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- Three-Dimensional Contour FDTD Modeling of
“Scattering from Single and Multiple Bodies

T G. Jurgens and A. Taflove

Abstract—This paper introduces a generalization of the three-dimen-

~ sional finite difference time domain (FDTD) method, the three-dimen-

- sional contour FDTD (CFDTD) method. The FDTD method represents
curved media boundaries as stepped edges. Through the use of subcell
~ modeling, the CFDTD method conformably models bodies with curved

- surfaces, yet retains the ability to model corners and edges. Electromag-

- netic scattering from single and multlple bodies is presented

I. INTRODUCTION

The contour finite difference time domain (CFDTD) method

 is a generalization of the traditional finite difference time do-
" main (FDTD) method [1]. One limitation of the FDTD method

~ is its representation of curved media interfaces as a stair-stepped
" boundary. The analysis of the errors introduced by such an

approximation have been analyzed elsewhere [2]. The CFDTD

~ method allows the modeling of subcell geometries. Here three-

“dimensional (3-D) modeling of single and multiple body scatter-
“ing is introduced. An earlier paper introduced the CFDTD
modeling of two-dimensional (2-D) electromagnetic (EM) wave

‘scattering from dielectric and metallic bodies [3]. The CFDTD
- method is applied to computational cells near a media interface,

as opposed to nonorthogonal FDTD techniques which globally
distort the mesh [4], [S]. Others have used the CFDTD method

to study horn antennas [6], wave penetration through narrow
~ slots and cracks [7], and thin dielectric structures [8]. In the field

~ of accelerator physics, 2-D [9] and 3-D [10], [11] simulations
- using the CFDTD method have been used to study charged
particle wake fields. .

The discussion begins with a briet overview of the traditional

FDTD method. Detailed descriptions and validations can be
found elsewhere [12], [1]. The discussion then proceeds to the

CFDTD finite difference equations and their relationship to the
traditional FDTD equations. Next, validations are presented,
and finally CFDTD computer resource needs are examined.

I1. THE TrabprTiIONAL FDTD METHOD

The traditional FDTD algorithm is a direct solution of a

- second order accurate finite difference approximation of
- Maxwell’s time dependent curl equations: ‘

VXH=—+J.+J, | (1)
. 9B - f
.- Jt _
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where E, 5, ﬁ ] ﬁ, J_;, and f; denote the electric field, electric

 flux density, magnetic field, magnetic flux density, conduction
- current, and source current respectively. The constitutive rela-

tions are D = €E, B = [LH and J = oF, where €, u, and o

are the medium’s permittivity, permeablllty, and conductivity,

respectively. The resulting difference equations are solved in a

time-marching, leap-frog manner, with the alternate update of
“electric and magnetic field components. Examples of such equa-
“tions can be found in [3].

- The computations in the FDTD method are locally depen-

~dent. This allows different portions of the lattice to be computed

on separate processors, underscoring the method’s suitability for
parallel processing. Because all the cells of the lattice are
rectangular, this formulation models the curved surfaces of
objects with a stair-step approximation. '

The traditional FDTD code used in this investigation parti-
tions the computational lattice into a total and scattered field
region. The total field region completely contains all of the
scattering bodies, while the scattered field region surrounds the
total field region. A second-order accurate radiation boundary

- condition is applied at the lattice border permitting outward

propagating waves to exit with minimal reflection [13]. Far fields
are obtained using a near to far field transformation. Given the
time evolution nature of this code, any waveform within the
passband of the lattice can modeled [1].

" III. Tee Contour FDTD METHOD

The CFDTD algorithm is a generalization of the FDTD
algorithm. Rather than using Maxwell’s curl equations, the
CEDTD algorithm 1s based on Ampere’s and Faraday’s laws,

- shown below:

séjﬁ-df=f[9(j+f;)-d§+—f D dS (3)

———ffSB-dS, (4)

- where the C contours enclose the S surfaces. Discretization of

Ampere’s and Faraday’s laws result in difference equations
~which can be solved in a direct time marching manner that 1s
similar to that used in the traditional FDTD method. In fact, the

two methods employ identical difference equations for rectangu-
lar contours not near a media boundary. Near media boundaries

‘the CFDTD method uses contours which allow subcell confor-
‘mal modeling of the interface. The CFDTD method uses the

traditional FDTD total field—scattered field lattice partition,

‘near to far field transformation and radiation boundary condi-

tion since the contours are rectangular everywhere in the com-
putational lattice except near media boundaries. The CFDTD
method also inherits the FDTD code’s ability to model time
domain waveforms. The remainder of this section will discuss
the modeling of perfectly conducting spheres using the CFDTD
method. _ '

The deformation of Faraday contours near the outside surface
of a sphere is shown in Fig. 1. The H components represent the
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~average value of the magnetic field within the surface bounded
by the deformed Faraday contour. The electric field E,,, at the

object boundary is zero. Along the remaining straight portions ot

the contour, the electric field components are assumed to be
" constant along their respective contour segments. These electric
field components are calculated using nondistorted rectangular
Ampere contours, provided that the Ampere contours do not
cross a media interface. The gray arrows and dots in the legend

of Fig. 1 indicate which unused components would be used if

this object were a (2-D) circular cylinder rather than a sphere.
The white. arrows 1nd1cate components whrch are unused In
- e1ther case. o -

‘The integral along contour C,, shown in Fig. 1(a), computes

the magnetic field cornponent H,,. The dlfference equation for

contour C1 1S -
‘ ”+1/2(z+1/2]+1/2 k)

= H" 1/2(j + 1/2, ] + 1/2 k)

At

MoAt

1, ——El(z+1 ]+2,k)

. Ay .- 2(: + 12,;,k) L1, (5)

'CFDTD contours 1ntersectrng a perfectly conducting sphere.

locat1ons of E 9, E.i1, Ex13, E
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- where A, is the area enclosed by C;. Since component E,; 1s

inside the metal sphere it is not used to estimate the electric

field along the contour side whose length is /;. A nearest

neighbor approximation for this field results in the use of the
value of E,,. The contour side containing the component E, is
computed using E,; and the length Ay. The electric field along '

- the side whose length is I, can not use E_, as its value, since the

H, component which lies underneath (in the z direction) E,, is
inside the sphere. Instead, the value of E_, is used here. Note
that if the media interface shown in Fig. 1 were for a two-dimen-
sional geometry, such as a circular cylinder, this situation would
not arrse as Ex3 would not be dependent upon any H, compo-
nents. ' ' '

' The contours shown in Fig. 1(b) lie on a plane Wthh has a

' perpendrcular distance to the sphere’s surface of only 1/2 of a '

space increment. Therefore the surface of the sphere 1s close to
this plane in the neighborhood of their intersection. This causes
many of the field components near the media interface to be
unuseable, as highlighted in white and gray in Fig. 1(b), because

‘the field components needed to compute them are inside the
- sphere.

Contour C,, displayed in Fig. 1(b), is ‘used to compute the
magnetic field component sz The drfference equation for

contour C,1s

”+1/2(z + 1/2 j+ 1/2 k)

: _..H” 1/2(r+ 1/2 j + 1/2 k)

At ‘
+ — '[E§9(i+ 15,j + 1,k)
. /J“OAZ I
1, 3(z+1]+ k)

- where A2 is the area enclosed by C2 The electrrc field along

the side whose length is /; cannot use E s as its value, since the

'H, component which is located\underneath (in the z direction)
| E s is inside the sphere. Instead, the value of E ¢ is used. A
similar situation exists for the electric field along the side whose

length is /,: E 1o 1s used here instead of E,s. The component E,,
1S not used since at least one of the magnetic ﬁeld components
used for its calculation is inside the sphere.

Moving in a clockwise direction, contour C; contains the
4> E,15, and E y6- Lhe gray

X X

~electric field components cannot be computed since the H,
components underneath (in the z direction) them are inside the

sphere. The component H,; is not computed since all of the

field components used for its computation are unuseable. H,,

represents the average magnetic field within contour C,;. The

difference equatron for contour Cj; is

”“/2(1 + 1/2 j+1/2, k)

—H” 1/2(1 + 1/2,] +1/2,k)

' 'Ay 12(l T 129]9k) J' 15]9 . (7)
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where A4, is the area enclosed by C;. Electric field components
E. o and E_,, lic on a contour segment of length /5 and the
contour integration of this segment uses the value of E_,, here.

The components E 5, E, ., and E_ . are positioned on a

X1

contour segment of length /. and the value of E_,; is used along

its entire length. The gray shaded area is common to contours
C; and Cs. The component E,, is not used since at least one of

the magnetic field components used for its calculation is inside

the sphere. E 5 is unused since the H, component which lies

underneath it is situated inside the sphere. . _
Contour C,, which i1s used to compute H,., is a square

contour with side length equal to the space increment and area

A, equal to Ax Ay. The differencc equation for contour C, is

H Y2+ 1/2,j +1/2,k)

2G4+ 12,5+ 1/2,k)

..I_

n(; ; 1 -
uoA, ' [Eyg(l,] T 1§,k)" Ay

E”lé(i + —;-,j + 1,k)
-Ay 15(1 + 12,],k) Ax]

E,, and E ; are not useable since the H components which lie

X

underneath them are positioned inside the sphere. The electric

field value along their contour side are approximated with E_,.
and E 4, respectively. '

IV. NumERICcAL RESULTS

In this section analytical and numerical data validations of the

CFDTD method are presented. Near- and far-field steady-state

validations are presented. The far-field comparisons are made

with radar cross-section (RCS) data. Steady state data is ex-
tracted from the CFDTD and traditional FDTD codes by allow-

Ing the transient excitations to decay and then computing magni-

tudes and phases from the time domain data. The objects

discussed here are perfectly conducting and illuminated with

plane waves. The field approximations used in this investigation
were stable for all the geometries modeled. The time increment

used in the CFDTD simulations, 8¢ = 6x / 2¢, Was 1dentlcal to

that used In the tradltlonal FDTD runs.

A Smgle Sphere

The first geometry considered is a moderately resolved, 1 /20 '

wavelength cell size, kya = 7 sphere. Figs. 2, 3, and 4 are near
field data comparisons between the CFDTD method and the
series solution. The data presented is magnetic field data near
the sphere’s surface. The location of the field pomts are deter-
mined by their location in the cartesian FDTD mesh. This
implies that distance from surface to a given field point is not
constant from point to point. Their distance from the sphere’s
surface vary from almost touching to as much as 1.5 times Ax.

Likewise, the computed series solutlon [14] 1S for near ﬁeld "

values, not surface currents.

Figs. 2 and 3 show data comparisons of the x and y compo-
nents, respectively, of the magnetic field in an H-plane cut. The
angle ¢ = 0° represents the backscatter direction. Fig. 4 shows a
comparison of the y component of the magnetic field in an
E-plane cut. This cut is offset a half space cell, 1/2Ax, from a
vertically oriented great circle (dashed line). The angle a = 0° is

(8)
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- Fig. 2. H near field sphere data, H-plane cut.
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Fig. 3. H, near field sphere data, H-plane cut.

the backscatter direction. As can be seen in the graphs, the

- CFDTD data shows excellent agreement with the series solution.

Figs. 5 and 6 display the E-plane and H-plane bistatic RCS of
a koga = m sphere. The angle ¢ = 0° 1s the backscatter direc-
tion. Here, the CFDTD data is compared to the series solution
and also the traditional FDTD derived data. These figures show
that the CFDTD method is a significant improvement over the

traditional FDTD method. |
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Fig.4. H, near field sphere data, offset E-plane cut.

ph|

. o Fig.6. | H-¥plane blstatlc RCS of a sphere.
PERFECTLY CONDUCTING SPHERE - o - '

Brumng [15] [16] Our data comparrsons are made to the gener-

o ahzed multipole technrque (GMT) as reported by Ludwig [17]
~ The first geometry presented is a system of two koa =
_ spheres whose centers are separated by two wavelengths The
- CFDTD cell resolutlon 15 1/20 wavelength Fig. 7 displays the
- _ 2§ - E-plane bistatic RCS of two spheres sub]ected to illumination
8 00 CFDTD METHOD e 00 4 along the axis defined by the spheres’ centers. The angle ¢ = 0°
h SERIES SOLUTION - ' ' 1S the backscatter dlrectlon The CFDTD method agrees well
- FDTDMETHOD & a a ‘with the GMT. The RCS data shown here has over 40 dB of

dynamlc range Wthh compares favorably with previous FDTD
~ results for a large T-shaped plate [1]. This ﬁgure also shows the
relatively poor results obtained from modeling the two spheres
with the traditional FDTD method. Fig. 8 shows the E-plane
~ bistatic RCS of two spheres subjected to illumination 45° off the
‘axis defined by the spheres’ centers. The angle ¢ = 45° is the
‘backscatter direction. Note the CFDTD method’s ability to

. follow the comphcated pattern of peaks and nulls. .
~ The next geometry presented is a system of two koa = =
_ spheres whose centers are separated by 1.25 wavelengths The
- CFDTD cell resolutlon is 1/20 wavelength. Fig. 9 shows the

N o0 - e Y OOF 3900 18000 E-plane b1stat1c RCS of two spheres subjected to illumination at

10.00

- E—plane RCS (sq.m.)

h _ * 45° off the axis deﬁned by the spheres’ centers. The backscatter

__ p ' S dlrectlon is 45°. The CFDTD method : agrees well with the GMT.

_ __ ~ This figure also illustrates the relatively poor results obtained
Flg 5 E plane blStatIC RCS Of, i Sphere o - from modelmg W1th the tradltronal FDTD method '

V COMPUTER RESOURCE COMPARISONS '

B. Double Sphere
oubie JP ere The time step requirements for the FDTD code and the

_  The next examples are systems of two spheres Two decades CFDTD code depend upon the data desired from the algorithm,
_ ago scattering from multiple spheres was investigated by i.e., transient or steady state data, and the maximum linear
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Fig. 7. Bistatic RCS of a system of two spheres, 2.0 wavelength center-to-center separation, axial incidence.
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Fig. 8. Bistatic RCS of a system of two spheres, 2.0 wavelength center-to-center separation, 45° incidence. .
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Fig. 9. Bistatic RCS of a system of two Spheres 1. 25 wavelength
center-to-center separatlon 45° incidence.

dimension, L, of the scattermg system The computer memory
demands of the traditional FDTD code scale with the volume L3
of the computatlonal lattice. Since the CFDTD code is only

- employed at media interfaces, the memory requ1rements for the

nonrectangular contours scale with scatterer surface ‘area.
Therefore as the - scattermg system becomes electr1cally large

the Increase 1in cost of obtaining a solution using the CFDTD nol 'T.G. Jurgens and F. A, Harfoush, “Conformal FDTD modelling of

method over using the FDTD method diminishes as 1 /L
~ The number of field components (which is pr0portrona1 to

as compared to FDTD computation. CFDTD run time 1ncreased
by 3.9% over FDTD. These quantities are derived from model-

ing a single sphere in a 40 X 40 X 40 latt1ce and two spheres In
a2 40 X 40 X 80 lattice. - .

Mesh generauon for the CFDTD method is more d1fﬁcult

than the FDTD method. Contour side lengths and areas as ‘well

as field apprommatlons need to be considered. Experlence with a
‘primitive two- d1mens1onal mesh generator indicates that the

CFDTD mesh generatlon t1me 1S double that of trad1t1onal
FDTD mesh generat1on ~ - - :

- VL CONCLUSION

~ This paper 1ntroduced a generahzauon of the 3-D FDTD _‘
method, the 3-D contour FDTD method. Examples of CFDTD

modeling of 3-D electromagnetlc wave scattering were pre-
sented. The CFDTD method provided increased accuracy over

the FDTD method when modehng the 1llum1nat1on of bod1es -

—phi
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with curved surfaces. The computer resources needs of the
CFDTD method were shown to be negligibly greater than for
‘the FDTD method '
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