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' Abstract——Thls paper mtroduces a techmque for tlme-domam electromagnetlc inverse scat-

tering based upon the use of a two-dimensional, finite-difference time-domain (FD-TD)
~ forward scattering field representation in numerlcal feedback loop with a nonlinear opti-
 mization routine. Causality is exploited to reconstruct the actual target surface contour in

a sequential and cumulative manner as the 1llummat1ng wavefront sweeps across the tar-

 get. This approach appears to require a minimum amount of scattered field information.

A number of examples are reported where the only data needed is the time waveformof a

scattered pulse for the transverse magnetic (TM) polarization case, observed at just a sin-
gle point in the near field. These examples include the reconstruction of two-dimensional
" conducting and homogeneous dielectric target shapes such as triangles, rectangles, and
‘trapezoids. A dielectric target with reentrant features, resembling the letter “J” is also
~ reconstructed from a single point observation. The effects of measurement signal-to-noise

~ ratio upon this mverse-scattermg technique are determined via numerical experiments.

 These effects are discussed in two contexts: 1) probability of exact reconstruction vs.

signal-to-noise ratio, and 2) sen31t1v1ty of reconstructions to noise. It is shown that, even

at low mgnal-to—nmse ratios (where the probability of exact reconstruction is also low),
- the imperfectly-reconstructed targets retain many of the dlstmgulshmg features of the
~original target. This indicates that the reconstruction process is quite robust relative to
noise. Developments in nonlinear optimization appear promlsmg for further 1mprovmg o
‘the rehablhty and quahty of target reconstructlon in noise. o '

I INTRODUCTION

" In this paper we mtroduce a techmque for tlme-domam electromagnetlc inverse
, scattermg based upon the use of a two-dlmenswnal ﬁmte—dlfference tlme-domaln' -.
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(FD- TD) forward scattermg field representatlon in a numerical feedback loop with

~ anonlinear optimization routine. This technique is presently aimed at reconstruc-

~ tion of the shapes of two-dimensional targets of known dielectric permittivity and

~ conductivity, assuming homogeneity of the dlelectrlc parameters A key goal is

to achieve target shape reconstruction using a minimum of scattered field in-
 formation. In the examples reported here, the only data requlred is the time
~ waveform of a scattered pulse for the TM polarization case, observed at Jjust a
- single point in the near field. The ability to reconstruct target shapes from a min-
~ imum amount of data is made possible by exploiting causality. Causality permits

- target shape reconstructlon to proceed sequentially in time as the illuminating
 wavefront sweeps across the target. Sequential, cumulative target reconstruction

~ in this manner is a characteristic of tlme-domam mverse scattermg, in general
B relatlve to frequency-domam approaches. N -
The technique reported here is an extensron of the one—drmensmnal electro-

o magnetlc profile inversion method reported by Umashankar, et. al. [1, 2]. Their
 approach combines a one-dlmensmnal forward-scattering, FD TD code in a nu-

~ merical feedback loop with an unconstrained nonlinear optimization routine. Us-

~ing this technique, references [1,2] report reconstruction of arbltrary, Spatlally-

' comcrdent profiles of electrical permittivity and conductivity. D
- The technique of combining a forward-scattering FD-TD field representation
' w1th a nonlinear optlmlzatlon routine has also been applied recently to nonlinear
inversion of acoustic and seismic waveforms. For example, Fawcett (3] applies

 a finite-difference tlme-domam representatlon of the acoustic wave equation with

" nonlinear optimization based on least squares and the Lovenberg-Marquardt solu-

~ tion method to two-dimensional inverse problems in acoustics. Using this model,

~ Fawcett estimates the acoustic velocrty dlstrlbutlon of a medium in a finite rect-
~ angular domain. The medium is excited by a point source of known location,
and measured data consists of the scattered fields observed along one edge of
~ the domain. Gauthier, Virieux, and Tarantola [4] use a time-domain, velocity-
stress, finite-difference method to first solve the forward problem of calculating
seismograms. The inversion of the seismic waveforms is then formulated as a
least-squares mrmmlzatlon problem which is iteratively solved using a gradient
method. This method is used to obtain the unknown bulk modulus of a circular
inclusion in a homogeneous medium. A variety of source-receiver configurations
- are reported, including 8 sources and 100 receivers a.rranged in a stralght hne and
8 sources and 400 receivers placed all around the inciusion. ' ' A
Although the FD-TD/ feedback method has been recently apphed to acoustlc_
and seismic inverse problems, this paper appears to be the first multi-dimensional
. apphcatlon of this technique to target-shape reconstructlon in electromagnetlcs
Previous research in time-domain target-shape reconstruction is formulated in
terms of mtegral equations. For example, Bennett [5] uses an exact space-time in-
~ tegral equation to reconstruct rotationally symmetric, perfectly conducting, three-

- dimensional targets. A number of other workers have applied integral equations to

~ time-domain inverse problems in one-dimension [6,7]. However, the time-domain .
1ntegral equatron approach has substantlal hmltatlons Wthh are not shared by



Inverse acatteﬂng scheme for remote sensmg part II o s

the FD TD / feedback techmque One hrnltat1on is that the 1ntegral equatlon rep- -
resentation requires a time-dependent Green’s function. This function is difficult
to obtain if volume integration is required in a medium which is dispersive, inho-
‘mogeneous, or anisotropic. ‘Another limitation is the requirement for back storage
in time, which in combination with the requirement for samphng the unknown
‘induced surface currents as a function of position, places serious restrlct1ons on
 the size and dlmensmnahty of the problem that can be modeled [8]. | -
This paper reports two FD-TD/feedback algorithms which allow the recon-
struction of two-dimensional target shapes from the near-field scattered pulse

response. The first approach is a contour-following method that reconstructs the
- boundary of a convex conducting target as a series of straight line segments, where
each new segment is connected to the tip of the prev1ously constructed segment.
- Contour following is simple to implement and easily copes with causality locus
~_distortion. However, contour following is difficult to apply to the reconstruction of
targets having reentrant features. For such targets, we introduce a second method
which reconstructs the target as a series of layers, where the position of each layer
‘is determined by a simple gradient method. For both approaches, reconstruction
‘is achieved using limited input data which consists of only the scattered electrlc -
- field tlme waveform observed at a smgle pomt - R

II. BACKGROUND OF THE BASIC FD-TD METHOD
In the mid 1960’s, Yee mtroduced a computatlonally efﬁment means of dlrectly .
solving Maxwell’s tune-dependent curl equations using finite differences [9]. With

this approach, the continuous electrornagnetlc field in a finite volume of space is

sampled as distinct points in a space lattice and at distinct equal-spaced points
" in time. Wave propagation, scattering, and penetration phenomena are modeled
in a self-consistent manner by marching in time, that is, repeatedly implementing
the ﬁnlte-dlﬂ’erence analog of the curl equatlons at each lattice point. This results
in a simulation of the continuous actual waves by sampled data numerical analogs
propagating in a data space stored in a computer. Space and time sampling
~ increments are selected to avoid aliasing of the continuous field distribution, and to
- guarantee stability of the time-marching algorithm. Time marching is completed
~ when the desired late-time or sinusoidal steady-state field behaviour is observed.
~ The Yee formulation, designated as the finite-difference time-domain (FD-TD)
method, permits in prmmple the modeling of electromagnetic wave interactions
with a level of detail comparable to that of the method of moments. Further,
the explicit nature of the Yee algorithm leads to overall computer storage and
running time requirements for FD-TD that are linearly proportional to N, the
- number of field unknowns in the finite volume of space being modeled for non-
‘resonant structures spinning approx1mately 0.1 to 30 wavelengths ‘However, the
~ use of FD-TD was very limited until the early 1980’s because of a number of basic
problems The most important problem was that Yee's formulation provided for

' no SImulatlon of the field sampling space extending to infinity. Thls deficiency
N caused spurlous non-physmal reﬁectlon of the numerlcal wave analogs at the -
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outermost planes of the space lattice. A second key problem was that Yee's
formulation provided for no simulation of an incident wave having an arbitrary
duration, angle of incidence, or angle of polarization. And third, the volumetric
space dlscretlzatlon requlred by FD-TD caused its computer resource needs to
seem prohibitive. ' "

- By the mid 1980 the major dlfﬁcultles w1th FD- TD were largely overcoine.
Bulldmg on basic research In one-way wave equations and high-order expansions
for radiation conditions [10,11], a numerical radiation boundary condition was
formulated [12] which accurately simulates the extension of the FD-TD field sam-
pling space to infinity. An accurate simulation of an incident wave of arbitrary
duration, pulse shape, angle of incidence, and angle of polarization was reported
independently in {12,13]. This was accomplished by zoning the FD-TD lattice into
a total-field region (in which the structure of interest is embedded) surrounded by
a scattered-field region, and providing a proper connecting condition between the

regions. Finally, evolving computer hardware and software technology provided
means to satisfy FD-TD requirements in central memory size, arithmetic speed,

and bandwidth to high-speed secondary memory to enable routine usage of FD-
TD for modeling three-dimensional structures containing more than 10° unknown
electromagnetic field components in less than 10 minutes per illumination angle
114]. Detailed FD-TD/inverse scattering algorithm along with two-dlmensmnal
reconstructlon examples are presented in the followmg '

111. BASIC FD—TD/ FEEDBACK INVERSE SCATTER.ING ALGORITHM

Figure 1 shows a block dlagram of the basic FD- TD /feedback algorithm. The FD-
'ID torward-scattering code calculates the pulse response of a trial target shape
subjected to plane-wave illumination. The pulse response computed by FD-TD
at the observation point is then compared with the measured pulse response,
and an error signal is generated. This error signal is fd into an optimization
routine which perturbs the trial target shape in a way that reduces the difference
between the FD-TD trial pulse response and the measured pulse response. Target
reconstruction is achieved by iterating through the feedback loop and reducing
the error between the FD- TD trial response and the measured pulse response in
the least-squares sense. R '
~That is, we minimize error term given by' '

Z I'E'"measured ‘FD—-'l D l ' (]‘)

where

3
. -4 . -
N T . T t :.' .-. '
' - ) .\j‘ v, [
L 8 -

%measur ed set of measured samples of the pulse waveform

- at the 0bservat1on point;
' E"FD TD' set of time samples of the pulse generated by
- the forward-scattermg FD-TD element
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- Nonlinear optimization
(intelligently perturbs
trial target shape)
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~signal

Comparison
(trial pulse with |
measured pulse)

FD-TD code
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target
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Reconstructed - — ' Input data
target shape o ~ (measured scattered
' ' ~ pulse waveform)

Figure 1. Block diagram of FD-TD feedback method for inverse scatter-
TN e Eam LT Rk menc By veme i




: ‘p101tat10n of causality. Flgure 2 shows a dlagram of causality in two-dimensional

v CAUSALITY rocus

- One of the most unportant features of the FD TD / feedback approach is the ex-

- free space. At time t = 0, a wavefront coming up from the bottom of the figure
- passes through the observat1on point, Tops. At a subsequent time ¢, the locus of
~ all points where a point scatterer could be detected at robs is a parabola such
 that the distance Yocat + Rascat = ct where t is the time that ha.s elapsed since
the wavefront passed through Fope. o - '
~ The significance of the causality locus | is 111ustrated in Flg 3a, which shows a
' trlangular target illuminated by a plane wave. The causality locus is sweeping up
~ the figure, and ceventually strikes what we call the “first point”. The first point
~ is simply the very first point on the ta.rget that an observer located at T,s can
- detect. After locating the first point, we reconstruct the target sequéntially in
time as the causality locus moves across the target The advantage of exploiting
causahty is that the only portion of the target that can be reconstructed at a given

~ time is the portlon located beneath the causality locus. This reduces the com-

. plexlty of reconstructron smce only a portlon of the target IS betng reconstructed
- _at each 1terat10n ' ' - :

- causality
*NlQCUS

wavefront at t = 0

ct —

~ Figure 2. Free—space causahty locus at tlme t (ct Yscat + Rscat =
S constant) R )
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causality

- locus _
~surface
~ reconstruction
paths ‘
©
"obs
(A)
" causality - _
' locus target

_ (B) _ o
Figure 3. Free-space causallty locus mtersectmg a target (A) “Flrst pomt”
' ~and surface reconstructlon paths (B) Causahty locus dlstortlon
due to shadowmg ' ' . -




- (along with associated running times on the VAX 11/780). Each target is about
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A comphcatlon arlses, however, if we attempt target reconstruction in shadow

‘regions or in reentrant regions. Here, as the causality locus interacts with the
~ target, it no longer retains its free-space para.bohc shape, but becomes distorted.
~ An example of causality locus distortion due to shadowing is illustrated in Fig.
- 3b. Figure 3b shows that to an observer located at T,ps, the top side of the
. tnangle is in a shadow region, that is, there are no direct ray paths from points
~ in this region to Tps. Thus, additional propagation delay is involved in sensing
scattering from this region as energy diffracts back around the target along indirect
ray paths. The causality locus in this region folds back toward ¥,,, to account
for the addltlonal propagation delay. Similar causality locus distortion is noted
1n cav1tles and other reentrant regions where no direct ray paths to T, exist.
Causahty locus distortion must be taken into account by the target reconstruction
- algorithm to avoid complete dlvergcnce of the actua.l and reconstructed target
sh ADES. - o

V. APPROACH 1: RECONSTRUCTION OF CONDUCTING TARGETS USING
CONTOUR FOLLOWING .

' Flgure 4 1llustrates how conductmg ta.rget shapes can be reconstructed us1ng
contour followmg In this figure, we assume that the causality locus previously
‘struck the vertex of a triangular target ‘and, as the locus swept up the target, the
portions of the triangle from the first point to points A and A’ were successfully
reconstructed. We must now continue target reconstruction from points A and
- A, Since the FD-TD grid has discretized the space in which the trial target
s embedded we have only a finite number of guesses for the manner in which
‘the surface contour can vary adjacent to A and A’. That is, we can continue
reconstruction only in discrete jumps that are bounded by the resolution of the
~ FD-TD grid. As Fig. 4 shows, to continue target reconstruction from pomt A,
we have four possible surface paths that need to be investigated. '
The optimization routine now sequentially assigns high conductivity values to
~each of the four possible surface paths from point A, and in turn, the FD-TD
~ element computes the scattered pulse response for each of the four trial paths. The
| algorlthm then compares the four trial pulse responses with the measured data,
‘and selects the path that produces a pulse response best fitting the measured data
 in the least-squares sense. This process is now repeated using point A’ as the
base from which to launch the target surface perturbations. In this manner, by
- -alternating between the lefthand and righthand points generated in the previous
~ iteration, the ta.rget surface is rcconstructed synchronously as the causahty locus
moves across the target. ' o
Flgure da shows four examples of two—dlmensmnal conductmg targets success-
fully reconstructed using the contour-following method in the absence of noise

- 0.5 A\g wide. The observation point is 1.5 )\o from the front of each target and the
incident 1llummat10n is a TM-polarized carrier burst 5 cycles long. The “measured”
‘scattered electric field waveform at the observation point was numerically gener-
“ated by a forward-scattering FD-TD code having the same 0.1 Ay spatial resolu-
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tlon as the FD- TD / feedback code Flgure 5b shows a smula.r reconstructlon (and
‘associated VAX tlme) of a 0.6 Ao triangular target from a distance of 15 Ag. In
both Figs. Sa and 5b the target size and observatlon dlstance are shown to scale

s1ngle~ce11 tria] paths ‘
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"~ Figure 4. Typical target surface perturbation.
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B 112 2 minutes per target o

-~
-1
-7 _

-~ obs obs ' . obs

Y\ N

— 152

“31

obs

- 72 minutes VAX time

Exa,mplcs of ta.rget reconstructlon usmg contour followmg (A)

- Observation point close to target (B) Observatlon point rela-
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Flgure 5
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V1. APPROACH 2: GRADIENT METHOD (LAYER RECONSTRUCTION)

Although contour following is easy to apply to the reconstruction of two-dimen-
sional convex targets, it has limitations in that: a) it is awkward to apply to
targets having reentrant features; and b) it is not easily extended to target re-
construction in three dimensions. We now describe an alternate procedure for
target reconstruction that does not share these deficiencies. This procedure can
be applied if the target does not have deep reentrant features, such as cavities, so .
that the causality locus is not excesswely distorted from its parabolic free-space
shape. In the absence of excessive causality locus distortion, we can reconstruct
the target as a series of parallel layers if the observation point is sufficiently far
from the front of the target so that the causality locus can be approximated by a
straight line across the width of the target. The thickness of each reconstructed
layer is then determined by the position of the causality locus with respect to the
previously reconstructed layer In layer reconstruction, the optlrmzatlon program
must determine the width of each layer and its orlentatlon with respect to the
layer to which it isto be attached. . ' o
Figure 6 shows an example of layer reconstruction. The shaded rectangular
region in Fig. 6a represents the portion of the target that has already been recon-
structed. The causality locus has moved beyond the existing reconstruction to the
position shown in the figure. We must now attach another layer to the existing
reconstruction. Figures 6b to 6d show three possible reconstruction choices which
are indicated by the dotted lines. To indicate the orientation of the trial layer
‘with respect to the layer to which it is to be attached, we create a left/ right shift
coordinate system denoted from now on by L and R For example, in Fig. 6b
the width of the trial layer is identical to the prev1ously reconstructed layer to
which it is attached. It is shifted neither to the left or rlght therefore L = 0
“and R = 0. In Fig. 60 both the left and right shift is one cell, therefore L = 1
and R = 1. In Fig. 6d, the left shift is zero and the right shift is two cells, hence
L=0and R=2. Obv1ously, there are many choices for the new layer other than
the three illustrated. The best choice or global error minimum could be obtained
by an exhaustive, systematic exploration of the entire L/R space. However, to
quickly find a layer choice which provides at lea.st a, local error minimum, we use
a gradient method as shown in Fig. 7. ' '

To obtain a choice for the new layer, we begm by calculatmg the trlal pulse

responses of the arbitrarily located group of 4 left /right shift points arranged in
the square block-like pattern shown in Fig. 7. The least-square errors between the
measured pulse response and the 4 trial pulse responses, denoted by E; to Ey4,
‘are calculated and recorded alongside each L/R point. To calculate the direction
we should proceed in L/R space to minimize the error, we obtaln a. numerlcal
approximation to the nega,tlve value of the €rror gradlent vector usmg

. ——vemr {E1 Ez + E4 — E3}R + [E4 —E + E3 - Ez]L ‘ (2)

which is mdlcated by the arrow in Fig. 7. We now follow this dlrectlon into one

~ of the eight neighboring blocks in L/R space and recalculate the error gradient
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vector In this manner, we are able to locate an approxlmate reglon in the L/ R -
- space where the least- -square error is at worst a local minimum. This approach
is a.dva,nta.geous in that it simultaneously determines the width of the new layer

_and its left/ rlght orlentatlon w1th respect to the prev1ously reconstructed layer.

| '-u-ﬁ-ﬂi-'ﬁ |

———————

; ttton of
~ causality locus

L

Example of reconstructlon tna.ls using the layer method (A)
- Portion of target a.lready reconstructed; (B) Trial layer having
B | L =0 and R = 1; (C) Trial layer ha.vmg L= 1 and R = 1
: (D) ’Ihal layer ha.vmg L = 1 and R =2 '

Flgure 6

o © Figure 7. Error gradient study in Left/Right shift space.
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~ Two examples of targets that were successfully reconstructed in the absence of

noise using this technique are shown in Figure 8, along with the associated VAX
~ times. The triangle is 0.02 Ag tlp—to-base, and is a nearly perfect conductor The
J-shaped target is 0.06 )¢ front-to-back, and is a homogeneous dielectric with

= 2.1. For both targets, the observation point is located 0.15 Ao from the

- fmnt of the target, and the incident wave is a TM-polarized carrier burst 5 cycles
~ long. The “measured” sCattered electric field waveform at the observation point

was numer 1cally generated by a forward-scatterlng FD-TD code havmg the same "
- 0. 01 Ao spatlal resolutlon as the FD-TD / feedback code : '

L 0.15 2,

" obs |

W

o FigureB Examples of target reconstructron usmg gradrent (layer) method .
o “in the absence of noise. (A) Conducting trlangle, VAX time =
2 3 mmutes (B) Dlelectrlc “J " VAX tune = 3 5 mlnutes '



~ field pulse waveform at the observation point. The target on the left in this figure
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~ Figure 9 shows an example of a gradient study that was done on the dielectric
J of Fig. 8b in order to reconstruct the bottom portion of the crossbar of the J.
The crossbar is 3 cells wide and extends 1 cell to the left and right of the vertical
portion of the J located immediately underneath it. Figure 9 shows as heavy dots
‘the trial L/R shift points, and arrows representing the corresponding least-square
 error gradient vectors. Figure 9 shows that no matter where we started in the
~ L/R shift space, the gradient search moved toward the line that passes through
‘the points (L = 3,R = -1),(L =2,R =0),(L = 1,R = 1), etc. The sum of
'L+ R along this line equals 2, exactly the number of cells that the new layer is to
be extended beyond the old layer The points on this line correspond to the points
- of minimum least-square error in the neighborhood a round the line. To quickly
proceed to the correct choice, (L = 1,R = 1), we simply perform a search along
“this line. A consequence of using only the scattered electric field at a single point
as the input data is that there is an ambiguity in target reconstruction, as shown
" in Fig. 10. Both versions of the dielectric J produce the same scattered electric

is generated by rotating the original target 180° around the axis 1nd1cated by the
o dotted hne, Wthh passes through the observatlon pomt L

| VIL GRADIENT RECONSTRUCTION WITH NOISY DATA ‘

When the measured pulse data is contarmnated w1th noise, it may be dlfﬁcult

~ to initially determine the correct L/R choice for a given layer. For example,

layers of equal width, as illustrated by the two choices in Figs. 6c and 6d, may

- 1n1t1ally produce a similar scattered pulse response at the observation point. One

 way to determine the best choice for this layer is temporarily accept both choices
~ as correct, and then build additional layers on each of the two choices until the
incorrect choice becomes apparent by producing a, large error signal. _

- This technique is illustrated in Fig. 11 using as an example the reconstruction
- shown in Fig. 6. The known L/ R shift in layer n is shown in the bottom of
~ Fig. 11 as the black dot at the origin of the L/ R coordinate system. ‘The two
- ambiguous choices for layer n+ 1, namely (L = 0,R = 2) and (L=1,R=1),
are shown as dots in layer n 1. These two choices for layer n+ 1 are connected
by solid lines to the point (L = 0,R = 0) in layer n, the solid lines indicating
- that each choice is physically connected to a layer n as shown in Figs. 6¢ and
6d. For each of the two choices in layer n+ 1, we now construct layer n+ 2. For
 example, Fig. 11 shows three sample best ch01ces for layer n+ 2 that correspond

to the choice (L =0,R = 2) in layer n+ 1. These choices are obtained by using
- the gradient method to locate the approxxma.te region of least error in the n+2
layer L/R shift space. We then systematically explore this region to obtain the
three best L/R shift points. The figure generated by this type of construction

~ resembles a tree, where the branches consist of the solid lines that extend from

one laycr to the next 1nd1cat1ng the physical connection between layers A tree
- can also be constructed for the choice (L =1, R = 1) in layer n+ 1. That is, we
. complete the constructlon of this tree by deterrmnlng the three best L/ R shift

T
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' choxces for layer n+ 2. Wlth the two trees completed through layer n+ 2 we can o

 now determine the best choice for layer n+1 by adding the total least-square error
as calculated by Equatlon (1) for each of the trees as ‘the causahty locus moves

"~ to the top edge of layer n + 2. The best choice for layer n+1is determlned .

by choosing the tree that produces the smallest total error. In this manner, the N '

- L/R choice for a given layer is made one layer behind the actual position of the

 causality locus If the noise level increases, more trees can be constructed and
~ tested for error, and the L/R chmce for a glven layer can be delayed even further

behmd the causallty locus posxtlon o ' e FRRE R

o Layer tobe determined

~ Figure 9. Sample error gradient study for the dielectric “J”.

-
T
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VIIL. EXAMPLES OF TARGET RECONSTRUCTION WITH NOISY DATA -
USING THE GR.ADIENT METHOD . r o |

A number of numerrcal experlments have been performed to determme the effect of
- additive zero-mean Gaussian noise upon target reconstruction using the gradrent
" method. Figures 12 and 13 show the probability of exact reconstruction versus
'signal-to-noise (S/N) ratio for the conducting triangle and dielectric J targets
of Fig. 8. Figure 14 shows sample reconstructions of these targets with S/N =
20dB, 25dB, and 30dB, with the reconstructed target shape shown superimposed

-on the exact target shape (indicated by the shading). In Figs. 12 to 14, the target

~ size, observation point location, and incident wave are the same as that of Fig.
8. The signal power level used to calculate the srgnal-to-nmse ratio is taken as
the root-mean-square value of the scattered electric field pulse waveform at the
~ obsurvation point from the time that the scattered pulse first arrives until the
~ causality locus moves about one-half target length beyond the back of the target.
The gradient search for each new layer starts at the origin of the L/R coordinate
system. The L/R choice for each layer is delayed by building a tree with three
~ branches that extends into the next layer. ‘Target reconstruction is terminated
when adding additional layers beyond a certain pomt produces more error than
' terrmnatmg the target reconstructlon at that pomt o

l o - - .
- wm .'ﬁﬂ_'.-:-d“.-. . .
L T T

- ¢ &
o8+ % g
o -
o6t e, *
| ® | | o
e -
0.0 4
e ¥ 9 “ 50 55 60
CS/N (dB)
~ Figure 12. Probabrhty of exact reconstructlon vs. sxgnal—to-nmse ratlo for

the conducting trlangle target of Flg 8 as ev1denced in 200
reconstructlons S . . o .
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Flgures 12 and 13 show that we need large srgnal—to-nmse ratlos exceedmg 56dB
" to have a 0.9 probability or hrgher of exact reconstruction. However, Figure 14
“shows that even at low signal-to-noise ratios, the reconstructed target still retains
~ many of the dlstlngulshmg features of the original target. This indicates that the
reconstruction process 1s qulte robust relatrve to norse, a necessary chara.cterlstlc
- of well-posedness o '

_ IX CONCLUSION

Thrs paper 1ntroduced two iterative techmques for the reconstructlon of homo-
- geneous target shapes in two dimensions. The techniques are based on using

" a nonlinear optimization routine comblned in a numerical feedback loop with a
~ finite-difference time-domain representatron for the electromagnetic fields. This
. approach has been used to reconstruct both convex perfectly conducting targets

‘only the TM scattered electric field pulse waveform observed at a single point in
" the near field. Work continues in a number of dlfferent areas to extend the capa-

. bilities of the FD- TD /feedback techmque for inverse scattering. For example, the

feasrblhty of true far-field reconstruction of homogeneous two-dimensional targets

using the scattered pulse observed at only a single look angle is being explored.
- Another avenue of research involves i improving the robustness of the layer recon-
- struction method with respect to noise performance by modifying the nonlinear
. optnmzatlon routlne to retam addlt 1onal h_;,___cssmle trlal guscs for la:‘._,_-

/ agq CO-

'thls would expand the growth of the dec1310n trees by develcplng more branches,
~ letting them grow into additional layers of the target and then pruning the ones

that ultlmately develop large errors .
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- Work is also ongoing in reconstructing homogeneous two-dimensional targets
havrng mult1ple ﬁrst-pomts Targets of this type may have reentrant features in

~the lit region, or may consist of two closely spaced, but distinct shapes not phys- .

ically connected together. Additional extensions involve improvements in the
~ optimization routines applicable to the discrete nature of the FD-TD grid using,
- for example, combinatorial optimization techniques. Conversely, new conformal
curved surface FD-TD models [15], which effectively remove the stepped-surface
- nature of the FD-TD trial target, may be used in the forward-scattermg element
to permit apphcatlon of conventional variable metrlc and conjugate gradlent op-
timization techniques in the feedback element. -
~ Finally, the feasibility of extending the layer reconstructlon method to three
dimensions will be explored Here, a four-dimensional left/right/up/down shift
~ space would be set up, in a natural extension of the left/ right space used for
 two-dimensional reconstructions. Now, target layers would consist of rectangular
~ sheets whose boundaries would be determined by a gradient search strategy analo-

- gous to that of section VI. Reconstruction ambiguities and rncreased requirements

for measured data, along with substantially increased computer time needed to
implement iterations of the three-dlrnensmnal forward-scattcrlng FD TD code,
- are expected to be ma Jor concerns here R - .
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