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Computatlonal Modehng of Femtosecond Optlcal

Solitons from Maxwell’s Equations

Peter M. Goorjian, Member, IEEE, Allen Taﬂove, Fellow, IEEE, Rose M. Joseph, and Susan C. Hagness

Abstract—A new algorithm has been developed that permits,
for the first time, the direct time integration of the full-vector
nonlinear Maxwell’s equations. This new capability permits the
modeling of linear and nonlinear, instantaneous and dispersive

effects in the electric polarization in material media. The mod-

eling of the optical carrier is retained in this approach. The
fundamental innovation of the present approach is to notice that

it is possible to treat the linear and nonlinear convolution in-

tegrals, which describe the dispersion, as new dependent vari-

ables. Using this observation, a coupled system of nonlinear

second-order ordinary differential equations can be derived for
the linear and nonlinear convolution integrals, by differentiat-
ing them in the time domain. These equations, together with
Maxwell’s equations form the system that is solved to deter-
mine the electromagnetic fields in nonlinear dispersive media.

Using this algorithm, results are presented of first-time calcu- '

lations in one dimension of the propagation and collision of
femtosecond electromagnetic solitons that retain the optical

carrier. The nonlinear modeling takes into account such quan-

tum effects as the Kerr and Raman interactions. The present

optical soliton propagation, scattering, and switching directly

geneities.

I. INTRODUCTION

tial activity in solving the linear Maxwell equations by
finite-difference methods in the time domain (FD-TD), for
applications to aeronautics, electronics, and biology [1],

[2]. During the 1980’s, the primary interest in Maxwell’s
equations solvers of all types centered on defense appli-

cations, primarily the prediction and mitigation of radar
cross section (RCS). Grid-based Maxwell’s solvers, im-

plemented on supercomputers, are rapidly becoming this

country’s primary means of modeling the RCS of ad-

vanced aerospace vehicles [2]. The FD-TD method im-
plements the spatial derivatives of the curl operators in
Maxwell’s equations by using finite differences on a reg-
ular Cartesian space mesh, and employs a simple leapfrog
time integration scheme.
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“tromagnetic field and energy transport with the physics of

approach is robust and should permit modeling 2-D and 3-D

from the full-vector nonlinear Maxwell’s equations for inte-
grated optical structures havmg complex engmeered mhomo-f

N computatlonal electromagnetics, there is a substan-

Now, in the 1990’s, initial efforts are being made to
use the Maxwell’s equations to explore the physics of de-

vices having substantial commercial applications, espe-
- cially ultrahigh-speed electronic, electrooptic, and all-op-
‘tical devices, which are useful in the construction of

advanced digital signal processors and computers. To
date, these investigations are being conducted almost ex-
clusively by using the FD-TD algorithm, which permits a
means of combining the physics of the Maxwellian elec-

electronic charge transport and volume-averaged quantum
effects. Applications include modeling high-data-rate pas-
sive interconnects for digital circuits [3], actlve electronic
devices [4] and all-optical devices [5].

However, these efforts use the linear Maxwell’s equa-
tions. To adequately model optical switches, nonlinear ef-

- fects 1n dielectric materials [6], [7] both instantaneous and

dispersive, must be included. Experimental researchers
have produced switches [6] capable of switching short

- (100 fs) optical pulses in nonlinear directional couplers.

Also nonlinear responses in dielectric materials are im-
portant in the generation of very short, intense, fast rise-
time pulses. Such pulses are important in ultrawideband

(UWB) technology [8] in aeronautics. These pulses have

very high peak power and a frequency spectrum that ex-

tends from near-direct current to several gigahertz.

The nonlinear behavior of electromagnetic fields 1n ma-
terials i1s determined by solving the nonlinear Maxwell’s
equations. The equations become nonlinear because the
electric polarization is now determined by a nonlinear re-
lation to the electric field intensity. Up to now, these non-
linear Maxwell’s equations have not been solved exactly.
Rather, various approximations to the governing equa-
tions have been made. The least approximate methods
solve nonlinear scalar equations for the slowly varying
envelope of the optical pulses. This class of equations,
known as the generalized nonlinear Schrodinger equations
(GNLSE) [9], [10] has been solved by the split-step Fou-
rier method [10] and by the Propagating beam method [11]
(PBM). For example, the split-step Fourier method [10]
is often used to simulate the propagation of optical pulses
in low-loss fibers over very long optical distances, and the
propagating beam method [11] has been used to model
directional couplers.

However certain effects are neglected when Maxwell’s
equations are approximated by the GNLSE, including
scattering and diffraction effects, and short pulse eftects
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in the 10 fs regime. For example, optical wave scattering
and diffraction effects relevant to all-optical switches in-
tegrated in microchip form will be difficult or impossible

‘to obtain with GNLSE because its formulation discards
the optical carrier. Engineered inhomogeneities in nonlin-

ear optical circuits should be fairly complicated. Very

likely, these inhomogeneities will be at short distance
scales in the order of 0.1-10 optical wavelengths, and all
assumptions regarding slowly varying parameters (which
run throughout GNLSE theory) will be unjustified. In fact,

- matenal 1nhomogenemes such as crossing optlcal paths
‘critically affect optical pulse scattenng even in the ab-
sence of nonlinearities. There is no preferred direction of

scattering for general inhomogeneities, and the primary

scattering physics occurs at the optical carrier time scale
with the enforcement of vector electromagnetic field
boundary conditions at all material interfaces. The only
~ way to model this situation is to set up and solve Max-
well’s vector-field equations for the material geometry of
interest, rigorously enforcing the vector-field boundary
conditions and the physics of nonlinear dispersion.

In this paper, a new approach will be presented for
solving the nonlinear Maxwell equations. The nonlinear
relation between the polarization and the electric field will
be modeled by a nonlinear convolution relation [7]. This

system of equations will be solved exactly, using finite-

difference methods in the time domain (FD-TD). Wave

scattering and diffraction effects that are not accounted for

in the GNLSE approach are included here. Also, unlike

the split-step Fourier method, the effects of nonlinearity

and dispersion are not treated separately in this approach.
The inclusion of some of the nonlinear terms in the al-
gorithm for Maxwell’s equations employs techniques that

ment of the nonlinear convolution integral has required

[13].

propagation and scattering of optical pulses, including so-
litons, in inhomogeneous nonlinear dispersive media. The

modeling of the pulses will include the optical carrier.

 The study of solitons [9], [16] is of fundamental 1MpoTr-

linear partial differential equations have been found to

have solitons or soliton-like solutions mathematically.

‘Solitons are a fundamental feature of nonlinear equations
in a manner similar to Fourier modes for linear equations.

During the past two decades [17] the study of solitons has

become a fundamental part of many different areas of

nonlinear science, including optics, plasma waves, mo-
lecular biology, nerve conduction, nucleic acids, quan-
tum gauge fields, and cosmology. For nonlinear optics,

this approach has the potential to provide a modeling ca-
pability for millimeter-scale integrated optical circuits be-
‘yond that of existing techmques using the generalized

- nonlinear Schrodinger equation.

were developed in computational fluid dynamics for the
solution of nonlinear equations [12]. However, the treat-

the development of a new computatlonal technique [13]-

This approach wﬂl prov1de direct solutions to Max-
well’s vector-field equations suitable for modeling the

tance. Approximately one hundred different types of non-
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In Section II and III, the new formulation of the gov-
erning differential equations and the new finite-difference
equations will be given, respectively. In Section IV, re-

“sults of the calculations of propagatmg and colliding so-

litons will be presented. Finally, in Section V, concluding
remarks will be given.

II. GOVERNING EQUATIONS

~ An efficient FD-TD numerical approach has been de-
veloped [5] for the direct time integration of Maxwell’s
equations to model linear media having arbitrary-order
chromatic dispersions. This approach was based upon a
suggestion by Jackson [18] to relate D(x, ) the electric

~ field displacement, to E (X, ?), the electric field intensity,

~ via an ordinary differential equation in time. That equa-
~ tion is integrated concurrently with the Maxwell’s equa-
tions. The differential equation that relates D(x t) to
E (x, t) is derived by taking the inverse Fourier transform

of the complex permittivity relation, e(w) = D (X, ) /
E (X, w). Using that approach, initial calculations were

made of femtosecond pulse propagation and scattering 1n-

- teractions for a Lorentz medium by a direct time integra-

tion of Maxwell’s equations. The computed reflection
coefficients [5] were accurate to better than 6 parts in
10 000 over the frequency range dc to 3 X 10'° Hz for a
single 0.2 fs Gaussian pulse incident upon a Lorentz half
space, and new results were obtained for the Sommerfeld
and Brillouin precursors, agreeing very well with pre-

vious published Laplace transform theory.
In this paper, we report a generahzatlon of the above

approach to deal with the nonlinear terms of the electric
polarization. The FD-TD direct time integration of Max-

‘'well’s equations can now incorporate nonlinear instanta-
neous and dispersive effects as well as linear instanta-

neous and dispersive effects, thereby permitting the

modeling of optical solitons having very large instanta-

neous bandwidths.
~ As in [S5], again consider a one-dlmensmnal problem

with electric and magnetic field intensities, E, and H,, re-
spectively, propagating in the x direction. Assuming that

- the medium i1s nonpermeable and 1sotropic, Maxwell’

equatlons 1n one dimension are written as

duoH, GE )
o  ox
aDZ — ?_I.{Z ' I (2)
ot ox
D, = e E, + P, ‘ (3)

Here py and ¢y are the permeability and permittivity coet-
ficients for free space, €, is the relative material permit-
tivity at infinite frequency, D, is the electric field dis-

placement, and P, is the electric polarization.

Assume that the polarization P, consists [10] of two
parts: a linear part P> and a nonlmear part il

P, = PL 4+ PN @
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The linear polanzatlon P;is glven by a linear convolution

of E,(x, f) and the ﬁrst-order susceptibility functlon -

n OO

P, 1) = & S X - DEG, ) i (5

— 0o

and P)" is given by a nonlinear convolution of E(x, 1t
evolving the electric polarization in time by solving a sys-

and the third-order susceptibility function, x(3)

CPY(x, D) ' .
<L L L

(3)(t — -t- [ — ;2, I' """";3,)
E(x, h)E(x, B)E/x, t3) dt, Cft Cﬁ:&

~ (6)

This last integral models the physws of a nonlmeanty with

retardation or memory, i.e., a dispersive nonlinearity that
can occur due to quantum effects in silica at time scales
‘of 1 to 100 fs. Note that x ¥ may differ from x" in phys-

ical properties such as resonances and dampings.

We consider a material having a Lorentz linear dtsper-
sion charactenzed [18] by the followmg x:

_ wz .
x“)(t) = (—-—) exp (-6t / 2) sin (vot). - (7)

\ ¥,

The correspondmg linear perm1tt1v1ty as a functton of fre- '

- quency is

_ . _ 2,
6(0-’) = €4 t X(l)(w) = € T ..2(00(63________.5932__

- wo""‘jﬁw“w
p = wO(ES o Em) and VO = w(2) — 62/4

where w? : _
Further, the matenal nonlmeanty is assumed to be

characterized [7] by the followmg nonlinear smgle tlme

convolution for p-

PQ’L(x, f) = eomez(x, f) S gt — DEIx, 1) dt  (9)

‘where x® is the nonlinear coefficient. The causal re-
sponse function g(z — t) is normalized so that '

(10)

S g() dt = 1.

Equation (9) only accounts for nonresonant third-order
processes. the processes considered in (9) are phonon in-
teractions and nonresonant electronic effects. The mod-
eling [7] of those responses 1s given by the third-order
response function g(#), where -

g(t) = ad(®) + (1 — a)gr(t)
and ' '

gR(t) = (Tl + 72) CXp ( t/Tz) Sln (t/Tl) (12) |

- 7172

In (11), &(¢) is the instantaneous delta function response
and models Kerr nonresonant virtual electronic transitions
in the order of about 1 fs or less. The function gz(7) models
transient Raman scattering and o parameterizes the rela-
tive strengths of the Kerr and Raman interactions. Effec-

convolution integral, also satisfies a linear second-order
- ordinary differential equation. The fundamental innova-

s (8)

“an
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tively, gg(t) models a single Lorentzian line centered on
the optical phonon frequency 1/7, and having a band-
width of 1/7, (the reciprocal phonon lifetime). See [7]

~ for a more detailed explanation of the modeling of the

nonlinear optical fiber. -
We will now describe a solution procedure [15] for

tem of coupled nonlinear ordinary differential equations.
Equations (4) through (12) describe the electric polariza-
tion in the nonlinear medium. Those equations together
with (1) to (3) will provide a system of equations for
evolving the electromagnetic field in nonlinear media. The
procedure will be a generalization of the approach that
was used in [5]. However that approach used the complex
permittivity relation in the frequency domain to obtain an
ordinary differential equation that related E, to D,. Such
an approach is not applicable to nonlinear polartzatlons

- Nevertheless, the same ordinary differential equation can

be derived by an alternative approach, which is to start in
the time domain with (3) and differentiate it. The key
property that is used in that derivation is the fact that the
kernel function x'"(¢), as given by (7), satisfies a linear
second-order ordinary differential equation. Note that the
kernel function gg(¢) as given by (12) for the nonlinear

tion of the present approach is to notice that those prop-
erties make it possible to treat the linear and nonlinear
convolution integrals as new dependent variables. Using
this observation, a coupled system of nonlinear second-
order ordinary differential equations can be derived for

- the linear and nonlinear convolution mtegrals by differ-

entiating them in the time domain.

"Those equatlons determine the polarization P, by using
(4) Since those equations are second-order ordmary dif-

- ferential equations, a solution procedure only requires two

time levels of storage for each equation. By comparison,
a direct evaluation of the convolution integrals in (4)
would require the storage of the electromagnetic fields
from an initial time to the current time and an evaluation

of the integrals at each time level. As the following cal-

culations will show, typical calculations require several
tens of thousands of time levels of evolution. Hence the
present method is more efficient both in storage and in
operation count than a direct method. For a 2-D or 3-D
full-vector nonlinear optics model, this improvement re-
duces the computer memory required for a first-principles
computation from an impossible level of 100-1000
Gwords to a presently feasible level of 0.1-1 Gword.

- We will now describe the differential equattons that
govern the evolution of the polarization, as given by (4)
to (12). Assuming zero values of the electromagnetic field
and the kernel functions for t < 0, define the functions
F(t) and G(?) as respectlvely the linear and nonlinear con-
volutions:

- F@® = ¢ S

(13)
/O '

Xt — DE/x, 1) dt
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G(1) = € So grt — DEZ(x, 1) dt.

Then, by differentiating F and G, we have found that they
- satisfy the following coupled system of nonllnear Ol‘dl-
nary differential equations: '

_}__‘135+-§-§f+ | 4 —s = )F ”
wg dt*  wd dt _ 4s¢_.,,=,+c)f)(("”l'l'2 _

. ((es — €x)(l — a)x‘”Ez) -
€ T ameg _

(6 T eoo) '
—0av3 | D,
(Eoo + ax OF 2)

) "= (em + ax‘3’52) %
- o (16)

~where § = 2/71, and g = (1/7,)* + (1/72) Equatlon
(15) and (16) are first solved simultaneously for F and G
at the latest time step by using a second-order accurate

finite-difference scheme that operates on data for the cur-

“rent value of D, and previous values of D,, E,, F, and G.
Only two time levels of storage are requlred W1th this ap-
proach. Then, the latest value of E, can be obtained via a

Newton’s iteration of the followmg equatlon usmg the .

new values of D,, F, and G: _ _
- D,-F-(1 - a)x(3’EG '

E =
¢ _ tso(em + ox OF 2)

This algorlthm as g1ven by the system (15) to (17), de-
termines values of E, and P, so that (3) is satisfied. This

procedure, combmed with the usual FD-TD realization
[19] of (1) and (2), compnses the complete solution
method ' '

"III. ALGORITHM

In this sectton the finite-difference equatlons [20] will
be described that are used to solve Maxwell’s equations,

(1) and (2), as well as the equations that account for the

nonlinear and dispersive effects contained in the polariza-

tion, (15), (16), and (17). Let a region in space-time,
x-t, (one-dimensional), contain a lattice of points with co-

ordinates (i, n) for D,(x, ) and E,(x, t) and i + (1/2, n

+ (1/2) for H

H,(x, t). This computational grid will be used

“to implement the standard leapfrog algorithm [19], known

as the FD-TD method.
Using the FD-TD approach the ﬁmte—dlﬂ'crence equa-—
“tions for (1) and (2) are glven rcspectlvely, by

id

(15)

~of D?*! and the previous values of Dz, E,, F, and G. Note

o (F
wi \

(17

(18)
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(19)

‘These explicit equations are used in the solution proce-

dure as follows. First (18) is used to determine H7*(/?

from the previous values E; and H, n=(1/2) Then (19) 1S
used to determine D?*' from the previous values

H2* /2 and D?. .
cht (15) and (16) are used to determme the values of

~ the linear and nonlinear convolution integrals, F"*" and
G"*! at the new time level n + 1, using the new value

that thc form of the coupling in (15) and (16) results in a
finite discretization in which there is strong diagonal dom-
inance in the resulting matrices. This feature 1s essential
for a stable algorithm. A second-order accurate finite-dif-
ference scheme for the coupled (15) and (167 1S given by ‘
‘the following.

"“(z) — 2F"(t) + F"~ l(z))
_ +_( - 2At

wo

(1 N ______f__“_"__ie.-;.________)
| ew + axAE@))
| (F "tlE) + FT l(t))
. ((es — €) (1 = a)x ‘3’52(:'))
B €w + ax UEZW))
| (Gn+ l(l) + G"™ l(l))

(l)) -

} (W | (5—

1 (G"“(z) — 2G"(z) + G ‘(z))
_ _ 5 (Gn+ l(l) _ Gn l(l))
+ e —
, . Wo 2 At _
o (= a)x “’(E"(z )’
AU € + ax(3’(E (l))
N (G"“(t) + G" 1(z)) '
- 2 _ _

s ( En(l) _ ) (Fn+l(l) 4 Fn- l(l))
: e.,, + ax (3)(E ({] )) 2
- ( 0 ) ( 2@ + D (z)))
w + oaxDEE)/\ L
_ (21)
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Finally, the new values D! *', F*"*' and G" * ' are used
in (17) to determine E" *' by using an approximate New-
ton 1terat10n procedure as follows. -

Fn-l-l _ (1 _ a)x(3)EpGn+l
o€ + QX (3)(E§)2 '
p -'0 1, 2,

Here E¥ = E" for p
paper, the 1iteration process was stopped at p =

- n+1
Ep+l =DZ
<

22)

0. For the results shown in thls

termined E" !, the solution process, given by (18) to (22)
1S 1terat1vely repeated to advance the electromagnetlc ﬁeld

to successive time levels.

RESULTS

- Now results [20], [21] of the integration of Maxwell’
equations will be presented, including soliton dynamics.
A pulsed optical signal source is assumed to ze located at
x = 0 at the initial time ¢ = 0. The pulse i assumed to
have unity amplitude of its smusmdal -carrier electric field,
a carrier frequency f. = 1.37 X 10" Hz, (w. = 8.61 X

10'* rad /s), and a hyperbolic secant envelope function

with a characteristic time constant of 14.6 fs. Approxi-

pulse envelope, and the center of the pulse coincides with

a zero-crossing of the sinusoid. To achieve soliton for-
~ advancing pulse. Such observations of the carrier prop-

mation over short propagation spans of less than 200 u,
we scale values of the group velocity dispersion 3, and

the nonlinear coefficient x ). For example, let: ¢, = 5.25;
€ = 2.25; wp = 4.0 X 10‘4rad/s 6 =2.0 x 10°s7!;

x P =7 X 10"2 (V/m)""""2 a =071 = 12.2 fs; and

7, = 32 fs. (The last three values are from [7].) This re-

sults in 8, varying widely over the spectral width of the

pulse, i.e., from —7 to —75 ps®/m over the range (1.37
+ 0.2) X 10 Hz. Finally, by choosing a uniform FD-
TD space resolution of 5 nm (= \y/300), the numerical

phase velocity error is limited to about 1 part in 10°, which
is very small compared to the physical dlsperswns being

modeled. -
First a calculatlon was performed for the lmear case

(x® = 0), in Wthh only the effects of dlspersmn would
act on the pulse. As shown in [15], the results showed
significant effects of dispersion after a propagation dis-

tance of 150 um. These effects included pulse broaden-

ing, diminishing amplitude, and carrier frequency modu-
lation (> f. on the leading side, <f. on the trailing side)
which causes an asymmetrical shifting of the envelope, a
higher-order dispersive effect. These qualitative features
of the effect of anomalous dispersion have been predicted
[16], but until now have not been computed by directly
integrating Maxwell’s equations.
Fig. 1 shows the results for x? = 7 X 1072 (V/ m)"'2

The pulse is plotted at n = 2 X 10* and 4 X 10* time

steps, corresponding to propagation to x = 55 ym and 126

um. The nonlinear effects balance the linear dispersive

effects, yleldmg a rightward propagatmg soliton that re-

1, since
sufficient accuracy was obtained at that step. Havmg de-

mately 7 cycles of the carrier are contained within the

characteristics of a soliton, in [15], a plot was presented
- of the Fourier spectrums of the main pulse at the two times

to the Raman effect [7], [10] occurring as a higher-order

~ eters of the previous case. As is characteristic of colliding
solitons [22], we find that after the COlllSlOIlS both main

NO. 10, OCTOBER 1992
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Flg 1. FD TD results for the optical sohton carrier pulse after propagat-
lng 35 pm and 126 pm. -

“tains 1ts amplitude and width. Also, a second low-ampli-

tude pulse 1s seen to move out ahead of the soliton. The

carrier frequency of this ‘‘daughter’’ is upshifted to =4.9

x 10'* Hz, approximately 3.6 times that of the soliton.

Also, in both the linear and nonlinear cases, by observing
a video of the pulse evolution, it was noted that the phase

velocity of the carrier was substantially greater than the

- group velocity of the envelope. In the video, waves would
~ appear at the rear (left) side of the pulse, advance through

the pulse and disappear from the front (right) side of the

erties are readily observable in the present formulation.
To further verify that the main pulse in Fig. 1 had the

that are shown in Fig. 1. The figure showed a 4 THz red-
shift and sharpening of the spectrum as the soliton prop-
agates. From GNLSE theory, the redshift is predicted due

dispersive nonllneanty modeled by the functlon gr(®) in
(12). . , .
Last, we consider the collision of two counter-propa- '
gating solitons. Each is identical and has all of the param-

and daughter pulses separate and move apart without
changing their general appearances. Fig. 2 shows the
counter-propagating solitons at 20 000 time steps; at this

time the two main pulses are approaching each other. Fig.

3 shows them at 25 000 time steps; at this time they are

‘nonlinearly interacting. A video of the collision showed

violent changes 1n the solitons during the interaction pe-
riod, with severe increases and decreases in the amplitude
of the combined pulse due to the nonlinear interference
effects. Finally, Fig. 4 shows them at 30 000 time steps;
at this time they have passed through each other and are

separating. However, there are lagglng phase shifts due
to the collision: 12° for the carriers in the solitons, and

31° for the carriers in the daughters. (At 30 000 time
steps, the phase shift due to numerical error is approxi-
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1.25 “case and the collrded case, with both curves at exactly

30 000 time steps of the algorithm. It clearly illustrated
the phase shift of 31°. Such precise measurements of
‘phase shifts, not easily obtained by GNLSE theory, are
-readily displayed by using results from the present for-
mulation. Also if an amplification of these phase lags
could be obtained by varying the parameters in this cal-
culation, such a phase lag might form the basis for an
optical switching device.
~ For these calculations, less than 350 s of CPU time were
~ required on a Cray Y-MP8/832, which is a small amount
of time. Hence significantly larger calculations are feasi-
, . ~ ble on present-day computers. For example, the propa-
00 200 400 600 B0.0 1000 1200 1400  gation of larger pulses, such as picosecond pulses, may
. Distance (&) - be possible. The modeling of any pulse over long dis-
tances, such as meters or kilometers, may be possible by
the use of scaling on the parameters that characterize the
material. In the case considered in this article, the values
of the linear gro ? velocity dispersion 3, and the nonlin-
ear coefficient x ) were scaled to values that are orders
of magnitude larger than those that occur naturally in op-
tical fibers. By use of these scalings, the effects of linear
dispersion, nonlinear dispersion and nonlinear instanta-
- neous response took place over the short distance of 200
pm. -

0.50 -

Electric Field

Fig. 2 Counter-propagatmg solitons at 20 000 time steps.

Electric Feld

V. CONCLUDING REMARKS

Optical switching, which is based on nonlinear optical
responses, has become an intense area of research [6] fol-
lowing the advent of the laser. Currently, many materials
0 0 200 40.0 600 800 1000 1900 140.0 are being 1nvest1gated [23] for their 'nonhn_ear optrcal -
Distance (W) - properties for various applrcatrons including optical
~ switching. '
A new algorithm has been developed that permits, for
. the first time, the direct time integration of the full-vector,

1.25 ' I o ‘nonlinear Maxwell’s equations. This new capability per-

- ' i ' mits the modeling of linear and nonlinear, instantaneous
and dispersive effects in the electric polarization in ma-
terial media. The modeling of the optical carrier is re-
tained in this approach. Using this algonthm results are
presented of first-time calculations in one dimension of
the propagation and collision of femtosecond electromag-
netic solitions that retain the optical carrier. The nonlinear
modeling takes into account such quantum effects as the
Kerr and Raman interactions at drstance scales larger than
about S nm. -

The novel approach discussed here is a ﬁne-gramed di-
rect time-domain numerical solution of Maxwell’s equa-

' ' tions that rlgorously enforces the field vector boundary

00 200 400 600 80.0 1?")0 120.0 140.0 conditions at all interfaces of dissimilar media, whether

| Distance A ~ or not the media are dispersive or nonlinear. The new ap-

Fig. 4. Counter-propagating solitons at 30 000 time steps. ~ proach is almost completely general. It assumes nothing

' about 1) the homogeneity or isotropy of the optical me-

mately equal to one-third of a degree ) To 1llustrate the  dium; 2) the magnitude of the nonlinearity; 3) the nature

phase lag due to the interaction, in [15], a plot was pre-  of the material’s w — 3: or 4) the shape, duration, polar-
sented of the space dependence of the central part of the  1zation, and numbers of the optical pulse(s).

rightward-moving daughter for the orrgmal uncolhded - By retaining the optical carrier, the new method solves

' Fig. 3. Counter-propagating solitons at 25 000 time steps.
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for fundamental quantities—the optical electric and mag- _

netic fields 1n space and time—rather than a nonphysical
envelope function. The present approach is robust and
should permit modeling 2-D and 3-D boundary-value
problems involving optical soliton propagation, scatter-
ing, and switching directly from the full vector, nonlinear
- Maxwell’s equations. For nonlinear optics, this approach

has the potential to provide a modeling capability for mil-

limeter-scale mtegrated optical circuits beyond that of ex-
1sting techniques using the generalized nonlmear Schro-
dinger equation. -
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