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Abstract— Berenger recently published a novel absorbing
boundary condition (ABC) for FD-TD meshes in two dimensions,
claiming orders-of-magnitude improved performance relative
to any earlier techmnique. This approach, which he calls
the “perfectly matched layer (PML) for the absorption of
electromagnetic waves,” creates a nonphysical absorber adjacent
to the outer grid boundary that has a wave impedance
independent of the angle of incidence and frequency of outgoing
scattered waves.

This paper verifies Berenger s strong claims for PML for
2-D FD-TD grids and extends and verifies PML for 3-D FD-TD
grids. Indeed, PML is > 40 dB more accurate than second-order
Mur, and PML works just as well in 3-D as it does in 2-D. It
should have a major impact upon the entire FD-TD modeling
community, leading to new possibilities for high-accuracy
simulations especially for low-observable aerospace targets.

I. INTRODUCTION

VER THE past ten years, finite-difference time-domain
(FD-T1D) solutions of Maxwell’s equations have been
extensively applied to model open-region electromagnetic
wave scattering problems. Here, a primary challenge has
been in the area of absorbing boundary conditions (ABC’s)
at the outer grid boundaries. Existing analytical ABC’s,
such as Mur [1] and Liao [2], provide effective reflection
coetficients 1n the order of —35 to —45 dB for most FD-TD
simulations. To attain a dynamic range of 70 dB, comparable
to that of current RCS measurement technology, 40 dB more
accurate ABC’s are needed than currently exist.

Such an advance appears to be at hand with the
recent publication of Berenger’'s “perfectly matched
layer (PML) for the absorption of electromagnetic waves [3].”
PML 1nvolves creation of a nonphysical absorber adjacent
to the outer grid boundary that has a wave impedance
Independent of the angle of incidence and frequency of

outgoing scattered waves. In 2-D, Berenger reported reflection

coetficients for PML as low as 1/3000th those of standard
second- and third-order analytical ABC’s such as Mur.

In this letter, we confirm these remarkable claims and
then extend and verify PML for 3-D Cartesian FD-TD grids.
Section II briefly summarizes key elements of Berenger’s
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published 2-D PML theory [3]. Sections III and IV report
our contributions, specifically the extension of PML to 3-D
and the confirmation of the approach in 2-D and 3-D.

II. TWO-DIMENSIONAL TE CASE [3]

- Consider Maxwell’s equations in 2-D for the transverse
electric (TE) case with field components £, £, and H,.
If 0 and o™ denote electric conductivity and magnetic loss
assigned to an outer boundary layer to absorb outgomg waves,
respectively, 1t 1s well known that:

og/e, =0 [ Lo (1)

provides for reflectionless transmission of a plane wave prop-
agating normally across the interface between free space and
the outer boundary layer. Layers of this type have been used in
the past to terminate FD-TD grids [4]. However, the absorption
1s thought at best to be in the order of the analytical ABC’s
because of increasing reflection at oblique incident angles.

The PML technique introduces a new degree of freedom
in specifying loss and impedance matching by splitting H,
Iinto two sub-components, H,, and H,,. Here, there are four
(rather than the usual three) coupled field equations:

OF., O(H, + H.,)

o +0yEs = > (2a)
80% + oz by = —%%g—gﬁl (2b)
ML NP AR ES
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Note that the TM case 1s obtained by duality, with £, split
into £, and E,,. Designating 1) as any component of a wave
propagating in a PML medium, Berenger shows that:

- - _xcosgp+ysing _Og cos @ _C"QSian’
w — ¢083w(t cG )e EoCG me EoCG y

(4a)

= Vito/e0/G . @)

where 4 1s the wave impedance, c is the speed of light, ¢

1s the angle between the wave electric field vector and the y
axis, and

G = \/wz cos? ¢ + w, sin? ¢ (5a)

1051-8207/94$04.00 © 1994 IEEE



IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 4, NO. 8, AUGUST 199%4

1 — jog/we, 1 —joy/we,
1—30 /wuo . ]- Jay/wﬂo

Now, let each pair (0.,0;) and (0,0, ) satisfy (1). Then,

Wy = Wy =

w,, w, and G equal one at any frequency, and the wave

components and the wave impedance of (4) become:

sin Oy COS o4 8in ¢
e L e e T bg,— LRty (6a)
4 = V ﬂo/so‘ (6b)

Equation 6 shows that the wave in the PML medium prop-
agates with exactly the vacuum speed of light, but decays
exponentially along z and y. Equation 6 also shows that the

wave impedance of the PML medium exactly equals that of

vacuum regardless of the angle of propagation or frequency.
In a 2-D TE gnd (z and y coordinates), Berenger proposes
a normal free-space FD-TD computational zone surrounded
by a PML backed by perfectly conducting (PEC) walls. At
both the left and right sides of the grid (Tmin and Tmax),

each PML has o, and o matched according to (1) along with

oy = o, = 0 to permit reflectionless transmission across the
vacuum-PML interface. At both the lower and upper sides of
the grid (Ymin and Ymax), €ach PML has o, and o, matched
according to (1) along with 0, = o, = 0. At the four
corners of the grid where there is overlap of two PML'’s, all
four losses are present (0.,0;,0y, and o) and set equal to
those of the adjacent PML’s. Berenger proposes that the loss
should increase gracefully with depth, p, within each PML as
o(p) = Omax(p/6)", where 6 is the PML thickness and o is

elther oz or oy. This yields a PML reflection factor of

(D
which reduces to a key user-deﬁned parameter discussed
later, R(0) = e~29maxd/(n+1)éoc  the theoretical reflection
coefficient at normal incidence for the PML over PEC. While
R~1 for grazing incidence, this has not been a problem in
actual FD-TD simulations since such a wave is near normal
on the perpendicular PML boundaries and is absorbed.

The attenuation to outgoing waves afforded by a PML
medium is so rapid that standard Yee time-stepping cannot

R(o) _ e—2amax6 COS 9/(n+1)€oc

be used. The following is a suitable explicit exponentlally ‘

differenced time advance [3], [5]

. 1 ~
n+1 —oAt/e, _ . —oAt/e.
Hy Yli,j+1/2 =€ / Ey Li+1/27T A : /€0 — 1)
n+1/2 n+1/2
(Hz|i+1/2,:i+1/2 o Hzl,:....1/2,j+1/2) . (8)

III EXTENSION TO THE FULL—VECTOR
THREE-DIMENSIONAL CASE

This section and the next represent the contributions of
this letter.! In three-dimensions, all six Cartesian field vector
components are split and the resulting PML modification of
Maxwell’s equations yields 12 equations, as follows: '

asz ' % _ 8(Eym + Eyz)
Ho—, +o0,H,, = py (9b)

' Note added in proof: See also [7].

(5b)
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(9¢)
(9d)
(Ye)

(91)

(10a)

(10b)
(10c)
(10d)
(10€)

(101)

PML matchmg conditions and grid structure analogous to the
TE and TM cases are utlhzed

IV. NUMERICAL EXPERIMENTS

We conducted numerical experiments that implemented the
PML ABC in Cartesian, cubic-cell FD-TD grids, including 3-
D grids, and compared its accuracy versus well-characterized
Mur second-order ABC’s. Our methodology was identical to
that publlshed in [6]. Cases discussed here include: 1) 2-D TE
grid, vacuum reglon = 100 x 50 cells; and 2) 3-D full—vector
lattice, vacuum region = 100 x 100 X 90 cells.

The experiments involved exciting a pulse source centered
within the vacuum region of a test grid, (7. The excitation
was a “‘smooth compact pulse having an extremely smooth
transition to zero (its first five derivatives vanishing) [6]. (27
was terminated by either second-order Mur or by a PML
backed by PEC walls. A benchmark FD-TD solution having
zero ABC artifact was obtained by running a large mesh, Qp,
centered upon and registered with Q7, and having an outer
boundary so remote as to be causally isolated from all points

of comparison between the grids.

The error of the computed fields in Q7 due to nonphysical
reflections by the grid’s imperfect ABC were obtained by
subtracting the field at any point within this grid (and at any
time step) from the field at the corresponding space-time point
in Q. The error could be measured locally, i.e, plotted versus
position along a line or plane paralle] to the test ABC. Or,
the error could be measured globally as the sum of the squares

of the error at each grid point of Q.

Fig. 1 graphs the global error energy for the 2-D TE grid for

both Mur and PML. The Mur ABC is standard second-order,

and the PML thickness is 16 cells. At n = 100 time steps, the
PML global error energy 1s about 10~ ~7 that of Mur, dropping
to a microscopic 10~ !4x Mur at n = 500.

Fig. 2 compares the local electric field error due to Mur and

- 16-layer PML for the 3-D FD-TD grid, as observed at n = 100
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Fig. 1. Global error energy (square of the electric field error at each grid cell
summed throughout the entire grid) within the 100 X 50 cell 2-D TE FD-TD

grid for both the second-order Mur ABC and the 16-cell-thick PML, plotted
as a function of time step number on a logarithmic vertical scale.
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Fig. 2. Local electric field error along the x axis at the outer boundary of
the 100 x 100 x 50 cell 3-D FD-TD grid for both the second-order Mur

ABC and the 16-cell-thick PML, plotted on a logarithmic vertical scale (time
step = 100).

time steps along the x axis at the outer boundary of (2.
Along this straight-line cut, the local electric field error due
to PML is in the order of 10~ that of Mur (i.e., about —60
dB) at a time when the ABC is being maximally excited by
the outgoing wave. '

In the cases of both Figs. 1 and 2, we studied the effect
of varying PML thickness and the R(0) parameter for a
quadratically-graded loss with depth. For a fixed PML thick-
ness, we find that reducing R(0) by increasing the PML
loss monotonically reduces both the local and global errors.
However, this benefit levels off when R(0) drops to less
than 10~°. We also observe a monotonic reduction of local
and global error as the PML thickness increases. Here, how-
ever, a significant trade-off with the computer burden must
be factored, as discussed next. Overall, the method is very
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__ TABLE I
TRADE-OFF OF PML ADVANTAGE OVER SECOND-ORDER MUR VERSUS
CoMPUTER RESOURCES FOR A 3-D BASE GRID OF 100 x 100 x 50 CELLS

Av. Local
Field Error Computer  If Free-Space If Free-Space
ABC Reduction =~ Resources Buffer Buffer
Relative to (One CPU, Reduced by 5 Reduced by
2nd-Order Cray C-90) Cells 10 Cells
_ ~ Mur _
Mur 1 (0 dB) 10 Mwd 6.5 .
- sec
4-layer PML 22 (27 dB) 16 Mwd 12 11 Mwd 11 7 Mwd 10 sec
sec sec
8-layer PML 580 (55dB) 23 Mwd37 17Mwd 31 12 Mwd 27
secC sec secC
16-layer 3800 (75dB) 43 Mwdg87 33 Mwd74 25 Mwd 60

PML sec e SEC

insensitive to the choice of R(0) and therefore losses for
R(0) < 107°, indicating robustness.

Table I compares ABC effectiveness and computer burdens
for second-order Mur and PML of varying thickness for the 3-
D gnid. Here, the arithmetic average of the absolute values of
the local electric field errors over a complete planar cut through
the grid at y = 0 and » = 100 1s compared for Mur and
PML. The last two columns indicate the potential advantage
if the free-space buffer between the scatterer and the outer grid
boundary were reduced by either 5 or 10 cells relative to that
needed for Mur, taking advantage of the essential invisibility
of the PML ABC. From these results, a PML layer 4 to 8
cells thick appears to present a good balance between ABC
effectiveness and computer burden.

V. CONCLUSION

This letter verifies Berenger’s strong claims for PML for
2-D FD-TD gnids and extends and verifies PML for 3-D
FD-TD grids. Indeed, PML is > 40 dB more accurate than
second-order Mur and works just as well in 3-D as in 2-
D. It should have a major impact upon the entire FD-TD
modeling community, leading to new possibilities for high-
accuracy simulations, especially for LO aerospace targets.
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