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Direct time integration of Maxwell’s equations in
two-dimensional dielectric waveguides for propagation
and scattering of femtosecond electromagnetic solitons
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We present what are to our knowledge first-time calculations from vector nonlinear Maxwell’s equations of
femtosecond soliton propagation and scattering, including carrier wavééj in two-dimensional dielectric waveguides.
The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and
- the nonlinear convolution accounts for two quantum effects, the Kerr and Raman interactions. By retaining the
optical carrier, the new method solves for fundamental quantities—optical electric and magnetic fields in space

and time—rather than a nonphysical envelope function.

It has the potential to provide an unprecedented two-

and three-dimensional modeling capability for millimeter-scale integrated-optical circuits with submicrometer

engineered inhomogeneities.

Experimentalists have produced all-optical switches
capable of 100-fs responses.! To model such switches
adequately, nonlinear effects in optical materials?

(both instantaneous and dispersive) must be included.

In principle, the behavior of electromagnetic fields

in nonlinear dielectrics can be determined by solv-
ing Maxwell’s equations subject to the assumption
that the electric polarization has a nonlinear rela-
tion to the electric field. However, until our pre-
vious research,’* the resulting nonlinear Maxwell’s
equations have not been solved directly. Rather,
approximations have been made that result in a
class of generalized nonlinear Schrédinger equations
(GNLSE’s) that solve only for the envelope of the
optical pulses.’ .

Two-dimensional (2-D) and three-dimensional (3-D)
engineered inhomogeneities in nonlinear optical cir-
cuits will probably be at distance scales on the order
of 0.1-10 optical wavelengths, and all assumptions
regarding slowly varying parameters (which run
throughout GNLSE theory) will be unjustified. For
such devices, optical-wave scattering and diffraction
effects relevant to integrated all-optical switches will
be difficult or impossible to obtain with GNLSE,
because its formulation discards the optical carrier.
The only way to model such devices is to retain the
optical carrier and solve Maxwell’s vector-field equa-
tions for the material geometry of interest, rigorously
enforcing the vector-field boundary conditions and
the physics of nonlinear dispersion.

In this Letter we describe what are to our
knowledge first-time solutions of 2-D vector nonlinear
Maxwell’s equations for material media with linear
and nonlinear instantaneous and Lorentz-dispersive
effects in the electric polarization. We use the finite-
difference time-domain (FD-TD) method in an exten-
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sion of our previous research in one dimension.>*
The optical carrier is retained in this approach.
The fundamental innovation is the treatment of
the linear and nonlinear convolution integrals that
describe the dispersion as new dependent variables.
By differentiating these convolutions in the time
domain, an equivalent system of coupled, nonlinear,
second-order ordinary differential equations (ODE’s)
is derived. These equations together with Maxwell’s
equations form the system that is solved to determine
the electromagnetic fields in nonlinear dispersive
media. Backstorage in time is limited to only that
needed by the time-integration algorithm for the
ODE’s (two time steps) rather than that needed to
store the time history of the kernel functions of the
convolutions. Thus, a 2-D nonlinear optics model
from Maxwell’s equations is now feasible.

Now we present the theoretical development. Con-
sider a 2-D transverse-magnetic problem. Maxwell’s
equations for the electric- and magnetic-field intensi-
ties, E,, H,, and H,, are given by
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We allow for dielectric nonlinearity by assuming that
the electric polarization, P,, consists of the sum of a
linear part, P,“, and a nonlinear part, P,"~.° Then

“we have

D, = eye L, + P,, P,=Ptf+ P ", (2)

where P,- is given by a convolution of E,(x,y,t) and
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the Lorentz susceptibility function, y@:
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Here w,? = w,?(e; — €.) and vy* = wy® — 6°/4. Fur-

ther, we assume a dispersive (memory-type) material
nonlinearity? characterized by the followmg time con-
volution for PNt

PN (x,y,t) = eoxPE.(x,y,1) f gt — t)E (x,y,t)dt,
(4)

where y® is the nonlinear coefficient and [~ g(¢)dt =
1. Equation (4) accounts for phonon interactions and
nonresonant electronic effects, as given by

gt) = ad(t) + (1 — a)gr(®),
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gr(t) =

T1T2

Here 6(¢) is the instantaneous delta function that
models Kerr nonresonant virtual electronic transi-
tions on the order of ~1 fs or less, and gr(¢) models
transient Raman scattering.

We now describe the system of coupled nonlinear
ODE’s that governs the time evolution of the polariza-
tion. Assuming zero values of the electromagnetic
field and the kernel functions for ¢ < 0, define the
functions F(¢) and G(¢) as the convolutions
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Then, By time differentiating F' and G, these functions
satisfy the following coupled system:
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where 3 = 2/7, and @y = (1/71)? + (1/m)%. Equa-

tions (7) and (8) are first solved simultaneously for
F and G at the latest time step by using a second-
order accurate finite-difference scheme that operates
on data for the current value of D, and previous
values of D,, E,, F, and G. Then, the latest value
of E, can be obtained by a Newton’s iteration, using
the new values for D,, F, and G-

/‘ 7 - D,—F—-(1-a)y®E,G

€l €. + axy®FE,2?] )

"The system of Egs. (7)—(9) determines values of

E. and P, so that Eq. (2) is satisfied. This proce-
dure, combined with the usual FD-TD realization
of Maxwell’s equations [Egs. (1)], comprises the
complete solution method. The FD-TD algorithm
used here is a generalization to two dimensions of
that in Ref. 4.

The modeling capabilities of this new algorithm
are demonstrated by 2-D calculations of propagating
and colliding solitons. The calculations are for a
propagating pulse with a carrier frequency of 1.37 X
10 Hz (A = 2.19 um) and a hyperbolic-secant enve-
lope with a characteristic time constant of 14.6 fs.
The computational domain for the 2-D dielectric
waveguide is 110 um X 5 pum, with the dielectric
waveguide itself 1 um thick and with 2 um of
air on either side. The first calculation simulates
Lorentz-medium linear dispersion alone [Eq. (3)].
As Fig. 1 shows, the pulse undergoes predlcted pulse
lengthening owing to dispersive effects.”

The second calculation simulates the effects of the

full linear [Eq. (3)] and nonlinear [Eqgs. (4) and (5)]

Fig. 1.

Electric field of a propagating optical carrier pulse with initial hyperbolic-secant envelope (A =

2.19 pym, 7 =

14.6 fs) in a 1-pum-thick linear Lorentz-medium dielectric waveguide.
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Fig. 2. Electric field of an optical soliton carrier pulse corresponding to that in Fig. 1, including quantum effects

such as the Kerr and Raman interactions.

Fig. 3. Electric field of colliding counterpropagating solitons corresponding to that in Fig. 2 (approaching, destructively

interfering, constructively interfering, separating).

polarizations. As shown in Fig. 2, the propagating
pulse now has the features of a soliton with the
retention of its length. In addition, detailed plots
show that a second low-amplitude, high-frequency,
daughter pulse forms and moves out ahead of the
soliton.

The third calculation (Fig. 3) simulates the col-
lision of two equal-amplitude counterpropagating
solitons. The results show the solitons interacting
during the collisions and then separating with-
out general changes. However, by comparing the
carriers of the collided solitons with those of the
noncollided solitons, precise carrier-phase lags of
the collided solitons are measured.

The novel approach discussed here achieves robust-
ness by rigorously enforcing the vector-field boundary
conditions at all interfaces of dissimilar media in
the time scale of the optical carrier, regardless of
whether the media are dispersive or nonlinear. As
a result, the new approach is almost completely gen-
eral. It assumes nothing about (1) the homogeneity
or isotropy of the optical medium, (2) the magnitude
of the nonlinearity, (3) the nature of the material’s
w—LF variation, and (4) the shape, duration, and
vector nature of the optical pulse(s). By retaining
the optical carrier, the new method solves for funda-

mental quantities—the optical electric and magnetic
fields in space and time—rather than a nonphysical
envelope function. It has the potential to provide
an unprecedented 2-D and 3-D modeling capability
for millimeter-scale integrated optical circuits with
submicrometer engineered inhomogeneities.
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