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Abstract—The boundary value integral equation and method
of moments numerical technique is widely utilized for the study
of electromagnetic scattering by arbitrary shaped conducting
and penetrable objects. Even though this direct approach is
elegant as far as its application to analyze electrically large
object is concerned, it inherently suffers from a wide range of
computational difficulties. The method of moments system ma-
trix is, in general, full and dense, requiring impractical demand
on computer resources. In addition to operational numerical
errors and ill-conditioning involved in the solution of large scale
matrix equation, the direct numerical technique bears progres-
sive degradation of accuracy of the near-field solution as the size
of the system matrix increases. The apparent computational
difficulties with the direct integral equation and method of
moments has prompted an alternative numerical solution proce-
dure based on the spatial decomposition technique. Using rigor-
ous electromagnetic equivalence, the spatial decomposition tech-
nique virtually divides an electrically large object into a multi-
plicity of subzones. It permits the maximum size of the method
of moments system matrix that need be inverted to be strictly
limited, regardless of the electrical size of the large scattering
object being modeled. The requirement on the computer re-
sources is of order (N), where N is the number of spatial
subzones and each subzone is electrically small spanning in the
order of a few wavelengths. Numerical examples are reported
along with comparative data and relative error estimation to
expose applicability and limitation of the spatial decomposition
technique for the two-dimensional scattering study of electrically
large conducting and dielectric objects.

1. INTRODUCTION

E frequency domain analysis of electromagnetic
scattering, penetration and interaction by arbitrary
shaped conducting and dielectric objects can be conve-
niently formulated using the boundary value integro-dif-
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ferential equations. The boundary value equations, such
as the electric field, the magnetic field and the combined
field integral equations [1]-[3] have been extensively uti-
lized to model various electromagnetic interactions associ-
ated with arbitrary shaped two and three dimensional
objects. Generally, the near surface electric and magnetic
fields or the corresponding equivalent magnetic and elec-
tric current distributions are treated as unknowns in the
integral equations, and are solved by applying straight
forward method of moments numerical technique [3]-[6].
Invariably, the numerical technique based on the method
of moments converts the operator type of linear integral
equation into an equivalent matrix equation by expanding
the unknown current distributions in terms of a linearly
independent set of expansion functions and testing the
integral equation by a suitable set of weighting functions.
This direct technique appears to be an elegant means for
modeling and analyzing electromagnetic scattering and
interaction by both canonical and arbitrary shaped con-
ducting and dielectric objects. In fact, a large class of both
two- and three-dimensional problems has been studied
and reported extensively in the literature [3], [6]-[9]. How-
ever, there are key limitations and relative error estima-
tions which render the direct integral equation and method
moments technique unattractive beyond low and resonant
frequencies.

The direct integral equation and method of moments
technique generate a system of linear equations having
dense, complex valued, full coefficient matrices. For a
conventional matrix approach, the required computer
storage is of the order O(P?) + C,P where P is the
number of surface patches and C, is a constant which
depends upon the scatterer geometry and desired display
of the numerical solution. Similarly, the execution time is
of the order of O(P?) + C,P to O(P*) + C,P, where C,
and C, are constants which depend upon numerical model
adapted to generate the system matrix, and further, solve
for the unknown surface currents. With a spatial resolu-
tion requirement in the order of A/5-A/10 to avoid
aliasing of vital near-field magnitude and phase informa-
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tion implies that arbitrary three-dimensional structures
spanning more than 5A would exhaust most existing and
planned mainframe computer resources [7], [10]. The di-
mensionally large computer resource requirement has, in
fact, served to place such a “cap” on problem applica-
tions.

The large system matrix (of electrically large object)
generated by the direct integral equation and method of
moments numerical technique tends to become highly
ill-conditioned. This potentially degrades the accuracy of
the computed results [11]. The accuracy of the numerical
solution may also be due to floating point word-length
used in the computer and numerical procedure used for
computing individual elements and inversion of the sys-
tem matrix. Accumulating errors of these types can be
troublesome, especially when hundreds of millions of ma-
trix elements/floating point operations are involved in
one modeling problem.

The computational difficulties with the direct integral
equation and method of moments solution technique have
prompted a number of alternative approaches, such as
combining the method of moments and a high frequency
technique to obtain a hybrid formulation {12], [13] and
also its related iterative variations {14], [15]. In addition,
iterative matrix solution methods including conjugate gra-
dient, spectral iterative approaches [16], [17] have been
investigated as tools to study electrically large scattering
problems. It is not yet clear that the hybrid and iterative
approaches proposed to date for electrically large objects
possess the broad applicability and excellent accuracy that
the full matrix method of moments approach evidences
for the case of electrically small objects.

This paper presents preliminary findings of a novel
methodology, which has been reported recently [3], [18],
[19], [26], specifically referred to as the spatial decomposi-
tion technique (SDT) for the integral equation and method
of moments that shows promise in significantly reducing
both the dimensionality and ill-conditioning of the compu-
tational burden. In fact, the spatial decomposition permits
the maximum size of the method of moments system
matrix that need be inverted to be strictly limited, regard-
less of the electrical size of the electromagnetic scattering
target being modeled. Using rigorous electromagnetic
equivalences [20], the spatial decomposition technique
allows one to divide an electrically large arbitrary shaped
material object into a multiplicity of subzones. The indi-
vidual subzones, in fact, are separated by virtual surfaces
across which cancelling tangential electric and magnetic
virtual currents are postulated. The subzones are defined
as distinct scattering targets having fully enclosing sur-
faces with additional unknown virtual electric and mag-
netic currents introduced as needed to define the inter-
faces. The electromagnetic field boundary conditions are
well preserved by simulating across the interface separat-
ing two subzones by requiring that the tangential virtual
currents on one side of the interface must be equal but
opposite to the tangential virtual currents on the other
side. By sequentially implementing the integral equation
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and method of moments solution for each subzone, effec-
tively “scanning” the original target subzone by subzone, a
rapidly convergent iterative process is established.

This paper reports a preliminary study of the spatial
decomposition technique to analyze electromagnetic scat-
tering by arbitrary shaped electrically large two-dimen-
sional perfectly conducting and dielectric scatterers. Nu-
merical results of the near surface currents and radar
cross section along with comparative validation data and
relative error estimation based on matrix condition num-
ber {21}, [22] are reported in this paper to expose applica-
bility and limitation of the SDT for electromagnetic scat-
tering by an electrically large perfectly conducting thin
strip scatterer, perfectly conducting rectangular and wedge
type scatterers and homogeneous dielectric rectangular
scatterer.

I1. SPATIAL DECOMPOSITION TECHNIQUE

Fig. 1 illustrates an arbitrary shaped two-dimensional
isotropic homogeneous dielectric scattering object. It is
excited externally by a transverse magnetic (TM) polar-
ized plane wave propagating in a direction normal to the
z-coordinate axis. As shown in Fig. 1, axially directed
equivalent electric currents J,( p') and transverse directed
equivalent magnetic currents M,(p’) reside on a virtual
boundary conforming to the physical surface of dielectric
scatterer. This scattering object, in fact, is appropriate for
formulating a set of coupled combined field integral equa-
tions (CFIE) by invoking the electromagnetic equivalence
principle [2], [7], [20] and by treating the two surface
electric and magnetic currents as initially unknown distri-
butions. Further, the method of moments numerical tech-
nique can be implemented (for the scatterer taken as a
whole) to solve for the two unknown surface currents as
discussed in [3], [6], [9]. There exist only the following
components of electric and magnetic field distributions:

E,(p, )2 total axial component of electric field distri-
bution

total normal component of magnetic field
distribution

total tangential component of magnetic field

distribution.

H,(p, p)¥

H(p, ¢)8

Referring to Fig. 1,

To(P) =2'7,(5") (1a)
— 5" X§H(p',¢"), ponC (Ib)
M (') =§'M,(5") (22)
= —p' X2E(p',¢"), P onC. (2b)

For the TM normal excitation, based on the above
components of unknown electric and magnetic current
distributions, the z-component of scattered electric field
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Fig. 1. Geometry of homogeneous, lossy, dielectric scatterer.

and 7-component of scattered magnetic field are obtained
by

1.
©) =2V, X —F,(p, )
(3a)

+ES (p) = —2-jwd,(p,

- J
+H, (p) = —%jok,(p,w) — g‘l'm( p, @)

1 _
+5-V. x —A4,(p,0) (3b)
o
where on the left-hand side, the positive sign is selected
for the region (m = 1) outside the dielectric scatterer
with p on or outside the boundary contour C, and the
negative sign is selected for the region (m = 2) inside the
dielectric scatterer with p on or inside the boundary
contour C. The vector and scalar potential integrals in
(3a) and (3b) are given

2,(5) = 55 [ 215V HE (knl 5~ 5)AL(F) (42
Fu(B) = 5 [ M3V HP (knl 5~ )L 5') (40)
\Ifm(ﬁ)=4w 1% -5 M(30]

- HP(kplp — B)dL( P,

for m = 1, p on or outside C (free space medium)
for m = 2, p on or inside C (dielectric medium) (4c)

and

H(knl 5 = ')
Green’s function for the two-dimensional case—
Hankel function of zero-order and second kind
k,: propagation constant for m = 1 and m = 2 regions

= Oyl €,y - ' (4d)

The complete derivation of the coupled combined field
integral equations can be found in [2], [3], [7], [6], and [9]
by invoking the electromagnetic equivalences for regions
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1 and 2, and the boundary conditions that the tangential
components of total electric and magnetic fields are con-
tinuous across the boundary C. Only a summary of the
relevant CFIE expressions which are useful for develop-
ment of the spatial decomposition technique are given
below

2
Ei(p) = ¥ Z’1J.(p)]
m=1

2

+ LM (0], ponC (52)
2
Hi(p) = ¥ %" [1.(p))]
m=1
2
+ X Z™MIM(p)], ponC (5b)

m=1

where the CFIE partial integral operators [3], [6], [9] for
the two-dimensional case are

w - [[Hmapepla (6
cl 4

’

X —X
-7,,{M=](C{ R cos {}' +

Y sin O.’}

kn
-[TH(S” (ka)}dL' (6b)
j

1 ’

_ cos () + y-y sin().}

M = fc {x

k
'[T;Héz)'(ka)]dL' (6¢)

>

€,
MM [ cos (Q — Q’)[hHéz)(ka)]dL’
c 4

9 dL ! HP(k, R 4 1,2
+— — — =1,2.
asfc dop,, ° (knR) o "
(6d)

In (5a) and (5b), E! represents the TM polarized axial
component of the incident plane wave electric field excita-
tion and H; represents corresponding transverse compo-
nent of the incident magnetic field excitation. In the case
of direct method of moments solution [4]-[7], the axial
electrical current J, and the transverse magnetic current
M, distributions are expanded in terms of suitable ex-
pansion functions, such as, staggered pulse expansion
functions discussed in [7]. Further, the coupled CFIE
expressions (5a) and (5b) are tested on both sides by the
weighting functions chosen to be same as the expansion
functions in order to reduce the coupled set of integral
equations to their equivalent partitioned matrix equation.
Based on the direct method of moments numerical solu-
tion, extensive numerical data for the near surface current
distributions and the radar cross section results are re-
ported in the literature [5]-[9] both for the electrically
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small and the resonant size conducting and dielectric
scattering objects. As the electrical size of the scatterer
increases, this direct solution technique puts impractical
demand on the computer resources, in addition to various
unsettled numerical accuracy and ill-conditioning prob-
lems of the large system matrix associated with the elec-
trically very large object.

In order to circumvent high demand on the computer
resources and also reduce numerical difficulties, the for-
mulation of the boundary value problem is modified still
retaining all the physics of electromagnetic scattering and
interaction as depicted schematically in Figs. 2(a) and
2(b). Fig. 2(a) represents a rectangular homogeneous di-
electric scatterer geometry with unknown surface electric
and magnetic current distributions on a virtual boundary.
An identical geometry is repeated in Fig. 2(b), but the
virtual boundary contour is modified to define (in this
case) two distinct spatial subzones. A key point to note is
that at the virtual interface separating the two subzones,
the tangential virtual currents on one side of the interface
must be equal, but opposite to the tangential virtual
currents on the other side of the interface. In fact, the
scatterer can be divided into an arbitrary number of N
distinct spatial subzones in this manner (in Fig. 2(b),
N = 2). Now, the usual combined field integral equation
and method of moments technique is used to compute the
electric and magnetic currents along the enclosing surface
of one subzone. In effect, the subzone is treated as a
distinct scatterer. It should be noted that a part of the
subzone’s surface is the virtual interface separating it
from the adjacent subzone. The excitation for this sub-
zone consists of the original incident plane wave and
additional excitation due to the electric and magnetic
currents residing on the surfaces on the remaining spatial
subzones and radiating into the free space. Initially, the
additional excitation due to the currents on the remaining
spatial subzones is not known. But, these can be conve-
niently approximated to a zeroth-order using either the
physical optics (PO) [23] or possibly a first-order better
approximation based on the on-surface radiation condi-
tion (OSRC) theory [24], [25]. Hence, for subzone 1, the
CFIE takes the form

2 2
Fi(p) = L & [1.(p)]1+ L ZMM. ()] (T2)
m=1 m=1

2 2
Gi{(p) = L L))+ L ZLMIM(P)]

m=1 m=1

for subzone 1, p on C; (7b)

J,(p") unknown electric current distribution for the
subzone 1

M, (5') unknown magnetic current distribution for the
subzone 1

where the boundary contour C; encloses completely the
spatial subzone 1. The total excitation for the spatial
subzone 1 is given by plane wave excitation and additional

m=1

\
(Co—@=—0-— EENCESCES 1

e
= C?_'©_'®#©'ﬁ©_'@
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Ty oxP .
Equivolent Surface E
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Fig. 2. (a) Distribution of equivalent electric and magnetic currents on
a virtual surface. (b) Distribution of equivalent electric and magnetic
currents on a modified virtual surface for the spatial decomposition
technique.

excitation due to the remaining spatial subzones, n =
27 3’ 4"“’N

F/(p) = E(p)
N

N
- L AN - LAY IM (5] (82)
n=2 n=2

Gi(p) = H/(p)

N N
- Z‘%M][Jzn( pr:)] - Z’glMM[M1n( ﬁr:)]’
=2 n=2

for subzone 1, and

p. on nth subzone boundary C,. (8b)

The analysis is now shifted to the next adjacent subzone.
The excitation for this subzone consists of the original
plane wave and additional excitation due to the currents
on the surfaces of the remaining subzones, including the
updated currents on the first subzone. In this manner, the
step-by-step analysis approach can be sequentially imple-
mented for rest of the subzones, effectively scanning the
original scatterer subzone by subzone, always using the
incident plane wave and the latest surface currents as the
excitation for the subzone of interest. This iterative pro-
cess appears to differ from any yet proposed in that: 1)
subzones are used rather than the complete structure at a
time, and 2) the subzones are not completely related to
individual blocks of the original full matrix problem;
rather, the subzones are defined as distinct targets having
fully enclosing boundary surfaces with additional virtual
electric and magnetic current unknowns (still maintaining
the boundary conditions) introduced as needed to define
the virtual interface consistently between the subzones.



UMASHANKAR et al.: NUMERICAL ANALYSIS OF EM SCATTERING

Thus, the SDT provides means to implement the exist-
ing integral equation and method of moments technique
with a computer memory and execution time requirement
of O(N), where N is the number of spatial subzones.
Since each subzone is electrically small, spanning few
wavelengths either in the two- or three-dimensional scat-
tering problems, it is expected that conditioning of the
method of moments system matrix resulting for each
subzone is acceptable for numerical processing with lim-
ited demand on computer resources. In the following,
several scattering case studies are presented along with
relative error estimation based on the matrix condition
number [21], [22] to expose preliminary studies of the SDT
to analyze electromagnetic scattering by two-dimensional
perfectly conducting and dielectric scatterers. Numerical
results of the surface electric current and radar cross
section data along with comparison based on the direct
Gauss—Seidel algorithm are reported in this paper for the
perfectly conducting thin strip scatterer, perfectly con-
ducting rectangular and wedge type scatterers and homo-
geneous dielectric rectangular scatterer.

I11. PERFECTLY CONDUCTING SCATTERER—TM
CASE

In order to illustrate the spatial decomposition tech-
nique, the electromagnetic scattering by a perfectly con-
ducting thin strip and a rectangular scatterer are con-
sidered. Referring to Fig. 2(a), the conductivity of the
scatterer is assumed to be infinite in a limit, and the
thickness of the rectangular geometry is reduced to zero.
For the case of TM normal excitation, there exists only an
axially directed electric current along the length of thin
strip scatterer given by the difference between the top and
bottom current distributions. Referring to (5a) and (6a),
the electric field integral equation (EFIE) for the two-di-
mensional perfectly conducting case is given by [1]-[3]

Ei(p) =#"[J.(p)], ponthinstrip (9a)
where for the TM excitation
w
ot = [| P R aL (9b)
cl 4

and the incident plane wave electric field can be written
as

E;( py d)) = Eoe*ﬂHPCos(tf)_d,l) (9C)

¢' incident angle of the TM polarized plane wave
excitation.

The distribution of the electric current on the thin strip
scatterer can be directly obtained by applying the method
of moments numerical technique [4] by using a pulse
expansion set for representing the unknown electric cur-
rent distribution, and also testing the EFIE expression
(9a) by the same pulses. Fig. 3(a) shows a plot of the
magnitude of electric current on a thin strip scatterer of
total length, L = 25A, excited at an angle of incidence
@' = 90°. This result is obtained using a full matrix of size
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(250 X 250) with a current resolution of 10 pulse samples
per wavelength. In order to apply the spatial decomposi-
tion technique, the thin strip scatterer is divided, for
example, into five subzones, N = 5. Maintaining the same
current resolution of 10 samples per wavelength, the
matrix size is now only (50 X 50) for each subzone model-
ing. Referring to (7a) and (8a), the EFIE for the first
subzone has the form

5
E((p) - L LV [1a(p)] =L [14(PN)],

n=2

p onsubzone 1. (10)

On the left-hand side of the SDT expression (10), the
total excitation for the spatial subzone 1 is given by the
plane wave excitation and additional excitation due to the
electric currents on remaining spatial subzones, n = 2, 3,
4 and 5. But, the distributions of the electric current on
the remaining subzones, n = 2, 3, 4 and 5, are not known
initially. However, they can be obtained approximately
based on either the PO [23] or the OSRC approach [24],
[25]. An approximate distribution of the electric current
on a perfectly conducting scatterer is obtained using the
normal derivative of the total electric field, and for sub-
zones n = 2, 3, 4 and 5 is given by

L - L[ EE) OB
wl P 0k, o' v’

] (11)

where 7, is the intrinsic impedance of the free space
medium. Using the second-order OSRC boundary opera-
tor [22], an approximate relationship for the normal
derivative of axially directed scattered electric field on the
perfectly conducting convex scatterer can be obtained as

JE;(p') | €() JE3(s") ;
= +jk, + ————— = |E:(P
v’ 2 JKy 8[1(1 _jg(s,)] z( p)
i aZEi -
+ a , Z(,Zp) (12a)
2[k, —j&(s)]  os
£(s')  curvature of an osculating circle drawn tangential

to the boundary contour
s’ tangential coordinate variable along the boundary
contour, and
d*E(p") ; ;
—ﬁ— = —K?[sin? Q' cos? ¢’ + cos? Q' sin® ¢’

—2sin Q' cos Q' cos ¢ sin ¢ 1EI(p’). (12b)

With the normal broadside excitation, ¢’ = 90°, the
above OSRC expression yields an initial current distribu-
tion, which is a flat current, with no current singularities
at the thin strip scatterer ends. In fact, the goal of the
SDT is to sequentially update this initial current for each
subzone. The analysis is now shifted to the adjacent
subzone n = 2. The excitation for this subzone 2 consists
of the original plane wave plus additional excitation due
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Fig. 3. (a) Distribution of the equivalent electric current on the thin strip scatterer—TM normal excitation. (b) Bistatic
radar cross section of the thin strip scatterer—TM normal excitation. (c) Monostatic radar cross section of the thin strip

scatterer—TM normal excitation.

to the approximate currents on the surface of the remain-
ing subzones, n = 3, 4 and 5 including the updated cur-
rent along the first subzone. This step-by-step analysis
approach is sequentially implemented in an iterative sweep
for each subzone from one end of the scatterer to the
other end. Once the first sweep is completed, a first-order
approximate distribution of the electric current on the
thin strip scatterer is numerically simulated. It is noted
here that no additional boundary conditions are enforced
in the application of SDT. Better approximation of the
distribution of magnitude and phase of the electric cur-
rent on the thin strip scatterer can be obtained by more
iterative sweeps. In Fig. 3(a) is shown the distribution of
the magnitude of electric current calculated based on the
SDT (with five spatial subzones, N = 5) on the thin strip
scatterer excited with an angle of incidence ¢' = 90°. The
results shown are obtained for five sweeps with less than
1% error in the region separating two adjacent subzones.
It should be noted that the electric currents are valid only
for the specified angle of incidence and the SDT iterative

process is to be repeated if the numerical data for other
angles of incidence is required. The distribution of the
electric current can now be utilized for calculating either
the near electric and magnetic field distributions or the
bistatic radar cross-section data. In fact, the number of
successive iterative sweeps is determined based on the
degree of convergence required of the electric current or
the radar cross-section data. The far-field distribution and
the radar cross-section data can be derived using (3a),
(4a), and (9b) with the two-dimensional Green’s function
term replaced with its large argument approximation. Fig.
3(b) shows a plot of the bistatic radar cross section ob-
tained using SDT compared with the direct method of
moments (MM) solution. In the angular range of ¢ = 30°
to 150°, the bistatic radar cross section converges in two
sweeps with less than 1% error, but for the grazing angles
more sweeps are required, and for the results shown five
sweeps are utilized. Fig. 3(c) shows a plot of the mono-
static radar cross section obtained using SDT compared
with respect to the direct (MM) solution.
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Fig. 4. (a) Bistatic radar cross section of the rectangular conducting scatterer—TM normal excitation. (b) Monostatic radar
cross section of the rectangular conducting scatterer—TM normal excitation. (c) Monostatic radar cross section of the wedge
with half-cylinder—TM excitation. (d) Bistatic radar cross section of the wedge with half-cylinder—TM excitation.

In fact, numerical studies indicate smaller subzone sizes
[18] can be adapted with even lower computer resources,
but require more iterative sweeps for the same degree of
convergence. Tables I, II, and IIl show computer re-
sources required on a Sun 4.0 Workstation as a function
of subzone size and number of iterative sweeps. The
representative case of thin strip scatterer of total length
L = 10A excited at an angle of incidence, ¢’ = 90°, is
considered with a finer current resolution of 20 pulse
samples per wavelength. The results reported here are
based on a general unoptimized computer algorithm with
Gauss—Seidel numerical inversion. The run times re-
ported in the tables, in fact, are higher than many stan-
dard optimized algorithms [3], [7].

Similar convergence behavior is observed for other
bistatic and monostatic angles. The above studies using
SDT can be easily extended for the case of electromag-
netic scattering by a perfectly conducting rectangular and
wedge type scatterers. Fig. 4(a) shows a plot of bistatic
radar cross section of a rectangular scatterer of total
length L = 24.5A and width W = 0.5\ which is excited at

TABLE 1
DIRECT MM SOLUTION

Bistatic RCS in decibels

Full Matrix Observation Angle, Run Time
Size Total ¢ =90° in Seconds
200 27.971437 205.2
TABLE 11

SDT SOLUTION— VARIATION OF NUMBER OF SUBZONES
(NUMBER OF SWEEPS = 1)

Bistatic RCS in decibels

Subzone Number of Observation Angle, Run Time
Matrix Size Subzones ¢ =90° in Seconds
20 10 27.95345306 10.0
25 8 27.97183609 12.6
40 5 27.96068573 239
50 4 27.97832870 341
100 2 27.96839523 121.0

an angle of incidence ¢' = 90°. This result is obtained
using a full matrix of size (500 X 500) for the direct MM
solution. Similar to the thin strip case discussed earlier, in
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TABLE III
SDT SOLUTION—VARIATION OF NUMBER OF SWEEPS
(SUBZONE MATRIX SIZE = 50 AND NUMBER OF SUBZONES = 4)

Bistatic RCS in decibels
Observation angle,
¢ = 90°

27.97832870
27.97290012
27.97251701
27.97248459
27.97203225
27.97153854
27.97137260
27.97138977
27.97143173
27.97144699

Run Time
in Seconds

Number of
Sweeps

34.1 per sweep

SOOI N A W=

—_

order to apply the spatial decomposition technique, the
scatterer is divided into five subzones, N = 5, and the
matrix size is chosen with the same uniform resolution for
each subzone modeling. Fig. 4(a) also shows a plot of the
bistatic radar cross section obtained using SDT compared
with the direct MM solution. Both forward and back
scattering data in the angular range ¢ = 90° to 120°
converge with only two iterative sweeps, and for the
angular range ¢ = 120° to 150° convergence is obtained
with five sweeps with less than 1% error. However, for the
grazing angles- more sweeps are required, and for the
bistatic results shown 10 sweeps are utilized. The monos-
tatic data, on the other hand, converges rapidly with only
two iterative sweeps. Fig. 4(b) shows a plot of the mono-
static radar cross section obtained using SDT with two
sweeps compared with the direct MM solution. The
monostatic study has been extended even for the case of a
conducting wedge type scatterer. Fig. 4(c) shows a plot of
the monostatic radar cross section obtained for a two-di-
mensional finite length wedge with half-cylinder. Fig. 4(d)
shows bistatic radar cross sections obtained using sub-
zones of (100 X 100) and (50 X 50) matrix systems. TM
normal excitation with ¢’ = 0° is assumed to be incident
on the tip of the wedge. In Figs. 4(c) and 4(d), the SDT
numerical results are compared with the direct MM solu-
tion.

IV. ERROR ANALYSIS BASED ON MATRIX CONDITION
NUMBER

It is evident that the SDT offers substantial savings in
computer storage and time as compared to the direct
integral equation and method of moments solution. From
error analysis and estimation point of view, the SDT deals
with only smaller matrices arising due to division of the
large scatterer into multiplicity of subzones. The
Gauss—Seidel inversion of matrices inevitably introduces
round-off errors, the extent of which essentially depends
on the sophistication of computing device and its word-
length. In fact, round-off errors are fairly random in
nature and do not cancel out in a given computation,
but rather tend to accumulate if later calculations are
based on the earlier ones. A detailed discussion concern-
ing relative error analysis and estimation of the degree

ill-conditioning associated with typical method of mo-
ments scattering problems is addressed in [21] and [22]
using a qualitative figure, such as, the matrix condition
number. A convenient measure of the condition of a
matrix can be assessed in defining

cond([Z]) = lZII- 1z~ (13a)

where considering the infinite norm, the maximum row
sum of the matrix

1zl = IZl.. (13b)

In solving the matrix equation, the condition number of
matrix represents an upper bound on the relative uncer-
tainty in determining the electric current distribution. Just
in the numerical inversion alone, the direct method re-
quires arithmetic operations proportional to third power
of the matrix size. But, in the SDT only very small
matrices are dealt with proportional to electrical size of
subzones. Fig. 5 shows variation of worst-case condition
number with number of subzones for the strip and rectan-
gle cases studies discussed above. Thus, the submatrices
corresponding to the subzones are better conditioned
than the large matrix of the direct method. The condition
of the subzone matrix improves as it becomes smaller,
however, this improvement cannot be extracted indefi-
nitely in view of the stronger coupling and interaction
with very small subzones.

V. PERFECTLY CONDUCTING SCATTERER—TE CASE

The preliminary study of the spatial decomposition
technique is reported for the case of perfectly conducting
thin strip scatterer with transverse electric (TE) excita-
tion. For the case of TE normal excitation, there exists
only a tangentially directed electric current along the
boundary of scatterer. Referring to (5b) and (6d), and
considering its dual representation for the induced elec-
tric current, the EFIE is given by [1]-[3]

Wy
4

EX(P) = [ eos (8~ 0)1,(5")| “EHP (k) |a

F] 1
— | —J(p")|——HP(k,R)|dL’,
95 Je g7 T(p)[4wel o (ky )]

p on thin strip.

(13)

Again, the distribution of the electric current on the thin
strip scatterer can be directly obtained by using a pulse
expansion set for representing the unknown electric cur-
rent distribution, and also testing the EFIE expression
(13) by the same pulses. Fig. 6(a) shows a plot of the
magnitude of electric current on a thin strip scatterer of
total length, L = 25A, excited at an angle of incidence
@' = 90°. This result is obtained using a full matrix of size
(250 x 250) with a current resolution of 10 pulse samples
per wavelength. Similar to the TM case discussed earlier,
in order to apply the spatial decomposition technique, the
thin strip scatterer is divided into five subzones, N = 5.
Providing the same resolution, the SDT matrix size is only
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(50 x 50) for each subzone modeling. Using the OSRC
TE-boundary operator [24], an approximate relationship
for the tangential electric current on the perfectly con-
ducting convex scatterer is obtained

§7(p") = x [#H(p") +2'H{(p)], P onC
(14a)
JH;(p") _ | §(s) . &%) o =
Tar Tz e e [
(14b)

A 1 9
E(p') = — ——HI(p"). (14c)

jwe dv’

With normal excitation, the above OSRC expression
yields an initial current distribution, which is a flat cur-
rent, with no standing wave distribution along the thin
strip scatterer. In fact, the process of the SDT is to
sequentially update this initial current for each subzone.
In Fig. 6(a) is also shown the magnitude distribution of
electric current calculated based on the SDT (with five
spatial subzones, N = 5). The result shown is obtained for
five sweeps with less than 1% error in the region separat-
ing adjacent subzones. Fig. 6(b) shows a plot of the
bistatic radar cross section obtained using SDT compared
with the direct MM solution. In the angular range of
¢ = 30° to 150°, the bistatic radar cross section converges
in two sweeps with less than 1% error, but for the grazing
observation angles more sweeps are required, and for the
result shown five sweeps are utilized. Fig. 6(c) shows a plot
of the monostatic radar cross section obtained using SDT
compared with the direct MM solution.

V1. HOMOGENEOUS DIELECTRIC SCATTERER—TM
CASE

Referring to Figs. 2(a) and 2(b), the spatial decomposi-
tion technique presented in Section II is now applied for
the case of isotropic, homogeneous, lossless dielectric
rectangular scatterer of length L = 10A and width W =
0.25x (where A is the free space wavelength) with TM
excitation. The angle of incidence is ¢’ = 90° and the
relative permittivity and permeability of the lossless di-
electric scatterer are selected as €, = 2.56 and p, = 1.0.
Applying the CFIE discussed in Section II and using a full
matrix of size (420 X 420), the electric and magnetic cur-
rent distributions are calculated first, and then the bistatic
radar cross section is obtained as shown in Fig. 7. In order
to apply the spatial decomposition technique, the dielec-
tric rectangular scatterer is divided into five subzones,
N =35, and the SDT matrix size is chosen with same
uniform resolution for each subzone modeling. The initial
distributions of the axial electric current and tangential
magnetic current on the dielectric scatterer are obtained
using the first-order OSRC boundary operator [23]. The
two current distributions are sequentially updated using
the SDT. Fig. 7 also shows a plot of the bistatic radar
cross section obtained using SDT compared with the

[
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Fig. 7. Bistatic radar cross section of the rectangular dielectric scat-
terer—TM normal excitation.

TABLE IV
COMPUTER RESOURCES: DIRECT MM VERsUS SDT

a) Bistatic Radar Cross Section of Thin Strip

Strip MM SDT(*)
Size Direct MM Run Time SDT Run Time
Excitation (A) Matrix Size (s) Matrix Size (s)
™ 10 200 205 50 34
™ 25 500 3175 50 83
TE 10 200 282 50 45
TE 25 500 4210 50 109
b) Bistatic Radar Cross Section of Wedge with Half-Cylinder
MM SDT(*)
Direct MM Run Time SDT Run Time
Excitation  Matrix Size (s) Matrix Size (s)
™ 500 4137 100 167
50 55

direct MM solution. The bistatic radar cross section con-
verges in one or two sweeps for broad side angles and
takes more sweeps for grazing incident angles. The SDT
numerical data is obtained with three sweeps with less
than 1% error.

VI. REMARKS

Using rigorous electromagnetic equivalence, the spatial
decomposition technique divides an electrically large ob-
ject into a multiplicity of subzones. The technique permits
limiting the size of the method of moments system matrix
that need be inverted regardless of the electrical size of
the large scattering object being modeled. Several numeri-
cal scattering case studies have also been reported along
with comparison and relative error estimation based on
condition numbers to expose possible applicability of the
spatial decomposition technique to the two-dimensional
scattering study of electrically large conducting and di-
electric objects. Details of the computational burden to
obtain bistatic radar cross section of 1) two thin perfectly
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conducting strips of lengths 10 A and 25 A and 2) wedge
with half-cylinder structure using the direct MM tech-
nique and the SDT are reported for the TM and TE
excitations.

It can be inferred from Table IV that the spatial
decomposition technique can provide order (100:1) sav-
ings in computer resources over the direct MM solution
for electrically large geometries. This comparative savings
appears to increase with the size of the scatterer. In fact,
as the MM matrix size increases by a factor of R and the
direct MM run time increases by R®, the SDT run time
increases only by R. This may be quite significant.
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