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Abstract. With advances in nanofabrication techniques leading to ever smaller
and more intricate semiconductor laser structures, a detailed understanding of the
electrodynamics of these micron-scale devices is required in order to optimize their
design. The finite difference time domain (FD-TD) Maxwell’s equations solver
holds much promise for providing highly realistic simulations of novel microcavity
lasers. We have extended the FD-TD algorithm to include the effects of frequency-
dependent gain and gain saturation. This approach and its application to the
modeling of distributed Bragg reflector microlasers is presented.

1. Introduction

Improvements in semiconductor fabrication

technology have led to smaller and more com-
plicated optical designs of lasers. Semiconductor

lasers with physical dimensions of the order of

the lasing wavelength, that is, microlasers, offer
many attractive operating characteristics. For
example, stimulated emission rates enhanced by
low-dimensional photonic structures may permit
terahertz modulation bandwidths. To bring this
type of potential to reality, novel designs of de-

vice microstructures, such as microdisk [McCall

et al., 1992; Chu et al., 1993] and photonic-wire
microcavity |Zhang et al.,
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1995]| lasers, need to

“berger,

be further explored. Accurate modeling of the
nonintuitive propagation and scattering behav-
10r of such microlasers is an essential step in their

development.
We have deve10ped a computatlona,l tool that

provides accurate modeling at the macroscopic
level of the field dynamics in passive and active
optical microcavities. Our approach is based
on the finite difference time domain (FD-TD)
method [Taflove, 1995], a computationally ef-
ficient numerical algorithm for the direct time
integration of Maxwell’s equations. FD-TD,
originally developed to model electromagnetic
interactions with arbitrary structures consisting
of linear frequency-independent parameters, has
recently been extended to frequency-dependent
linear [Joseph et al., 1991; Luebbers and Huns-
1992] and mnonlinear [Goorjian and
Taflove, 1992; Ziolkowski and Judkins, 1993a]
materials. With this advent, the range of mod-
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eling apphca,tlons using FD D has been sub-—
stantially expanded to include soliton propaga-
tion [Goorjian et al., 1992; Joseph et al., 1993;
Joseph and Taflove, 1994] and self—focusmg of
light [Ziolkowski and Judkins, 1993b] in x(®)
materials, pulse propagation through nonlinear
corrugated waveguides [Ziolkowski and Judkins,
1994], and pulse-selective behavior in nonlinear
Fabry-Perot cavities [Basznger and Brady, 1994].
To model distributed Bragg reflector (DBR) mi-
crolasers, we have chosen the FD-TD method,
because it provides a complete electromagnetlc
ana,ly51s of arbitrary linear and nonlinear peri-
odic structures; this level of analysis is most
ea,sﬂy accessed with a full-wave time domam
method. Furthermore, with the advanced state
of computing power today, a complete FD-TD
analysis of the electrodynamics of microlasers is
indeed computationally feasible.

In this paper, we present an FD-TD formu-
lation that permits the modehng of a saturable
homogeneously broadened gain medium, where
the linear gain profile is a single Lorentzian. In
section 2, we describe our method for InCorpo-
rating frequency—dependent linear gain and gain

saturation into the standard FD-TD a,lgorlthm '

The two generic validation studies presented in

section 3 reveal the potential for high accuracy
of the FD-TD model. The rest of the paper then

focuses on the modehng of two different designs
of microlasers: (1) Fabry-Perot surface-emlttmg

lasers (FP-SELs) with vertical DBRs, and (2)

novel photonic-wire mlcroca,wty lasers with in-
plane photonlc ba,ndga,p reflectors. In the first
example, we compare uniform and peI‘IOdlC galn
configurations within the cavity of the FP-SEL.
Numerical results for the periodic gain structure
show a substantial reduction in the material gain
threshold, agreeing with experlmental observa-
tions and analytical predictions of gain threshold
reduction. In the second example, the passive
characteristics of the photonic bandgap reflec-
tor are obtained. Using the standard FD-TD al-

gorithm without gain, we present a cold-cavity

analysis of the photonic-wire microcavity formed

by two such reflectors.

2. FD-TD Algorithm

“We con81der a, one—dlmensmnal problem with
electric and ma,gnetlc field components, £, and
H,, propagating along the z direction through
a nonmagnetic, isotropic medium. For the pur-
pose of comparison to the algorithm for optical
gain media, we first review the standard FD- TD
algorithm, where field-material interactions are
described by frequency—mdependent constants.
In this case, Maxwell’s curl equations in one di-
mension are

Ot po Oz 1)
OB, _ 8H,
et e =T @

| where J, = oE,. Here the permltt1v1ty, €, , and

the electric conduct1V1ty,
frequency Using centered finite differences for
the space and time derivatives, the curl equa-
tions can be expressed as second-order accurate
finite difference equations:

o, are 1ndependent of

O
H;‘+2(i+§)=H§

280
At . _
. €e(i)Az n+3 _1_ N4 1.
T 1_|_ 0'2 At [Hy 2(Z—I— 2) “Hy 2(2_ 5)] (4)

The vector field component V(i) denotes sam-
phng at space point £ = iAz and time point
t = nAt. To obtain the solutlon for the field
components the two—step recursive process is it-
erated to the desired final observation time.
Two different methods for incorporating linear
gain into the FD-TD model have recently been

 demonstrated. Hawkins and Kallman [1994] sim-

ulated gain as a frequencyﬂ-dependent suscepti-
bility. Their method is based on well-known
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approaches for modeling linear dispersion; they
demonstrated that an appropriate choice of dis-
persion parameters produces the eftect of gain.
Our group [Hagness and Taflove, 1994| simul-
taneously developed the method described be-
low, which covers linear as well as nonlinear
cain. Here gain is incorporated as a {requency-
dependent conductivity. To illustrate this meth-
od, we consider a homogeneously broadened gain
medium. In this case, the atoms of the gain
medium are indistinguishable and have the same
atomic transition frequency, w,. (See Yariv
1989], for example, for a more detailed phys-
ical explanation.) Therefore the small-signal
linear gain coeflicient 1s governed by a single

Lorentzian profile. The gain coeflicient should
also include the large-signal nonlinear eftect of

saturation, which is due to the decrease of the
population inversion with field intensity. Ac-
cordingly, we express the frequency-dependent
conductivity as

_ Jw)

o(w)

1 To/2
1+ 1 114 j(w — wo)To

To/2
1+ ](w + wo)Tg

_I_

using Hermitian symmetry for the Lorentzian.

Here o, 1s related to the peak value of the gain

set by the pumping level, 75 1s the dipole relax-
ation time, and I 1s the saturation intensity.

To see how this gives gain, consider the linear

case when the intensity, I, is small compared to
the saturation intensity, I;. The expression for

o(w) simplifies and can be separated into real

and 1maginary parts,

or(w) +Jj or(w)
0o [1 + (w2 + w?)T¥]
1+ (w2 — w?)T2]? + 4w2T2
oowTy [—1 + (w2 — w?)T3] (6)
1+ (w2 —w?)TF)" + 4w?TF

olw) =

+ 7

From the homogeneous wave equation for a plane

wave 1n this medium, we see that upon assuming
‘the form F,(z,t) = &,(z,w)e ¥,

‘becomes elPTe— 2T

)

V2E, + -“g; (e'; (w) + "R(“’)) £, =0 (7)

where the effective permittivity, given by
ér(w) = €, — o7(w)/we,, depends on frequency.
We further see that upon assuming the form
E,(x,w) = Eelke?,

2= (aw+i Z) g

The complex wave number, k., may be separated
into real and imaginary parts: k. = 8+ 5 «.
The exponential propagation factor, e/*% then
The term e™** 1n this ex-
pression acts as an amplifier when o 1s nega-
tive. The expressions for o and (3, however,
are somewhat complicated; they can be simpli-
fied by making the reasonable assumption that
or(w)/wesér(w) < 1, that is, the material is
low-gain. In this case,

=
&
2

OR (w)/ZCeoﬁ, (9)
(10)

=
&
2

nw/c,

where n = 1/€,. From (9), we conclude that if
or(w) is negative, then « is negative, providing
gain. According to (6), this is the case when the
parameter o, 1s chosen to be negative.

As an initial step, we have developed the {fol-
lowing algorithm by assuming that the satu-
ration Intensity 1s a constant parameter rather
than a function of frequency. Also, we treat the
spatially dependent intensity, I = %—cneoé’o, as a,
feedback parameter in time. Taking the inverse
Fourier transform of (5) provides the following

auxiliary differential equation that can by solved
simultaneously with (2):

0J,

(1 + w2T5)J, + 215

Here s = 5 +} T, is the saturation coeflicient that

contains feedback information of the latest peak
electric field. With the goal of implementing a
central differencing procedure of (2) and (11) at
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time step n + %—, we define an auxiliary variable,
F,, and rewrite (11) as two first-order differen-
tial equations:

dJ
_ OF
(1 4+ w?T$)J, + 2T F, + T, E)tz
OFE
= SO,L, + 80,15 Btz . (13)

We next set up three finite diflerence expressions
for the system of differential equations (2), (12),
and (13) at time step n + -%— Solving the result-
ing system of finite difference expressions for the

three unknowns F,?H (2), J;?H(i)a and E?H(i) t Ing may OCCur.

yields the following explicit expressions:

F0 =4 -3
+ AgF;' (1), (14)
T3 ) + R, (15)
Eg+1(z) (3) + J7(3)]
n+ti . 1
Tt )_Hy+2(’l"§)], (16)
where
4. AAts(i)oo(At +2Ty) , _ Bes(t) ooAt
1 — . A ,8 . , 2 — ,8 :
4At[2e(1 + wiTs) + s(i) oo(AL + 2T3)]
Ag = — : |
Ay = _%}2
(A?[2¢(1 + W2TF) + 5(i) 0o (At + 2T3)]
6

/3 = 8¢ Tz(At + Tg)
+ (At)2[26(1 + ngzz) + s(1) oo (At + 2T5)],
1

L1 .
3(2)“1+ﬂ?7 I(Z)-———

cneo[EP®* ()], (17)

2

For a linear medium, there is no feedback; the
saturation coefficient reduces to s = 1, because

the intensity is negligible compared to the sat-
uration intensity. For a nonlinear medium, the

saturation coefficient is updated as follows. If

the electric field at time step n 1s greater than
the electric field at time step n—1 at the same lo-
cation in space, then the saturation coefficient is
updated, using EP®*(i) = E7(i). On the other
hand, if the electric field at time step n has de-
creased from its previous value, then the satu-
ration coefficient is not updated; hence s(i) re-
mains based on the latest peak electric field. In
this manner, intensity feedback in the time do-
main retains as much as possible i1ts frequency
domain meaning. Note that since the feedback 1s
performed independently at each grid location,
we are simulating a spatially inhomogeneously
broadened medium in which spatial hole burn-

Equations (3), (14), (15), and (16) compose
the complete FD-TD time-stepping algorithm
for the single Lorentzian optical gain medium us-
ing the auxiliary differential equation approach.

‘The computational model is now a four-step re-

cursive process that retains the fully explicit na-
ture of the original frequency-independent FD-

‘TD algorithm and requires storage of fields only

one step back in time. It is easily extended to
arbitrary two- and three-dimensional problems
with heterogeneous media.

3. Validations

We demonstrate the accuracy of this method
with two validation studies. In the first study,
the accuracy of the FD-TD algorithm for linear
frequency-dependent gain is tested. The electric
field propagation factor, defined by elke(T2—21) —
E,(xo,w)/E,(x1,w), is computed for a linear gain
medium with A\, = 0.89 um, 175 = 0.07 ps, and
n = 3.59. As a single Gaussian pulse with a -

fs temporal width between the 1/e points and a
carrier frequency of w, propagates through the

medium, data are taken every time step at two
fixed observation points separated by a distance
of | = o —x1 = A\,/n. By taking the ratio of the

‘discrete Fourier transforms of the pulses at the

two locations, the complex-valued propagation
factor from the FD-TD model is calculated over
the full bandwidth of the pulse, which 1s 60 times
the 5 THz bandwidth of the gain spectrum. In
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Figure 1. Comparison of finite difference time do-
main (FD-TD) results and theory for the amplifi-
cation and phase factors of a pulse propagating a
distance of one dielectric wavelength in a linear gain
medium with o, = —5000 mho/m.

2.4

Figure 1, the amplification factor, e, and the
phase of the propagation factor, 31, corrected by
the amount nwl/c to give the phase due solely

to the presence of gain, are compared with the
exact profiles.

of Az = ),/400n = 0.62 nm (At = 0.002068

fs), the deviation from the exact values over the

complete frequency range is less than 2 parts
per 10,000 in the amplification factor and less

At a very fine grid resolution

than 0.006° in the phase factor. This indicates
the validity and potential for high accuracy of
the FD-TD model over extremely large instan-
taneous bandwidths.

In the second study, the FD TD algorithm
for frequency-dependent gain and gain satura-
tion 1s applied to a one-dimensional Fabry-Perot
etalon, the simplest geometry for a laser os-
cillator. The following parameters chosen for
the gain medium correspond to GaAs: A\, =
0.89 um 15 = 0.07 ps, n = 3.59, and I, =652
kW /cm?. The cavity, filled entlrely with gain
medium, has a length [ = 12.4 um. The mirrors
at each end of the cavity are formed by the in-
terface between the semiconductor gain medium
and air; the reflectivity, R, of each end facet

‘is independent of frequency. For a cavity with

no internal loss, the material gain required at
threshold is given by o4, = -2-17 InR. We use
(9) to determine the threshold value of o, for
which a(w,) = at,. From the laser parameters
listed above, the approximate theoretical value
of 0,, is —1760 mho/m. Figure 2 shows the
unsaturated gain curve for an above-threshold
choice of 0,. The cavity resonances are marked
by the vertical lines; for 0, = —7000 mho/m,
three longitudinal modes (wy—1,wm,wm+1) lie
in the region where the unsaturated gain ex-
ceeds the round-trip loss. Since this is a ho-
mogeneously broadened system, we expect the
longitudinal mode with the highest unsaturated

. ]
— ' — gain (6,=—7000)
g. 0.15 = = mirror loss
&

&

@ 0.10

O

o

- f
= 0.05

) ‘

@ ,0. 0.

Figure 2. Unsaturated gain a,nd loss spectra for
a Fabry-Perot etalon with gain. The longitudinal
modes of the Fabry-Perot cavity are shown as vertical
lines.
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Figure 3. (a) FD-TD simulation of the time-varying
electric field outside the Fabry-Perot laser cavity. (b)
Expanded timescale of the steady state region show-
ing single-mode oscillation at w,.

gain to clamp the gain curve at the loss line,
yielding single-mode operation. In this example,
~ the frequency of the lasing mode is designed to
be w,, = w,, that is, the peak of the gain curve.

The FD-TD results for the second study are
shown in Figures 3 and 4. Within a semiclas-
sical framework, spontaneous emission can be

included in Maxwell’s equations as a noise cur-

rent [Agrawal and Dutta, 1993]. We have used a
pseudorandom number generator for zero-mean

white Gaussian noise to implement the noise

current inside the laser cavity. The FD-TD com-
puted time evolution of the electric field out-
side the laser cavity is shown in Figure 3. In
Figure 3a, the transient response is shown; the
electric field oscillations build up rapidly after
a delay, then saturate as the gain saturates.
Figure 3b shows an expanded timescale of the
steady state region of Figure 3a, which illus-
trates that the FD-TD model correctly predicts
a lasing frequency of w,. This simulation, per-
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formed for o0, = —7000 mho/m, was repeated
for smaller values of o0,. In each simulation,
the output intensity was computed from the
steady state data. The results, plotted as a light-
current (L-I) curve in Figure 4, show that the
output intensity varies linearly with the above-
threshold gain level. This is expected for a ho-
mogeneously broadened system. Furthermore,
the FD-TD simulations provide an accurate es-
timate of the gain threshold. By extrapolating
the data in Figure 4, we obtained an estimate of
0o, =~ —1780 mho/m, which corresponds closely
to the value calculated above. ‘

4. Results for Surface-Emitting Laser
With Periodic Gain

Over the past several years, SELs have been
intensively studied for their many advantages.
By employing extremely short cavity lengths
and high-reflectivity DBR mirrors, the SEL ex-
hibits improved lasing characteristics, that is,
remarkably low thresholds, high output powers,
and single-mode operation. It is well known that
the lasing threshold of an SEL can be further
improved using a periodic gain active structure.
By placing thin gain segments along the electric
field standing wave maxima, the longitudinal
confinement factor, I', is maximized. Corzine
et al. [1989] developed an analytical method for

100
o @—@ FD-TD computed laser output
5 80
S
X
S, 60
(7
-
S 40
E=
5
g 20
-
O
0 _
0 2000 4000 6000 8000
-6, (mho/m)
Figure 4. FD-TD computed light-current (L-I)

curve for the output intensity of the Fabry-Perot
laser.
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Periodic Gain Structure (PGS)  Uniform Gain Structure (UGS)

Bl ACTIVE
[ PASSIVE
E= DBR MIRRORS

Figure 5. Schematic of microcavity Fabry-Perot
surface-emitting lasers (FP-SELs) with vertical dis-

tributed Bragg reflectors (DBRs) and uniform (UGS)

and periodic gain structures (PGS) within the cavity.

optimizing the design of the periodic gain struc-
ture. They demonstrated that close to a factor
of 2 reduction in the material gain threshold is
possible. x _

In this section, we use the FD-TD algorithm
described in section 2 to model one-dimensional
microcavity FP-SELs with uniform and peri-
odic gain structures (UGS and PGS), shown in
Figure 5. The mirrors for each microlaser are

Alp2GapsAs/AlAs DBRs with a Bragg wave-

length of A = 0.87 um; the top mirror uses
nine pairs and the bottom mirror uses 12.5 pairs.
Both the active and passive regions of the cavity,
as well as the substrate, are made of GaAs. The
indices of refraction for this microlaser are as
follows: n(GaAs) = 3.59, ny(Aly.oGaggAs) =
3.45164, ni(AlAs) = 2.971, and n(air) = 1.0.
Each cavity has a length L = 27 Ag/2 . The cav-
ity for the UGS consists of a solid active GaAs
region of length d surrounded on each side by
a passive GaAs region. The cavity for the PGS
consists of thin active GaAs segments, each with

a thickness ¢, separated by passive GaAs seg-
ments; the total length of the gain segments is

equal to d. The fill factor, defined as d/L, was
chosen to be 0.5. Once the lasing wavelength of
the UGS is determined, the PGS design can be

completed using a spacing of Apyeer/2 between

937

the gain segments. We chose these design pa-
rameters 1n order to be able to compare our nu-
merical results with the analysis presented by
Corzine et al. [1989]. The relevent analytical
expressions are listed here. For a cavity with
no internal loss, the material gain required at
threshold is given by ay, = £ 5= In R, where R
1s the geometric mean mirror reflectivity. For
the UGS, the longitudinal confinement factor is
simply the fill factor: 'ygs = d/L. Assuming a
uniform standing wave pattern and ideal mirror
reflectivities, the longitudinal confinement fac-
tor for the PGS can be approximated as '
ci{ ﬂnhiﬁ%ﬂ}_
)

I = — 18
PGS = 7 (18)

where A is the lasing wavelength. When ¢t = \/2,
the confinement factor for the PGS reduces to
that of the UGS. When ¢t = 0, that is, when the
galn segments are extremely thin, the confine-
ment factor is maximized at twice that of the
UGS. Hence we see the potential reduction in
the gain threshold by a factor of 2.

We first used the standard FD-TD method,
without gain, to determine the passive charac-
teristics of the microlaser. In this case, the UGS
and PGS are identical when the gain is turned
off, because the refractive indices of the passive
and active regions are the same. For each of
the mirrors, we computed the reflectivity spec-
trum with a single FD-TD run, using a short-
pulse excitation and a discrete Fourier trans-
formation of the time domain data. In Figure

1.0

o FD-TD
— theory (matrix method)

reflectivity R
-
N

0.0 >
0.0 0.5

ol fiAaaa.
1.0

. 1.5 2.0
ViVg

Figure 6. FD-TD computed reflectivity spectrum

for the bottom mirror of the microcavity FP-SEL.
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Figure 7. FD-TD computed reflectivity spectrum

for the entire microcavity FP-SEL. The gain regions
are inactive for this cold-cavity analysis.

6, the FD-TD results for the bottom DBR are

compared with the analytical spectrum given
by the matrix method. At a grid resolution of
Az = A\g/124nyx = 2.033 nm (At = 0.00678 fs),
the deviation from the matrix method at the re-
flectivity peak is less than 3 parts per 10,000.
Similar results are obtained for the top mirror.
We determined the cold-cavity resonant modes
by computing the reflectivity spectrum of the
entire structure (cavity and mirrors). In Fig-
ure 7, five resonances are evident within the
broad stopband. With knowledge of the spac-
ing between the effective resonant frequencies,
one can determine the effective cavity length,
which differs from the physical length because of
field penetration into the mirrors. In this case,
the effective cavity length is approximately 34

half Bragg wavelengths, compared to the phys-

ical length of 27 half Bragg wavelengths. Since
the gain peak of GaAs is at A = 0.89 pm and the

gain bandwidth is narrower than the reflectiv-

ity bandwidth of the mirrors, the first efiective
resonant wavelength to the right of the Bragg

wavelength will experience the greatest net gain;
therefore the lasing wavelength should be close
to 0.897 ym rather than 0.87 pm.

We then used the FD-TD algorithm for gain
to determine the lasing wavelength and gain

threshold for the UGS and PGS. The gain pa-

Bottom DBR Cavity Top DBR

8 1.0 T SEEEE SNE T ' T
O .
Qo 0.8 .
W N o6
© O
L £ 04
2502 'H]
3 . nu
“ 00

0.0 1.0 2.0 3.0 4.0 5.0 6.0

length (um)

Figure 8. FD-TD results for the spatially varying

steady state electric field pattern throughout the mi-
crocavity FP-SEL with a UGS.

rameters for the active regions are those corre-
sponding to GaAs. Following the methodology

presented in the second study of section 3, we

determined the lasing wavelength for the micro-
cavity FP-SEL with a UGS by looking at the
steady state data for the electric field outside
the top mirror. The lasing wavelength in our
numerical simulation is just under 0.9 pm, as
predicted. The FD-TD results for the steady
state electric field distribution throughout the
UGS are shown in Figure 8. The decaying fields
on either side of the cavity illustrate the penetra-
tion of the mode into the passive mirrors. The
standing wave maxima within the cavity, spaced
periodically by Ajaser/2, determine the locations

® PGS
A UGS

O
o

Output Intensity
N
-

1.0
0.0 _
0O 5000 10000 15000 20000

-6, (mho/m)

Figure 9. FD-TD computed L-I curve for the out-
put intensity of the the microcavity FP-SEL. Com-
parison between the UGS and PGS reveals the fol-
lowing advantages of the PGS: a substantial reduc-

tion in gain threshold and a higher output intensity.
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for the thin gain segments in the PGS. For each
structure, the simulation is repeated for different
values of o,; the resulting L-I curves are shown
in Figure 9. Extrapolation of the data yields
a gain threshold of o,, ~ —3260 mho/m for
the UGS and a gain threshold of o,, ~ —1790
mho/m for the PGS. Thus our FD-TD simu-
lations indicate that the gain threshold for the
PGS is approximately 45% less than the gain
threshold for the UGS. The approximate ana-
lytical expression (18) for the PGS suggests that
the gain threshold for the PGS is 38.5% less than
the gain threshold for the UGS.

5. Results for Photomc-ere
Microcavity

Periodic spatial variation in the linear dielec-
tric constant of a device can result in a pho-
tonic band structure analogous to the electronic
bandgap in semiconductor materials. The pe-
riodicity gives rise to variations in reflection
and transmission characteristics. Of particu-
lar interest are frequency stopbands over which
there is no transmission. Analysis of such lat-

tice structures usually involves the assumption

that the lattice is infinite, allowing the wave
- equation to be expanded in plane waves and

solved using eigenvalue techniques |Plihal and
Maradudin, 1991]. The standard FD-TD algo-

rithm without gain treats passive finite photonic

bandgap structures (PBS) in a straightforward
manner; this method has been used success-

fully to model a two-dimensional array at mi-

crowave frequencies [Kelly et al., 1994], giving
good results for transmission and reflection pro-

Semiconductor Waveguide

L

Ai1r Holes

Cavity

files for both transverse electric (TE) and trans-
verse magnetic polarizations.

In this section, we consider a strongly guiding
optical waveguide as the basis of a microcavity
laser. Such a waveguide is called a photonic wire
1f a high percentage of spontaneous emission is
channeled into the lowest-order guided mode. It

- has been shown that a photonic-wire laser can

have a spontaneous emission coupling efficiency
as high as 357% |[Zhang et al., 1995], yielding a
low lasing threshold. The waveguide we consider
here 1s composed of a high-refractive index semi-
conductor core (n = 3.4) surrounded by a low-
refractive index cladding (n = 1). Finite PBS
consisting of one-dimensional arrays of holes can
be used as very broadband DBRs to define the
laser cavity. Using nanofabrication techniques
' Zhang et al., 1996], arrays of air holes are etched
In the semiconductor guiding layer, periodically

spaced along the guide (Figure 10).

A 0.3-pm-wide photonic wire with five rect-
angular holes is modeled with a uniform spatial
resolution of 0.0125 pm in two dimensions (At =
0.02085 fs). The holes are 0.25 yum x 0.1 pm,
and the spacing between them is 0.225 ym. In
this two-dimensional representation, the waveg-
ulde 1s modeled as an infinite slab in the vertical
direction; the height of the holes is assumed un-
bounded. In order to obtain broadband spectral
information with a single FD-TD computer run,
a short TE-polarized optical pulse (full width
at half maximum is 30 fs, A\g = 1.5 um) is ex-
cited at the left end of the waveguide and al-
lowed to propagate to the right. The waveguide
and the grid boundaries are terminated using
the Berenger perfectly matched layer absorbing

Ai1r Holes

Figure 10. Schematic of a photonic-wire laser cavity defined by two photomc bandgap

structures which act as broadband DBRs.
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Figure 11. FD-TD computed reflectivity spectra
for (a) a single photonic bandgap reflector composed
of five periodically spaced air holes (Ap = 1.55 pm),
and (b) a photonic-wire microcavity composed of two
photonic bandgap reflectors separated by a length of
0.525 um.

boundary condition [Taflove, 1995]. Reflection
and transmission spectra can be obtained from
the time domain data via discrete Fourier trans-
form. The run times on a CRAY C90 (single
processor) were 60 s for the single PBS and 2100
s for the entire cavity.

The reflection profile of a single PBS com-
puted using our method is given in Figure 1la.
With only five holes, the photonic bandgap mir-
ror gives a reflectivity bandwidth greater than
300 nm and a peak reflectivity higher than 95%.
Using the multilayer DBRs common in vertical-
cavity SELs, many more layers would be re-
quired to achieve an equivalently high peak re-
flectivity. Figure 11b shows the computed reflec-
tion profile of the entire photonic-wire microcav-

ity, consisting of a photonic bandgap reflector, a
section of waveguide, followed by a second pho-
tonic bandgap reflector. The distance between
reflectors in this case is 0.525 um; the effective
cavity length is slightly longer because of the
distributed nature of the reflectors. Since the
cavity length is so small, there is only one reso-
nant mode (A = 1.6 um) within the reflectivity
stopband. This resonance gives us an estimate of
the quality factor (Q) of the microcavity. From
Figure 11b, we have estimated that Q) ~ 300. By
changing the size, shape, spacing, and number
of holes in our simulations, we are able to cus-
tomize the design of the microlaser for specific

- applications.

6. Conclusions and Future Work

In this paper, we have presented a formulation
for including frequency-dependent gain with sat-
uration in FD-TD simulations. We have shown
that our approach accurately models the ampli-
fication of a broadband electromagnetic pulse 1n

‘an optical gain medium described by a single

Lorentzian profile. Our simulation of a sim-
ple Fabry-Perot laser demonstrates the valid-
ity of this method for providing accurate pre-
dictions of the gain threshold and the lasing
wavelength. Furthermore, we have shown that
our method provides accurate one-dimensional
modeling of Fabry-Perot surface-emitting DBR
microlasers with PGS within the cavity. The

algorithm presented here is easily extended to

complicated two- and three-dimensional prob-
lems. More complicated gain spectra can be
approximated by using a linear combination of
Lorentzians. -

We have found that the FD-TD method is es-
sential for optimizing the design of novel
microstructures, such as the photonic-wire mi-
crolaser. We are currently conducting three-
dimensional simulations of the photonic-wire mi-
crocavity, taking into account the finite heights
of the holes composing the photonic bandgap re-
flectors. The three-dimensional model takes 1nto
account the vertical diffraction effects in the hole
region, allowing us to fully optimize the design
by minimizing the amount of diffraction loss.
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In summary, we believe this approach has
the potential to serve as a practical engineering
tool for providing reliable simulations on a phe-
nomenological level of the full-wave electrody-
namics of complicated micron-scale lasers, where
reflections and coherent effects are significant.
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