the thtrd— N

Following [25], we now describe the system of coupled .
nonlinear ordmary differential equatrons that governs the time

- evolution of the polarlzatron Assummg zero values of the
- electromagnetic field and the kernel functions for ¢ < 0, define

X(3) (t — 71, t — 'rz, t— 7‘3) r } the functrons F(t) and G(t) as, respcctrvely, thc convolut10ns

t _- _
- F(t)= eo/ x(l)(t — T)Ez (z, T)dr; (29a)
- Jo I

G0=< [ - iE@Pd @
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Then, by tlme-dlfferentlatmg F and G 1t can be shown *at |

these funcions satisf the system
o 1 sz

__ 26 dF
B w. dt2 Wy

25 dG

de +

_ 2 dtz

where 5 = 1/7-2 and @ (1/7’1) + (1/'7-2)2 Equat:ons

(302) and (30b) are first solved smultaneously for F and G
at the latest time step by using a second-order accurate finite-
difference scheme (discussed bclow) that operates on data for
the current value of D, and previous values of D,, E., F,

can be obtained via a
Newton’s iteration of the followmg equatlon usmg the new

and G. Then the latest value of E,

values of D,, F, and G S -
_D: F — (1 ~ a)x(3)E G

T eo[em +ox$ (E.)?]

In the two-step procedure that follows.

Step 1: Apply a sec ond-order accurate central-dlfference .
scheme centered at time step n for the coupled system of (30a)
and (b). Here the values of D, and the convolution functions,
F and G, at time step n are taken in a semi-implicit manner
PS 1t — -1 and
n + 1. This yields the latest values of the convolunons F”"‘*’1 |

as the average of the respective values at time ste

and G™*! and requires only two time levels of storage

)

(31)"

The ﬁmte-—dlfference realtzatlon of the above 1S summanzed

sw1tched on at t =

Upon collectmg like terms and smphfymg the notation as
shown, we obtain the following pair of equations for the
updated convolutton mtegrals F I"‘"'l and G et

. A1\
. (a1+ by "|' cl)F]?+l + ( 21 )Gln-l-l

2

_ .(33b)

Note that the form of the couphng in (33a) and (33b) results

~ina strong diagonal dominance in the associated matrix. This

feature is essential for a stable algorithm.

- Step 2: Substitute the values of D, iy ]""’1 and G |"+1
into (27) to determine E, |**1 via a Newton iteration proce-
dure Suppressmg the 7 subscnpt, we obtam

N ‘n-l-l |n+1 | (1 _ a)X(3)E<P)G|n+1 -

_ . 50[500 + aX(g)(E(p))Z]
p O 1 2 '

E(p+l) —

(34) .

N where E 2l denotes the apprommatlon of E l"‘*‘l at the pth __

1terat10n of the Newton procedure and E(O> = E,|". Results _
“to date indicate that only a single iteration of tlus procedure '

~ is sufficient for converged values of the electric field.

- The FDTD rnodehng of a 50-fs pulsed optical-signal source
0 at the surface = 0 of a material
half-space having nonhnear dispersive properties was reported

- in [25] The pulse was assumed to have umty amplitude of



JOSEPH AND TAFLOVE: FDTD MAXWELL’S EQUATIONS MODELS

Field
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(2)

Field

Flectric
|

100
Distance (u)

(b)

Fig. 4. (a) FDTD results for a 50-fs optical carrier pulse after propagating
55 ym and 126 pm in a Lorentz-dispersive medium (linear case), showing
the attenuation, broadening, and frequency-modulation effects of anomalous
dispersion. (b) Corresponding FDTD results for the nonlinear dispersive case,
showing the formation of a temporal soliton and a small precursor pulse.

r = 7.299 nm, At = 12.16 as. Problem size: 20000 1-D cells, 40000
time steps. Computer resources: 0.5 MW; 630 CPU s on a single processor
of the Cray J90 [23].

its sinusoidal-carnier electric field, a carrier frequency f. =
1.37 x 10** Hz (A = 2.19um), and a hyperbolic secant
envelope function with a characteristic time constant of 14.6
fs. Approximately seven cycles of the optical carrier were
contained within the pulse envelope, and the center of the pulse
coincided with a zero crossing of the sinusoid. To demonstrate
soliton formation over short propagation spans of less than 200

m, the material’s group velocity dispersion, 9, and nonlinear
coefficient, x<(,3), were appropriately scaled by selecting the
llowing parameters:

1) linear dispersion: €; = 5.25, €0 = 2.25, wg = 4 x 10**
—16 =2 x10° s71;
2) nonlinear dispersion: ng) = 7x107% (V/m)~%, a = 0.7,
T1 = 12.2 fS, To = 32 f1s.

71

h

k|
+

--------------------------------------------------------------------------------- B L 4 T &4 F B ST F - r=r r 1 '|I.l - = = o l.l.. - . s R AT R o « B e T 1 e e = F R = F ® '|1r = = « a2 F 1 " rFr = - - J.. e .Illl ] -‘.|- . . e . L I T | I‘l.-\.l. L] .|- 4 "- L 'I- - -'.' |.|I" 1|I|.r-ll 'Jl-lll- -_-'rlll-F.F T = = r . -
_________________________________ e i i . . . . i . . e ot . . . . . P . LoLmLTu, . . T L . . . . L. -
B T R et e A At e e e e e e T e e e P N R IR | R T T T P L R A N N N T N N N N N R N N N T N L R R T T I T T L I N I L N IR L L L R I T I T L T g L F L I L B o e gl g gt A
.-‘- A EY R T AP FEAd A FFFPFE Y FPFPPEPRES rTE s s g ey s s d R dd "R A A s a s mEr s mTa ma ' Einir = 4 LIl B L r L R | LI I AN T RN L A B L | s O p = ETEETER gF A & LF o OEESF. - = . - - m F r L soer oy L - - - b ' " - FlI
N . . . . - . . . MR - B
e e Fa e e e e . e ot . - . s aa .. . e e e e e . . - T - . . . . LN E N R Cea L I
4 a Bl ke b e o m e e m g e a . . - - . A . V. + s wa R N - - ' sk . ] T L L S L Y L mam W A i
= & L [ W] - [ R EE YN ] ¥,
kL ettt e L Tote Pttty - * Lt g W e ey
= = b & %eow o b i i L a -'-‘-- r Y
. P W N e N ¢ * * ey
a - a - o .i' . -
. . . " 4h Ll
' ' "'.‘... -.If .
L om
[] - .
v ¥ . *1-*1- l"I-l" -
R "H"' - -
r . v
-
L

ot
.‘I-‘n -
L ] *'l- L
LI I
L |
s
-

L]
-

L]
4

i
‘I
&

L]

wdp F o B 4l
* % 1

[ Ll
141 4% F %0 & r
= & F -

i gm

L
e L * " -l’ .,

r " e
' 4 > r L - .
A i 5 'l i
' -+ LI - L
T * ‘.F. .
'
- - "_' .ﬂF
e - """' n .
rou r - R F LI Y | ok | o . ’ - L] _ L] - |
T e R LR ' . L SR gt nr R R R L AT, LT e P e - ' S r. L) LA VL L P A T A R R R L - . - == 1 »
* + . L] . - . . . - . - . . - .- . . . . . . . - . .
r-f T4
.
s, - P a . - f . . I a =+ a . T T T T I T T T T T e T e T e T e e e mh e Atk e e e k1 e ke ek e e e e et e e
. o- L T - v

r g me bt [ LB Illiujii%!.tl‘lrli

- L [ L] |
N P RN * R i
- - a LK
- + = ¥

- & - - r LI
‘ m byt - * g
. :

r EI e ] * 4 I' L4
wtat L * F"‘"_i' '.,"'

a Ty o & b

r 7 & e R L |
L L L | L LR o
. N LI ) o
Lo L N ] L L

- - g L Y
v B 5 @ LA |

= LNl ) L |
-’ LN L W
v L] + ¥
14 L | ]

P ‘* - st
,.- "'Fiﬂ <
Loa

L
L WX " -
. - = EIE AR
L]
e L N e e e T T L L S T e IR -u"l: b

N . . Pl - A
.

‘I. L} " . . . B =« 1 7 " 4 = r
[ FEF I P g s m_r a . I . ® g L ) E E 4. F L " m_L Ao 1 B e ) e g g P = Bk k7 = B " 4 = kL o= s d 4 r. * 4 n m u ru hi s B uuW " T T N F " 4 momom N d % v 0 =k 1 F.or L B B F v - k% " omd e ko P IR R T W B ) [ I R R R T R R S R B R T | . CINE I R R R N LN R SR RS R | r

. u - -
5 W W o i l'i‘:l"p"i'h'l‘l"i'.‘n'l*-ﬂ. P :f-'-' - | o P » Fa ¥ -
- L * --d,#' rF ] ll.’-"ﬁl.“"l = s op mrh

', e e A . s A ™
' ¥ Ty l-.ftrt T
L -J' Tl o P L
r - i.. 'I‘ I.. I‘_"l-' A =
. p‘l'. T a rxp!-l- "

L R el e

. -n:u:j"- ', pl -.lr"l.l 'r
o
. }*ﬁ e e o

d o B
- Ay o
*e a J'i"f
‘- :.'?-l‘i.t v
e . .
N ' LI I iu‘l" ! [ - ---'I
\ N i " > e e w . . - l"l“"‘l"“‘ﬁ"
2t I-I'-IIF"Ll-il-l.l!Ill'Il--“‘l. ________ TR, -"...""' . 'y _-il_ i ._-Il--lr &+ a4 . L '11. e - ' w i Bk k@ *FFETFT00R
R . . . . Pl . . . . . . . . -. . . . Rt . P .y

. ]
‘: --------------------------------- .1 ..l -;
' .
N

.

M

[ ]

- lIl [ ]

r l'l -

r - ‘ L]
; s :
ot o b '
[ L »

. ] a .
" . I-. l_. -l_
. »
" I. h'l -._
"t " :r L
.

[ ]
ron
. - ]
o e - :- ' i [ L] * : * f.::-l ':‘
ror L]
o T e s e nannpphrrbrddrrddrerbrebabksdr ek F by e FEEE o & L | L "".,l‘l
- * ] CR . L] L )
v F-!‘-I.i'.l-'itl-.l'-i.-l-*l r.h‘ ‘r‘!-""l l---l.ll rtFtF‘i'J‘-!'#hl'*-l‘|"-‘J‘-l-'lii_ '*“"T."-I.-T-Il-!fl'l .l"i.l-‘l"-r.-i- [ B r L - LA P i"r P AR
R - - L L L el s L e A e N e e ey Lk am e L T Tt T L T et ettt g gt R e
. A
. .- i il i it Wt 1o Tl Tl e il el A i
s N Y 4 =" = p 4 E a2 4 ma + F o o Ll J-- mod oo |‘ 111111 'a o |.r.l -.-l-n*-"-i l‘-l + + F -"I'l'Lin-.'-‘--l‘ii—'i‘r'|‘-‘.Fl'q“-!'l‘l'-- = -Tq-‘-.-a.*.'-*-. .' *- |'-*.i-+..-.-.-'.' rrrrrrrrrrrrr . --‘.J'.‘I-‘.|.l'-| LT e e ‘-'-'-*1* "r" ‘. .' '|'|‘ L .|"| - P T .- e 408 .. s - . L R N N - s L L IR R R B R B L B R R |

....................... 2 4 4 0= o mom oo . ek [ T O T T L R R R T o= a1 L I T TR TR ) = et m L T e I T R e L I R R R L T R I B R R ) LR R R L L L L L L L R R | L 4t e R R I - -

e N N TN P A T T T T T T T T S T e e T R N e T R T R L T R R R R R | S R R R R L L L L L L L I L R R L ' T e B e TN, R R LT
P i i P wiam At e ST T T T T LT T e L T, et T T T TS T AT T T T T TR B . T T LT T T . A e o= e PR T A r e [ . " '

| ] L ] B EF Y ¥R 4 - L] I e e sl Pk R AR S gy e g ey rm ko n L] Ll 3 L] L] s B g B4 F omo [] L] n . - 4T a LN Ralt B re L] [ | rra-‘-‘l-‘-l- i
. . - . . - ' ' . [ B e s - . . . . ' - - . . - . - -
|-d-l--i-rlb-l-l'-l--i-l--l-l-I-l-!"-"-i L)

....
...............................................

s 1 F P " moF 4 m.7 " 1 = * " mom. a ®m a4 m.m a - m A mom " o w . m * - = f mk & W e s ER.F . m_1_7 B - f = B+ o p g p A = d = 4 2 o= W 4 a4 4 7 W Em_ = et = F = F 1 F = W == Rk g 1 .
- gy ru draprpn " ) . .--l--l-

'y '
L]
LA -

l-ll--ilnll-il
q--ll-f-rﬁ.r

&

l._l' [ ) -

d r b d brdd B L & § 5

I'H‘I'-l'- -'-‘-‘-*-. I.I’I I"‘l“l‘: .-I 'l '.l-.- k| & »
I.I-I.F.r.i. -‘-.!‘ b i

L

[ L]

-
]
L}
+*

]
LWL I

L

'-I"i
n
»
LI W
*

h |
I-'I-‘

I mm
¥

ik

ndr -lllr'l.!

[]
L

..
X A ] Pt

-
= h + 4

k1
L

+*

" )
: Ao :
a4 * [ - - Ju | ] + bl
L] '- '| ilh.--l-. ll-"IIIl'-l-lﬂlll-.-"l-lil..-.-'i il.n-I-' r 1-.1;.-1.1.-1-.;‘1...p.
LN L o ¥ » R F pr EF s pdFF g sl sy rhas L - AR R R e b
] i‘:p' l-' -' -p.-.q.-' -.- ™ .-I' . '."-'-"'-Il-l-ﬁ'-l."-.'l'ri-.l.l.‘i-.-‘i. -I.l-l-.l-'l'l- LW r -i'-i‘! r i‘t‘i‘-*i'-l l-.'lr i'i =
- - L ’ L L Ik F FE g T
"* -l- l‘-l i:;- -l‘*'l:.l l.‘ "h.;i:r-l--:':.:-:’:- -' l'l ‘r:j-l-'i-.j Jl-l.l- ‘F'I" i & ‘:p-' ok i-itil ] L U - .
e L e T Pt L - o e ) [ e w A e -
=g » k) an Fxupy T T R LI .'..*-'.l.l"-.'.l- L Al - wl B b pob N, Lt ] r '_lr‘.-l.i'.'i'-.l.‘l'.i'i ".“ 'F'*I‘_“ Ly =
- r 4 I'-l- .i- l--_l I‘I-"I.-I‘-I.-.I. -".i"- [ B ] 4 L -'r‘.'ll'i N A W N r" r LI K i‘i i.i' i.‘l L ] i‘
& 'j. [] T pr ¥ i-._-i-‘i-'-' .'il-l-_.-.‘b-'l#ﬁ‘.-*l-I-ﬁ. [ ] * d g '.’ [ .p - L [ ] L] L [ ] ’ &+ Mgt
W -:-'t;-:-:- " ’ L e e S - -
M |:’ -i'h - L]
e
i*' [ ] 'i‘-l-'-i
2 L L) Y 4
- 1
'

L. R N A A T N N e R N N F R T R Y R L R ATy Ay ey, e LA LA AR AAAY A AT RS n e s e B 8 T BT B AT T T T T T T T T T T Wl Tt Ty T e T T T e e T T e e e e T e e T e e T s s e st B e e e e e e e R e r 4 L .-
T - .
T. a‘l - .
< T = oo T N A T Tk A T T R T T N R B N L S e N T T B B I T T T P s -
a L T L T T L - r ':.:ﬁ -y L

. - 3 -
L) .- f -
= ] r ] [ ] -
. e, sl e
L N | H.F F 'If L] r -,
ataa - . M .
PR
PR ._ll '] [ ] l. -
- ..'.. o [ ] #'-I N
- o -
. . [
ol e
- - L]
.
- F
*
- [
'
T T iy - - * "
.o [ ] - ] Lo | ) r .. -
a4 & & TR aEFR B, r B4 PR FFEA , " ] L ) F | L ] L) ] L L L
e " PR P L - st e e o g s - d Bl Ty xd -0 A -4 FR P apEn * bl -'e T orm - -i-.i--i.l-i'-!‘t'l'l-'!.r' - ] .y T et . r -'a‘ * -- i ’ r. = gorrr . . . iy ! - L == -TLF LI R R Fouor ko " .
'F' 0
- L]
L T L B L R
s - o Tt e L g g N u at Py ol By el S L W i s R Mt M e r
L] - -.. r . ;
‘-.-l-l l-p-. LI B S O B A N W] r
- F r l‘
a N a
b -
v L]
- -
' -
'
lr L]
- L]
N i >,
I > g - "l o v
- L i
. ; n - ':?’ A ) - o Lo "
) " FT u - I-i ] L 'i.!l
[ ] [] [ ] ) L e ot ..'.i.-. -.|i'i'l-|-.l1'- v | | L | l"'l- . ". - 'Ii'.'-'ll-l.‘-."- i.
L N - L] ru b n & F N F R L ] - A r [ A L ] 4 % B 4
'.','. ..'r.-"'-l-'..'-‘q-b-*.'.*ﬂ"".-.i*-' * '.‘.-Ftp-'-.-"-r'n'-. '-I-ql"l-{.l'-! -.q- N T - - - L] £l r' .l-r'i"!'l'-'-l-'l-*f'.iﬁ-r L] LI ] i [] . LEEL R R | LI i pgpoy b ll‘i'i" L] r'-l"l.-r L B -llllI LA .
- d . P . . . -
1 - = .
i -| . o T T T S T T S S U L R T e i T T T B L ey !.
a
e )
.
. -
' £y
- -
. -

.

.

.

-+ *
i"\flf
i
] n .
g om -
et .

LI}

I.| -'r

- - ] [ - . - . - | L N

. T L P R L L L L e AR A e e | L -

= . A B PP PFYFEFFARS T LAY Fdapd iy ke " FAy o ] 4 g p g pridrr¥F g *1dapgddsdd sl fdidpFpdebjrFrrasrryrryrarr4ryrrre e b e 88 BT Fr FE N T T T LT e e e e L e e e e T e T el o el d P, A d d e g e e Jdr = =g

" = L . - s ® - rwm - ' 1 . - e - . [ R a . 1 1 &+ = = .k P T T e T i e N R B e L L e A L R R e e e N L L R R R R R A A A R R L
f L ’ ; . o T T T T T T T e T S o T S S T N T TR T n
vl - ~ . . R i P B P P L i, e o T i i i i Tl i i it i i I A e i e i L i i Rl i Il R B A N A AL N AL =

L iomk ok oma vk Wop b P e e e ] ra ok oa iw o " ok BT - LR B TR R R N N NN R . . A T N A A Rm W o ol e e - om P R L PRIEL DN LR R R R T R I T N .
- o= PR . - - - R T R R I T R . TR R . - - -
'a o - o a e e e e T T s e e a e e e e et e T T, [ 4t m E - m o1t oaar Lo o= P Fl PR L R T O e L N L T L L SR T SRR L B ENL AL L R L
LT . e LT, T T T T T T T L T T T . . . . R . e i S i ot . B T T T T I R T
B LT e F1 P T " o= m e T .m.l‘- e et TR e e T T 4 rl'-.'- 1 -Irr-..r.'rl.‘..l.f.a‘a.alal- 'I'|Il '--r-|"' T e L | L or III .o lr-"- - - ll‘I‘l -------------------- L T R L RN R R 4 7 . ®E W 4 1 . = . 1 4 s " * a1 1 = 1 F1 F FmW-=* = =« = : 3 j| 3 = = = = 4 m F " 48 24 5 S @ =" == I 17T EEIT I I FE = 7= L
.. + *r o= oo ) Noma = e e e . . - . . - . . . P e N . . P I L R R A R 1 - - EEEEE . . -

Fig. 5. Visualization of the FDTD computed electric field of a 50-fs optical
carrier pulse propagating in a 1-um thick slab waveguide. (a) Pulse spreading
and frequency modulation due to anomalous linear dispersion in the slab
waveguide. (b) Corresponding FDTD results for the nonlinear dispersive

case showing the formation of a temporal soliton. Az = Ay = 43.8 nm,
t = 72.99 as. 13334 time steps. Computer resources: 6.0 MW; 3100 CPU

s on a single processor of the Cray J90 [26].

This choice resulted in §» varying in a wide range from —7
o —75 ps?/m over the spectral width of the modeled pulse,
(1.37 £ 0.2) x 10'* Hz. Finally, by choosing a uniform FDTD
space resolution of 7.3 nm (=),/300), the numerical phase
velocity error was limited to about 1 part in 10°—very small
compared to the physical dispersions modeled.

Fig. 4 (taken from [25]) depicts the results of the dispersive
and nonlinear dispersive FDTD computations. In Fig. 4(a), the
computed rightward propagating pulse for the linear Lorentz

dispersive case [xf,B) set to zero] is graphed at n = 20 000 and
40 000 time steps. This corresponds to pulse propagation to
depths of z = 55 um and 126 pm at times of 487 and 973 fs,
respectively, after initiation. It is clear that the assumed linear
dispersion caused substantial broadening of the computed
pulse along with diminishing amplitude and carrier frequency
modulation: > f. on the leading side of the pulse, and < f. on
the trailing side of the pulse.

Fig. 4(b) graphs the corresponding pulse propagation when
the dispersive nonlinearity was actuated. Upon the precise
choice of ((;,3) and the initial pulse amplitude, this yielded
a rightward propagating temporal soliton that retained its
amplitude and width. Here, the temporal pulse width spreading
effect caused by the assumed linear dispersion was exactly
balanced by the temporal pulse width sharpening effect caused
by the assumed nonlinearity. The smaller magnitude “daugh-
ter” pulses have been identified as transient third harmonic
energy [8].

Fig. 5(a) and (b) (taken from [26]) depicts the FDTD-
computed results of the 2-D versions of Fig. 4(a) and (b).
Here, the pulse was assumed to have the field components
E., H,, and H, and be guided in the +z-direction by a 1-pm
thick planar dielectric slab with vacuum to either side. Again,
it was found possible to obtain a propagating, nondispersing,
temporal soliton by the precise choice of XS,?’) and the pulse

amplitude.
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1300 CPU s on a srngle processor of the Cray J90

IV. SECOND-ORDER N ONLINEAR MEDIA '

Thrs section presents a srmple FDTD algonthm to model
electrornagnetlc wave propagation in matenals cxhtbltmg an

instantaneous second-order nonlmearlty (Work is in progress
to extend this approach to the case of a dispersive second-order

nonlinearity.) Similar to the Kerr nonhneanty th1s 1S modeled
in the relatlon D = g,eF, but now '

€ =€0[n3+ X(Z)E] .

where the nonhnear coefﬁcrent x(z) has umts of m/V The

latest value of E in (7) can be obtained by 1terat10n usrng the
new value of D and the old value of E :

D

“rm >

E..._

D, and the process repeats cycllca]ly untll tnne-steppmg 1S
completed -

This nonlinear FDTD model 1S now applred to study the i

well-characterized process of second-harmonic generanon 1n

a second-order nonlinear sennconductor wavegutde in two
dimensions. Second-harmonrc generanon can occur due to the
interaction of an applied field at frequency fo with the x(?)
nonlinear medium, resulting in a copropagating signal oscil-

lating at frequency 2 fo. Due to waveguide modal d1spers10n

the guided mode of the second-hannonrc field travels with a

speed different from that of the guided mode of the apphed

field. The efficiency of the frequency—conversron depends on )

the degree of phase rnatchmg between the two srgnals [5]

(35) as Ak —

Knowledge of £ then perrmts another updatrng of H and .

In the present example an asyrnmetnc 0. 44— pm thick slab
waveguldc n = 3.1 substrate n = 3.6 guiding layer,
= 1 air) is excited by a CW 31gna] at the fundamental

)\0 = 1.5 pm. The wavegurde 1S dcsrgned to support only a
single mode at this frequency with a mode effective index
of n.ss, = 3.400. However, the waveguide can support at

least two distinct modes at the second harmonic. The effective

index for the lowest order guided mode at the second-harmonic
frequency 1S Ness, = 3. 357. The phase mismatch is defined

‘As energy at the fundamental frequency prOpagates down

~the guide, energy at the harmonic frequency is generated

and begins to propagate in the same direction. Note that the

- process of harmonic generauon occurs contmuously along the

entire length of the guide. For there to be an appreciable
bulldup of harrnomc energy, the harmonic energy generated

early in this process and propagating down the guide must
- constructively interfere with that generated later on. In a
“homogeneous nonlinear waveguide, low frequency-conversion
efficiency occurs because the generated harmonic field gets out

of phase with its driving polarization, and power flows from

the harrnonrc field back into the fundamental.

When the condition of perfect phase matchrng is fulfilled, '
the generated wave maintains a fixed-phase relation with

- respect to the nonlinear polarization and is able to extract
energy most efficiently from the incident wave. Quasi-phase
matchlng (QPM) [30] is a method of effectively reducing

the phase mismatch between the two fields. One approach to

QPM, selective-area dtsordenng [3 1], 1s to perlodtcally Zero

2ko(Tess, — Mess,). The nonlinear coefficient is
x(z) = 300 x 10~12 m/V, and the 1nc1dent ﬁeld arnplltude 1S
1.0 x 10° V/m.
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out the nonlinear coefficient along the direction of propagation
by using a grating structure that combines layers of hinear
and nonlinear dielectric materials. Here, the second-harmonic
field is allowed to grow during the nonlinear half-penod of
the grating but remalns steady dunng the linear half-perlod

whereas in a bulk nonlinear medium 1t would have contlnued |

to develop out of phase. This results in a stepwise increase

of the second-harmonic field and a correspondlng stepW1se |

decrease of the fundamental field.

mode at the harmonic frequency, this choice of grating period
ensures that only the lowest order mode propagates. Fig. 6
shows the intensity of both the fundamental and harmonic

fields along the length of the wavegulde The bilateral ex-
change of energy from the fundamental to the harmonic and

back to the fundamental is evident. Simply by truncating the

of energy to the harmonic.
Since this particular problem 1nvolves parax1a1 wave propa-

gation, other less computatlonally intensive approaches such as

the beam propagation method (BPM) [30], [32] are appropnate
and, in fact, offer advantages relative to waveguide length and
dimensionality. While the full power of the FDTD Maxwell’s

equations solver may not be required for this example, 1t 1s
easy to see how a variety of engineered structural features in
this and similar nonlinear optical devrces could violate the
paraxial assumptnons What has been shown 1s that FDTD
~can readily model the physics of lnstantaneous second-order B

optical nonlinearities. Work is ongoing to construct a compre-
‘hensive validation versus BPM and to 1nvest1gate nurnencal
stabrhty Issues. '

V. CONCLUSION '

This paper summanzed algonthms which extend the FDTD

Maxwell’s equatlons approach to nonlinear optics. The use
of FDTD in this field is novel. Previous analytlcal and nu-

merical methods such as the NLSE and the BPM were -
aimed at modeling optical-wave propagation in electrically

long structures such as glass fibers and directional couplers,

wherein the primary flow of energy is along a single principal
[13] T. Kashiwa, N. Yoshlda and I. Fukai, “A treatment by the finite-

direction. FDTD approaches however, are aimed primarily at
modeling compact optical structures spanmng in the order of
the wavelength of hght and havrng energy ﬂow 1n arbrtrary
directions.

- Relative to NLSE and BPM FDTD 1S certamly very com-

assumptions that lead to conventional asymptotic and paraxial-

media are dlsperswe or nonlinear. - .
For all of the thlrd-order nonlinear cases presented here

the time step was chosen to be at or just below the Courant

In the present example, the penod of the QPM grattng is
A = 4.54 ym. Although the guide can support more than one

- (10}

[12)

putationally intensive. However, it has the advantage of being - sy
substantially more robust than either NLSE or BPM because
it directly solves for fundamental quantities, the optical E

and H fields 1n space and time. FDTD avolds the snnpllfylng '
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stability limit. No stability problems were observed, even

after several hundred thousand time steps. Numerical stability
~issues for the second-order nonlinear algorithm are being

~investigated.
'Extending the FDTD algonthm to the ﬁeld of active non-

~ linear optics is an area of current research. It is now possible
to model the electrodynamics of micron-scale laser cavities

in two and three dimensions, using algorithms for the macro-

“scopic effects of optical-gain media [33], [34]. An emerging

frontier is the comblnatlon of FDTD classical electrodynamics
and the quantum mechanlcs of the materials being modeled
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