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Abstract— We present first-time calculations from the time-
domain vector Maxwell’s equations of spatial optical soliton
propagation and mutual deflection, including carrier waves, in a
2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear
Schridinger equation predicts that two co-propagating, in-phase
spatial solitons remain bound to each other, executing a periodic

separation. This disagrees with our new extensively tested finite-

difference time-domain (FD-TD) solution of Maxwell’s equations.
FD-TD shows that co-propagating in-phase spatial solitons be-
come unbound, i.e. diverge to arbitrarily large separations, if the
ratio of soliton beamwidth to wavelength is oerder 1 or less. Not

soliton interactions, FD-TD appears to be a robust means of
obtaining detailed models of the interaction of sub-picosecond
- pulsed light beams in nonlinear media directly in the space-time
domain.

" 1. INTRODUCTION

PATIAL solitons have been observed in planar waveg-
uides where self-focusing provides confinement of the
beam in one transverse dimension and the refractive index

profile of the waveguide provides confinement in the other
transverse dimension [1]. The behavior of spatial solitons

in Kerr-type nonlinear materials has also been predicted by

nonlinear Schrodinger equation (NLSE) models and numerical

beam propagation models [2] that generally make the paraxial
approx1mat10n _

In principle, the behawor of electromagnetlc fields in non-
linear dielectrics can be determined by solving Maxwell’s
equations subject to the assumption that the electric polar-
1zation has a nonlinear relation to the electric field. However,
recent work using the finite-difference time-domain (FD-TD)
methods [3]-[7], the nonlinear Maxwell’s equations have not
been solved directly. In this letter, new results are presented
for interactions of spatial solitons in Kerr-type media using the
FD-TD Maxwell’s solver. It has been found for an important
case that the FD-TD simulation of spatial solitons does not
behave as described by NLSE. Further, FD-TD modeling
allows simulation of the dynamics of pulsed spatlal solitons
and associated switching devices.
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relying upon paraxial approximations or analogies to temporal

II. 2-D ALGORITHM FOR INSTANTANEOUS NONLINEARITY

Consider a 2-D transverse magnetic (TM) problem.
Maxwell’s equations for the electric and magnetic field
intensities, F,, H,, and H, are given by:

duwH,  OE,  OwH, OE,

ot Oy’ ot Ox
0D, ©H, O0H, _ o

Ot oxr Oy

Kerr nonresonant virtual electromc transitions 1n silica occur at
time scales on the order of about 1 fs or less. In this letter, the
FD-TD model for Kerr-type materials assumes instantaneous
nonlinear response. The nonlinearity 1s modeled in the relation
D, = e,el,, where

e =n’ = (no + no|F, | ) = n? + 2nona|EL1* (2)

In (2), n, is unitless and ny has units of m?/V2. Equations (1)

~are first solved for H,, H,, and D, by using the standard

second-order accurate FD-TD scheme [8]. Then, the latest
value of £, can be obtained by iteration, using the new value

of D, and the old value of E,:

D,

n2 + 2n,ns|E,|?

(3)
Knowledge of F/, then permits another updating of H,,
H,, and D,, and the process repeats cyclically until time-
stepping 1s completed. This procedure comprises the complete
solution method for the space-time behaviour of the 2-D
optical electromagnetic field.

III. SPATIAL SOLITON RESULTS

The modeling capabilities of this algorithm are demon-
strated by 2-D calculations of propagating and mutually at-
tracting and deflecting optical spatial solitons. The calculations
are for a propagating sinusoidal beam that is switched on at
t = 0 1n Type-RN Corning glass with n, = 2.46 and ny =

1.25 x 10718 m2/W [9]. The beam carrier frequency is 2.31 x
10 Hz (A = 1.3 pum); the initial peak electric field intensity

is 6.87 x 10° V/m; and the fields have an initial hyperbolic

secant transverse distribution with an intensity beamwidth

(FWHM) of 0. 65 [im. The computational domain is 95 X
31 pm.
The first Maxwell’s equations calculation (Fig. 1(a)) selects

the amplitude of the beam to balance its spreading and

selt-focusing. This provides a spatial soliton that retains its
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Fig. 1. FD-TD Maxwell’s equations calculations of spatial solitons in Type
RN Corning glass. Each beam has a 1.3-pm wavelength, an initial intensity
beamwidth (FWHM) of 0.65 pum, and an initial peak electric field of 6870
V/um. (a) Single spatial soliton; (b) repulsion of co-propagating spatialsolitons
(initial center-to-center separation = 1.05 pm, relative carrier phase = 7);
(c) single coalescence and subsequent divergence for co-propagating spatial
solitons (initial separation = 1.05 pm, relative carrier phase = 0).

transverse electric field and magnetic field distributions. The
second Maxwell’s equations calculation (Fig. 1(b)) simulates
the parallel co-propagation of two equal-amplitude spatial
solitons separated by 1.05 pum center-to-center, where the
solitons have a carrier phase difference of 7 radians. This
computation provides the beam-to-beam repulsion expected
from NLSE [10], [11].

The third Maxwell’s equations calculation (Fig. 1(c)) sim-
ulates the parallel co-propagation of two equal-amplitude,
in-phase spatial solitons (carrier phase difference of 0). NLSE
predicts that the two in-phase solitons remain bound, executing
a periodic relative motion [12] if the two beams have the
appropriate amplitudes and spacing. Aitchison, et al. [13]
indicate that two in-phase fundamental solitons with an input
amplitude distribution of

. ) 1/2 ¢ . ' -
A(z) = m(g—) sech(m w:{: ) +S€Ch($+$ﬂ)
2 w
' (4)

oscillate with a period of

L 22, sinh(2z, /w) cosh(x, /w)
P 2z,/w + sinh(2z, /w)

based on the NLSE theory of Desem and Chu [14]. Here, w
is the characteristic width of the hyperbolic secant; z, = 1.42
w; 2z, 1S the center-to-center separation of the two beams;
and z, = m?n,w?/)\ is the usual soliton period. For the
choice of parameters used in the FD-TD Maxwell’s equations
simulations, the predicted repetition period is z, = 9 pum.
However, as shown 1n Fig. 1(c¢), the FD-TD calculations show
only a single beam coalescence and then subsequent beam
divergence to arbitrarily large separations, yielding an effective
Za—Nock

It was desired to understand why the nonlinear FD-TD
Maxwell’s equations model did not agree with the NLSE
prediction in this case. The first possibility considered was that
the FD-TD simulation was flawed because of inadequate grid
resolution and/or inadequate decoupling of the beam interac-

(5)
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Fig. 2. FD-TD simulations showing restoration of the beam re-coalescence
behavior after doubling the intensity beamwidth and separation parameters
ofthe simulated beams, keeping the wavelength constant.

TABLE 1
PROGRESSIVE AGREEMENT OF FD-TD AND NLSE RESULTS FOR PERIODICITY OF
CO-PROPAGATING IN-PHASE SPATIAL SOLITIONS AS B7A; INCREASES

B,, FWHM 2, (um)  z, (um)
0.65 122 9 e %
1.3 2.46 34 47 38%
2.6 4.9 135 153 13%

tion region from the weakly reflecting outer grid boundaries. In
a series of exploratory modeling runs to address these issues,
the space-time resolution of the FD-TD grid was progressively
refined and the grid enlarged. These changes gave results
identical to those of the original FD-TD model. Therefore,
the original FD-TD model was concluded to be numerically
converged and sufficiently free of the outer boundary artifact
to yield plausible results.

The second possibility considered was that the ratio of
intensity beamwidth, Bj; to dielectric wavelength A\;, was
below the limit of applicability of NLSE. Because it 1s known
that additional terms in the NLSE are required to model higher-
order effects for temporal solitons, it was reasoned that basic
NLSE modeling of co-propagating spatial solitons would be
more physically meaningtul if the two beams were widened
relative to the optical wavelength while maintaining the same
ratio of beamwidth to beam separation. This would reduce
higher-order diffraction etfects, hopetully bringing the test
case into the region of validity for the simple NLSE model.

To test this possibility, two new FD-TD simulations were
conducted where By and separation parameters of the simu-
lated beams were each doubled keeping the dielectric wave-
length, A4, constant. After the first doubling, the FD-TD-
predicted spatial solitons began to qualitatively show the
re-coalescence behavior predicted by NLSE, but with a 38%
longer period of re-coalescence than the NLSE value. This FD-
TD simulation 1s shown in Fig. 2. After the second doubling
of beamwidth and beam separation, the FD-TD and NLSE
predictions for z,, showed much better agreement, ditfering by
only 13%. Results for these numerical experiments are shown
in Table I. |

It was concluded that there 1s a strong likelihood that co-
propagating, in-phase optically narrow beams have only a
single coalescence and then indefinite separation. The FD-
TD model appears to properly predict the behavior of beams

in nonlinear media both in the regime where the standard
NLSE model breaks down (Bj/Ag < 1) and the the regime
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Fig. 3. Proposed all-optical switch based upon the single-time spatial soliton
coalescence behavior indicated by FD-TD modeling. Pulsed optical signal and
control beams are fed in at the left, interact in the Kerr nonlinear medium,
and then couple into receptor waveguides. In the absence of the control,
the signal propagates with zero deflection. In the presence of the control,
and depending upon its carrier phase relative to the signal, there is either a
single coalescence and then deflection to a collecting waveguide, or deflection
without coalescence.

where the standard NLSE model is valid (By/Aq > 1).
The paraxial approximation inherent to NLSE, according to
Lax et al. [15], accounts only for zeroth-order diffraction
effects. Since the FD-TD model implements the fundamental
Maxwell’s curl equations, it makes no assumption about a
preferred scattering direction. It naturally accounts for energy
transport in arbitrary directions and should be exact for the
computed optical electromagnetic fields up to the limit set by
the grid resolution and Nyquist sampling theory.

IV. PULSED SPATIAL SOLITON SWITCH

The single-time spatial soliton coalescence behavior in-
dicated by the FD-TD modeling studies discussed above
provides the basis for the all-optical switch proposed in
Fig. 3. This pulsed spatial soliton switch consists of a Kerr-
type nonlinear interaction region (Corning glass Type-RN)
with a pair of input and output waveguides on each side.
Optical signal and control pulses are fed in at the left edge,
interact in the nonlinear medium, and then couple into receptor
waveguides. In the absence of the control pulse, the signal
pulse propagates with zero deflection. In the presence of the
control pulse, and depending upon its carrier phase relative
to the signal pulse, there 1s either a single coalescence and
then deflection to a collecting waveguide, or deflection without
coalescence. (FD-TD studies have shown that optical pulses as
short as 70 fs have the same coalescence/deflection behavior
as continuous beams.) Note that the device of Fig. 3 differs
from the all-optical spatial-soliton switch of Shi and Chi [10]
which did not take advantage of the single-coalescence/single-
divergence phenomenon, used continuous-wave excitation, and
assumed a nonphysically high nonlinear coetficient.

Fig. 4 shows snapshots of the FD-TD-computed electric
fields of 100-fs pulsed signal and control spatial solitons at
the simulation times of 86 fs, 344 fs, and 516 fs for zero
carrier phase between the pulses. The deflection of the signal
pulse varies smoothly but not monotonically as the relative
carrier phase 1s changed from O to m radians. The range of
beam deflection complicates somewhat the design of a receptor
waveguide that can efficiently capture the deflected beam for
arbitrary phase differences between signal and control pulses.
Yet, the principle appears proven and potentially usetul.
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Fig. 4. Snapshots of the FD-TD-computed electric fields of 100-fs pulsed

signal and control spatial solitons at the simulation times of 86 fs, 344 fs, and

516 fs for zero carrier phase between the pulses. Single-time spatial soliton
coalescence behavior is indicated by FD-TD modeling for ultra-short pulses
as well as continuous beams.

V. CONCLUSION

This letter presented FD-TD Maxwell’s equations calcula-
tions of spatial optical soliton propagation and mutual deflec-
tion in a 2-D homogeneous nonlinear dielectric medium. The
FD-TD results show that co-propagating, in-phase optically
narrow spatial solitons undergo only a single beam coales-
cence before diverging to arbitrarily large separations. This
phenomenon provides a possible mechanism for constructing
femtosecond all-optical switches spanning less than 100 mm
in length in an existing type of Corning glass.
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