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Abstract--The inverse scatterlng problem of deterrmmng the electrornagnetlc characterls-
tics, namely, conductivity, permittivity and permeability profiles of an inhomogeneous
one-dlrnenmonal layered medium is presented in the time domain utilizing the layer-
stripping procedure. A fully explicit numerical algorithm is proposed for simultaneous
extraction of the electrical parameters by simulating a real-time wave propagation and
scattering based on the Finite-Difference Time-Domain method. This yields an efficient
profile inversion technique suitable for layered medium synthesis Examples of the one-
dimensional conductivity and permlttmty proﬁle inversions are also presented including

the depth of the medlum probed

I. INTRODUCTION

This mvestlgatlon is concerned with the inverse scattermg problem of determin-
ing the electromagnetic characteristics, namely, the conductivity, permittivity and
- permeability (o,¢, ) of an isotropic 1nhomogeneous layered propagation medium
fromn the knewledge of the time-dependent incident wave excitation and the cor-
" responding back-scattered field response. The present discussion deals with only
the case of one-dimensional layered medium situations for which both the incident
field and the inhomogeneous scatterer medium are one-dimensional. In spite of its
simplicity, this situation is often considered as an useful model for many practical
applications involving the electromagnetic material synthesis and fabrication of
layered structures; probmg of blologlcal med1a and natural geophyswal media such
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~ as the earth 1ce, sea, case of target 1dent1ﬁcat10n and/ or obJect reconstructlon
problems. . -- _ ' . -
- The solution of the proﬁle inversion problem Flg 1, can be approached on
~the basis of either the integral equation formulation or the differential equation
~ formulation of the associated direct scattering and propagation problem. Several
“analytical and numerical methods of profile inversion based on the integral equa-
~ tion formulation — both in the frequency domain and in the time domain — have
" been discussed in the literature [1-6].
‘knowledge, little or no attempt to solve this proﬁle inversion problem with the
~ numerical differential equation formulation has been made. As will be discussed
later, the time domain differential equation formulation [7-10] is simple to imple-
ment a.nd has broad apphcatlons compared to the previously attempted inversion
" methods. ‘Therefore, in this paper, based on the time-domain solution of the basic
- Maxwell’s coupled curl equations (7, 8], a numerical iterative optimization scheme

~ is presented for the determination of electromagnetlc characterlstlcs (a, ,u) of a
_ one-dlmensmnal layered medmm . B
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" Figure 1. One dimensional inhomogeneous half space medium.
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In the previous investigations, using a space-time discretization of an integral
equation for the electric field, a solution to the layered medium profile inversion
problem is studied as in [5 6] Here, by calculating the field at the front of the
pulse in the medium, step by step, one can make an estimate of the local value
of the susceptibility or conductivity. This allows the computation of the field in
the next step. The disadvantage of this method is that the front of the pulse
has to be traced very accurately, since the relative error in the computed field is
large, especially for a lossless medium. As a result, the method is restricted to
~incident pulses with rather steep fronts. A modification of the above space-time
discretization emphasizing space-time points where the electric field strength is
relatively large is presented in [4]. The main drawback of these above methods is
that they provide recovery when only one of the constitutive parameters, either
conductivity or perm1tt1v1ty, is unknown. Also, they work best for smoothly
varying profile functions.

In addition, there are different approaches in the frequency-domam adopted to
solve the inverse scattering problem of interest here. In some of the frequency
domain approaches [2,3,11], the unknown medium is described by means of a
finite number of parameters in such a way that it is possible to calculate, ana-
lytically or numerically, the reflected field as a function of these parameters for
a given incident field. In the case of a lossless medium, a comparison between
the calculated and observed reflected field allows a direct determination of the
unknown parameters. But, in general, a feedback process in conjunction with
“an optimization process is used for determining the set of unknown parameters
‘that minimizes the difference between the calculated and the observed electric
fields [11]. It is obvious that such an approach for a general lossy inhomogeneous
medium will result in a prohibitively large number of unknown parameters for
any optimization process to operate effectively with proper resolution. It should
be noted here that in the frequency-domain the interaction of the entu'e medium
with the incident field must be considered simultaneously. ' '

In two other frequency-domain approaches [2, 3], the input data is taken as the
reflection coeflicient at a fixed remote location for a set of discrete frequencies. In
[2] only the magnitude of the reflection coefficient is used as the input data which
makes it more appealing for practical purposes. The other approach [3] uses an
~ extension of the Born approximation to establish a Fourier integral relationship
between a function of the permittivity profile and a function of the reflection
coeflicient at a remote location. No attempt to recover the conductivity profile,
- either separately or in conjunction with the permittivity profile, was made. In the
niethod of [2], the problem of estimating the dielectric and conductivity profiles
from a set of input reflected power data, was posed as a nonlinear integral equa-
tion. The equation was solved by developing a quasi-Newton iterative scheme in
functional space which produces a dielectric and conductivity profile that fits the
data. This iterative scheme is restricted to one dimensional cases, and from the
numerical results it is clear that the performance of the scheme is not satisfactory
for discontinuous profiles (for example: step jump). In fact, this seems to be
the major drawback of most of the methods discussed above [1] The alternative
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method presented in this paper alleviates this drawback, in the sense any degree
- of resolution in the profile inversion is obtainable, and a clear systematic exten-
sion [14] to the two- and three-dlmensmnal cases is possible including anisotropic

materlal layers as well.

II. N UMERICAL PROFILE INVERSION TECHNIQUE

The proﬁle inversion techmque developed in this paper is based on the differential
equation formulation of the direct scattering and propagation problem referred
to as the finite-difference time-domain (FD-TD) technique [7-10]. The FD-TD
is a direct solution of the basic Maxwell’s time-dependent curl equations for the
electric and magnetic fields at a regular space lattice of points covering a volume
of space containing a scatterer. A fully explicit numerical algorithm is used to
‘simulate real time wave propagation and scattering. The electromagnetic field
" boundary conditions at the adjacent dissimilar layered media are automatically
satisfied by the curl equations’ analog. The radiation condition is not inherent,
and therefore, it has been formulated separately to work appropriately in the near
field and in the time-domain [13]. Using this direct scattering algorithm in con-
junction with the causality of the time-domain response, an iterative optimization
scheme{15] capable of estimating the electromagnetic characteristic profile in a
‘step by step fashion, layer stripping, is developed. This optimization scheme as
~ shown in Fig. 2, constructs the (o,¢, 1) profile of the one-dimensional medium
such that the time history of the resulting total field at a given location, out-
side the medium being probed, fits a given (measured) input time-domain field
response in a least-squared error sense. A brief description of the mathemati-
cal steps of the one-dimensional FD-TD formulation suitable for profile synthesis
“and layered inversion scheme is discussed below. Included is an efficient layer-
stripping optimization scheme for the profile inversion based on causality of the
~exciting pulses and scattered field responses. - '
Various numerical case studies of the 1nhomogeneous one-dimensional profile in-
versions, namely the layered conductivity profile, the layered permittivity profile,
and the simultaneous conductivity and permittivity profiles, are also presented in
later sections of this paper. Further extension of the numerical case studies of the
two-dimensional profile inversions [14] are reported in Part IT of the accompany-a_

- ing paper

A. Summary of the One-Dimensional FD-TD Formulation

The objectrve of the FD-TD approach is to model the propagatlon of an elec-
- tromagnetic wave into a volume of space containing permeable or non-permeable,
dielectric and/or conducting structures which yields a flexible direct numerical
- volumetric scattering scheme. By time-stepping, i.e., repeatedly implementing a

finite difference analog of the curl equations at each layer of the corresponding
space lattice, the incident wave is tracked as it propagates through the structure

“and interacts with it via surface current excitation, diffusion, penetration, and
dlffractlon If desmed for time-harmonic studles, the wave-trackmg is completed
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‘when the late-time behavior is observed at each lattice cell. The rationale for
this procedure is that it achieves simplification by analyzing the interaction of the
wave-front with portions of the structure surface at a given instant of time, rather
than attempting a simultaneous solution of the entire problem. In fact, the nu-
merical models for the direct electromagnetic scattering and computer a.lgorlthms
implementing the FD-TD [7-10|, which can treat wide classes of arbitrary shaped
bodies comprised of conducting, dielectric (homogeneous, inhomogeneous, loss-
less, lossy) and even anisotropic media having tensor conductivity, permittivity
and permeability, are presently available [10-13] with significant ana.lytlcal and
measurement validations. .
Assuming the parameters (o,¢,u) are 1ndependent of time, the following cou-
pled scalar equations are to be solved for one—dlrnensmna-l field variations w1th '

(y, 1) dependence

aHx(y:t) ' 1 6Ez(y,t)
ot u(y) (10)
i _ 3Ez(y, t) 1 6Hx(y, t) a(y) o o
- Ot - e(y) oy e(y) B (y’ t) o (1b)

where E,(y,t) and Hz(y,t) are the z and z components of the electrlc and
magnetic fields respectively. The equations (la) and (lb) are converted into the
finite-difference form by defining [13] *

0: spatial resolution in y direction

0t: time stepping increment .
F(y,t)=F"G6nét)y ()
where j and n are integers. The centered finite-difference expressions are used

for the space and time derivatives that are both second order accurate in 6 and
ot, respectlvely '

82;(3) {F”(J + ) - F "(J — -)]/5 + 0(52) . i (20)
or ) = [F+/ 2(5) - Fn 2(J)]/ét + O(6t2) . | (20

ot

To achleve the accuracy of (2b) and (2c), the components E'z and H, are
partitioned and interleaved about a unit cell [13] and evaluated at alternate time
steps. Since in the present one-dimensional problem, Fig. 3, the fields vary along
 the y direction only, a lattice cell is now a layer with ea,ch layer having its own
homogeneous and isotropic electrical parameters. The electric field component
E. is positioned at the center of each layer, while the magnetic field component
H,. is displaced and positioned at the interface between two adjacent layers.
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BLOCK DIAGRAM OF FD-TD/FEEDBACK METHOD
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- Figure 2. Optimization scheme for inverse scattering.



Inverse Scattering Scheme for remote sensing: part I.

INCIDENT PLANE
'WAVE PULSE

Liry  ©——E. (1
LA T

RECEIVER: R g Emeo“ )
S e \o

i

Figure 3.  One dimensional layered medium.
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- Using (2b) and (2c), the coupled equations (1a) and (1b) reduce to the follow-
ing finite-difference expressions using linear basis functions for the electric and
magnetic field distributions: ' '

n+1/2(] 1/2) = n -1/2

(.7 +1/2) + C1()ER() - E"(J + 1)] (3a)

BTH() = CU)ERG) + 0'3(.7)[Hn+1/ 2 - ) - H G ) @)

where the coefﬁments

C1) = s © (30)
) = 1- ) o BCON
Caalh) = 1+ 52 (3¢

‘ (3f)
Zo
oo-g @

Wlth the representatlon given in the above equations (3a) and (3b), the field
components are calculated iteratively with the new values of a field component
at any layer point depending only on its previous time step and on the previous
values of the components of other field at the adjacent spatial points. Hence, at
any given time step, the computation of a field component will proceed one point
~at a time. In many electromagnetic interaction problems, including the present
one, basically involve non-magnetic media. For such problems the quantity C(j)
is constant for all layers, and the coupled expressions given in (3a) and (3b)

can be specialized into an efficient algonthm ‘Hence, defining the time stepping
algorithm parameters as: '

" (4a)
- (4b)

(4¢)
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Then, the coefficients defined in (3c) to (3h) simplify to the following form:

- Cra(j) =1 - f"’(%) - .  (4d)
Calj) = 23083 o (4f)
Cy(§) = m (49)
and defining: o
E(j) = RyEP(j) o (4h)

the one-dimensional finite-difference equations (3a) and (3b) reduces to the follow-

ing time-stepping form of equations in terms of the above algorithm parameters
(4a) to (4h): _ _ '

HPPV2(G 4+ 1/2) = HR V23 +1/2) + [E2G) - ER(G+ 1) (5a)
EPL(5) = Ca() ER () + CoG)HE 2 - 1/2) — HEPY2(G 4+ 1/2)]  (5b)

The choice of space increment ¢ and time increment 6t is dictated by the reasons
of accuracy and algorithm stability [13], respectively. To insure the accuracy of
the computed spatial derivatives of the electromagnetic fields, 6t is chosen to
satisfy the inequality for one-dimensional layer model: '

0

ot <
Cmax _ . _ _
cmax: maximum wave velocity within the model.

(6)

Another basic consideration with FD-TD approach is that the present electro-
magnetic field problem is an “open” problem where the domain of the computed
- field is ideally unbounded. Cilearly, for the numerical algorithms the field compu-
tation zone should be limited. Thus, the computation zone should be large enough
to enclose the structure (layered medium) of interest. Further, suitable boundary
conditions on the outer perimeter of the computation zone are simulated for the
extension of the computation zone to infinity [12, 13].

B. Optimization Scheme for Layer-Stripping

For the profile inversion scheme of the one-dimensional problem, the lossy in-
homogeneous medium is excited by a linearly polarized pulse-transient plane wave
normally incident at its interface of the outer medium, Fig. 3. The resulting time
history of the total field at the receiver site R is recorded and discretized into
a suitable number of time steps, M, dependent upon the required profile resolu-
tion. Next, using the one-dimensional FD-TD formulation discussed above, the



498 - - I _ . Umashankar et al.

optimization scheme 15] of Fig. 2 is utilized to construct the (a e, u) profile of
the layered medium such that at the point R, the resulting total field fits the
recorded field (input data) in a least-square-error sense at M discrete instants in
time. This essentially means that the unknown inhomogeneous medium is mod-
eled by M layers of media, each of which is homogeneous within itself. It should
- be noted here, because the time discretization 6t of the problem is uniform, the
“electrical width” of each layer d. is also uniform. However, the physical width
of the layers is dependent on the corresponding relative permittivity e, and hence

it is non-umform

A= [fr(J)]l/ 2 )
Since the FD-TD formulation deals with electrical lengths as opposed to the phys-
ical lengths, the causality of marching in “uniform time steps” is assured, even
with the different velocity of propagation at the different layers of the unknown

medium. This is a requirement for the proposed inverse scattering formulation.
To initiate the optimization scheme for layer stripping, Fig. 2, the causality of
the time marching is exploited. If the receiver is located at the media interface,
as shown in Fig. 3, then at ¢t = 26t only the first layer d; will contribute the
total field at the point R, assuming the time reference ¢ = 0 is considered to
be the instant when the leading edge of the incident field reaches the receiver
location. Thus, the only unknowns in the field calculation with FD-TD up to the
time instant ¢ = 20t are the unknown parameters [o(1),€(1)] of the first layer.

~ For determmmg these unknowns, an error functlon W(y, t) a,t the locatlon R is
now deﬁned as: ' ' '

Wlimtnst = [Frmea(2n6t) — Eeq (208t, o(m), c(m)))’ - (8)

- Emea: total electricﬁeld measured at R, input data
Ecal total electric field calculated at R by FD-TD
~ for assumed values of o(m),e(m)

‘The numerical non-linear optimization algorithm [15] minimizes the error func-

~ tion of (8) at the location R for m =1, by iteratively adjusting the values of the

profile characteristics lo(1),€e(1)] of the layer dj. The present non-linear opti-
mization scheme utilized, requires the error function at the location R as defined
“in the equation (8), and also the corresponding field gradients of the error function
at the location R calculated with respect to the unknown characteristic parame-

ters o(m) and e(m) of the m'™ layer being probed, as defined below. Hence, at
the location R, the gradient of the error function with rcspect to the unknown
conduct1v1ty parameter is given by:

. “"%Wlt=2n5t = —2|Emea — caI]Gz(J = It, m) ~ (9a)

OH "(J)

P"(J, m) 3o (m)

(9b)
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G"(J, m) = RyG7 (J, m) S - (9d)

In terms of the above algorithm parameters (9a) to (Qd), the followmg one-
dimensional finite-difference expressions are obtamed for the gradient function

in tlme-steppmg form:

PEYY2( 1 1/2,m) =P2™Y2(G + 1/2,m) + [G2(G, m) — GG + 1 m)] (9e)
Gy bGym) =Ca(5)G7 (4, m) + Ce(j, m) EZ (5) ‘

+ Cy()PET2(G - 1/2,m) — P22 4+ 1/2,m)]
S Cal,mHEAG - 172) - B 2G+1/2) (of)

where _
Cc(g,m) = for j = m
forjEm
Cald,m) = 2— for j =1 I
' =0 forj#m C(9h)

Slmllarly, at the location R, the gradient of the error functlon W1th respect to
the unknown perm1tt1v1ty parameter is given by: ' '

Wlt _ont = —2[Pmea — EcallT:(j =R,m)  (10a)
C stom- 615753) . (o
To(j,m) = (10c)

T2 0, m) RyT?(j, m) - (10d)

Again, in terms of the above algorlthm parameters (10a) to (10d), the following
second set of one-dimensional finite-difference expressions are obtalned for the
gradlent function in time-stepping form: '

n+1/2(] 4 1/2 m) n 1/2

(G +1/2,m) + [T”u, m) = T2 +1 m)} (10€)
T (5, m) =Ca(G)T™(G, m) + Ce(, m)E"'(J)
+ () ISET2G - 1/2,m) - S22+ 1/, m)]
+ cf(a, m){ Hy Y26 - 12 - HZPPG+ /2] (0)
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| for =m _
for j £ m o (IOg)
. for 9 =m
_ for j £m o (10h)

Similarly, at the time instant ¢t = 46t, the first two layers m = 1,2 with reso-
lution depths d; and do take part in the electromagnetic interaction. However,
now the characteristics of the first layer d; is known, and thus by iterative opti-
mization the characteristic parameters of the second layer dy are recovered. The
process is continued for the remaining layers. Some observations regarding the
numerical implementation of the above layer strlppmg scheme are as follows:

(a) As a first step, the time 1nterval 6t can be made large and a coarse profile
estimate of the electromagnetlc characteristics of the medium is obtained. In this
‘estimate, the region where the profile appears to be changing rapidly, can be
recalculated by using a finer sub-intervals of the time step in the corresponding
region of the measured time-history of the total electric field at the point R. This
‘variable resolution is effective and accurate at the same time.

(b) When the m'! layer’s profile is being recovered, all the non-zero field informa-
‘tion up to the time instant 2(m — 1)6t is known frorn the previous optimization
step, stripping of the (m — 1)th layer, and these values are not affected by the
changes in o(m) and e(m) due to causality. Thus, in the m'? optimization step,
the field values obtained in the earlier optimization steps are of direct use.

(¢) Since the FD-TD formulation gives field values at all the grid points of the
layered geometry, the field values inside the layer medium can be successively
monitored to determine the depth at which the profile recovery scheme should
be terminated, i.e., the depth into the medium at which the field due to the
transmitted pulse has decayed sufliciently to produce no significant scattering
contrlbutlons ' D

1. PROFILE INVERSION RESULTS

Based on the detailed profile inversion technique developed above involving the
FD-TD ([13] and the optimization scheme [15], selected numerical results are
presented to demonstrate applicability of the layer-stripping procedure for one-
dimensional inverse scattering. Several case studies invelving pure conductivity
profiles, pure permittivity profiles, and also combinations of both the conductiv-
1ty and permittivity profiles have been investigated. Some of the generic profile
- distributions, namely, rectangular, tna,ngular saw-tooth and sinusoidal profile
distributions have been recovered. @ * '
For the profile inversion scheme, the input data consists of the recorded time
“history of the total electric field at the receiver site R located in front of the
- medium being probed. The recorded data at the receiver site R for different
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profile distributions are shown in Figs. 4a, 5a and 6. In fact, the recorded data
utilized is completely noise free and was obtained by direct time-domain scattering
problem with very high resolution of a sinusoidal half-pulse excitation. Generally,
practical input data when measured will include random noise distributions de-
pending on the transient measurements. No attempt has been made in this paper
to include any noise study. All questions concerning input data with random noise
distributions, effect of different pulse excitations, limits and accuracy of the data
recovered, in fact, are addressed and reported in a separate study [14] involv-
ing accurate reconstruction of two-dimensional target shapes from a single point
TM-scattered field pulse response.
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The Flg 4a shows results of the conduct1v1ty proﬁle recoveries. The exciting

~ incident pulse used is a half-cycle sinusoid at 300 MHz. The results are recovered
with a spatial resolution of 0.01 meter in the region outside the medium being
probed, and also the same physical resolution is utilized within the medium being
probed. The soyrce is located at the 5th spatial layer and is turned on at the time
“instant t = 0. W1th the spa.tla,l resolution of 0.01 meter, the field observation or
measurement point R is situated at the 60th spatial layer or same as just one layer
" in front of the medium being probed. The Fig. 4a shows results of the first ten
layers strlppmg corresponding to the two cycles of the saw-tooth profile, 0.1 meter
thick, recovered based on the numerical algorithm described earlier. Numerical
“difficulties are encountered for probing deeper layers due to low scattering returns
~from the deep layers. In order to overcome this limitation, it is necessary to use

 low frequency half sinusoid exciting pulses, or the alternative pulse shapes such

~ as the gaussian and its derivatives. The Fig. 4b shows spatial distribution of the
' total z component of the electric field at selected time instants.
- Similarly, the Fig. 5a shows corresponding results of the permittivity proﬁle
- recoveries and the Fig. 5b shows the spatial distribution of the total z compo-
nent of the electric field at few selected time instants. The permittivity profile
‘investigated is that of the stair-case distribution. From numerical point of view,
it is observed the layer strlppmg algorithm converges slower for the permittivity
profiles than for the case of conductivity profiles, and rate of convergence is also
affected w1th respect to the deep layers being probed. The results of Fig. 6 cor-
respond to an interesting case of simultaneous recovery of both conduct1v1ty and
‘permittivity profiles. The conductivity and the permittivity profiles considered
are having saw-tooth distributions as a functlon of depth. Three different cases
of the input data are investigated with peak values of the parameters as shown
~in the Fig. 6. The convergence rate of the optimization scheme is slow compared
“to the single parameter layer stripping examples presented in this paper. Even
- though the results presented are for the case of half-sinusoid input pulse, the
- procedure discussed is apphcable for any other pulse input waveforms. Detailed
studies are still underway concerning the apphcatlon of different excitation pulse
shapes. In fact, the present numerical algorlthm is also suited for other charac-
teristic parameters such as the permea.blhty distributions. These will be reported
separately along with noise study in the input data [14]. These examples thus
demonstrate the flexibility of the present inversion scheme, which not only works
' -for smooth profiles but also can recover d1scont1nuous proﬁles as well.

IV. CONCLUSIONS |
ThlS ‘paper 1llustrated an efﬁment and 51mple numerical scheme for the inverse

“scattering problem of determining the electromagnetlc characteristics, namely,

~ the conductivity and permittivity of the layered one-dimensional profiles. The nu-
merical algorithms developed here are quite useful for layered material synthesis.
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This approach is quite general and can be easﬂy extended to two- and three-

dimensional problems by appropriately replacing the forward scattermg algorlthm '

with the two- and three—dlmensronal FD TD scheme.
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