~ surfaces, yet retains the ability to model corners and edges. CP

[EEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL.40,NO.4, APRIL 1992 - : 357

Flnrte—leferencc Tlmc Domam

Modelmg of Curved Surfaces

Thomas G. Jurgens, Member IEEE Allen Taﬂove Fellow . IEEE

Abstract—-— In thls paper ‘the ﬁmte—dlﬂ"erence tlme-domam
(FDTD) method is generalized to include the accurate modeling

' ~ of curved surfaces. This generahzatlon, the contour path CpP)

method, accnratcly models the illumination of bodles with curved

modeling of two-diménsional electromagnetic wave scattering
from objects of vanons shapes and composntlons is presented '

I INTRODUCTION

| approxlmatlons of the actual structure surface. Although not
a serious problem for modeling wave penetration and scatter-

ing for low-Q metal cavities, recent FDTD studies have
shown that stepped approxrmatlons of curved walls and aper-
ture surfaces can shift center frequencies of resonant re-

sponses by 1 to 2% for Q factors of 30 to 80, and can
possibly introduce spurrous nulls [1]. In the area of scattcrmg

by complex shapes the use of stepped surface ‘approxima-
~ tions has limited the apphcatlon of FDTD for the modeling of

the 1rnportant target class where surface roughness exact

curvature, and dielectric or permeable loadlng 1S important in

detcrmmmg the radar cross section. This paper reports on a

' generahzatlon of the FDTD method the contour path (CP)
. method, where grid cells local to structure surfaces are

deformcd

Recently, three dltferent types of FDTD conformable sur-
face models have been proposed and exammed for scattermg o

problcms

1) Locally dtstorted grld models These preserve the '
‘basic Cartesian grid arrangemcnt of field components at all
space cells except those 1mmed1ately adjacent to the structure

- surface. Space cells adjacent to thc structure surface are
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srgnrﬁcant ﬂaw in prev1ous ﬁnrte—drfference “time-
domain (FDTD) models of structures wrth smooth
curved surfaccs has been to use steppcd edge (starrcase)
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deformed to conform w1th the surface locus Slrghtly modi-

fied time stepping eXpressmns for the field components adja-
cent to the surface are obtained by applying either a modrﬁed
ﬁnrte volume technique [2] or the CP technique.

2) Globally distorted grzd mcdels body fitted. These
employ avarlable numerical mesh gcneratlon schemes to con-

~ struct non-Cartesian grids which are continuously and glob-
ally stretched to conform with smoothly shaped structures. In

effect, the Cartesmn gr1d 1S mapped to a numerlcally gener-

- ated coordmate system wherein the structure surface contour

4

occup1es a locus of constant equrvalent radius.”” Time-

stepping expressions are adapted either from the Cartesian
FDTD case [3] or from a characterrstrcs based method used

‘in computational fluid dynarmcs [4].

- 3) Globally distorted grid models, ' unstructured These
employ available numerical mesh generatron schemes to con-

struct non-Cartes1an grids comprlsed of an unstructured array
of space ﬁlhng cells. Structure surface features are appropri-

“ately fit into the unstructured grid, with local grid resolution
and cell shape selected to provide the desired geometric

modelrng aspects. An example of this class is the control

- region approach d1scussed in [3].

‘Research 1s ongoing for each of these types of conformable

surface models. Key questions concermng the usefulness of

each model include the followm g:

1) computer resources 1nvolved in mcsh generatron

2) severity of numerrcal artifacts introduced by grid distor-
~ tion, ‘which 1ncludes numerical instability, dispersion,
~ and nonphy sical wave reﬂectlon and subtraction noise;

3) limitation of the near-ﬁcld computational range due to
subtractron noise;

4) comparatlvc computer resources for runnmg realistic
scattering models, especially for three-—dlmensronal tar-

gets spannmg 10 wavelengths or more

II REVIEw OF THE FDTD METHOD

In thrs sectron the analytlcal bas1s of the FDTD method

wrll be briefly described first, since the CP method is a
generahzatlon of it. Detailed dcscrlptrons of the FDTD

method can be found elsewhere [6] [10].

The traditional FDTD algorithm is a drrect solutlon of

Maxwell’s time ‘dependent curl equatlons which are shown
‘1n Table I(a). The algorithm applies a
' ﬁmte dlfferencc approxrmatron to the space and time deriva-

second order accurate

0018-926X /92503.00 © 1992 IEEE



358

OF"(i, j, k) F™3(i, j, k) - Froii’

CEPYNiL, k4 1/2) = -

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 40, NO. 4, APRIL 1992

TABLE I
 (a) MAXWELL s CURL EQUATIONS IN CARTESIAN COORDINATES '

)

NG

@)

)

©6)

- Cartesian components of electrical field, v/m
Cartesian components of magnetic field, v/m
¢ electric permittivity, F/m

o electric conductivity, S/m

- u magnetic permeability, H/m

p _equlvalent magnetlc loss, @ /m

(b) CENTRAL DIFFERENCE APPROXIMATION TO SPACE AND TIME PARTIAL DERIVATIVES

Gy, k) = (iAx, jAy, kA M
F7(, J, k) = F(iAx, JAy, kAz, nAt) T )

h ﬁaF"(z Js k) F"(z + 2, J> k) F”(z — -—-, 7, k)

= + order(Ax ) o S 9)
ax‘ . __ Ax _ +order(At2) . _ ) o |

I

- 10
" N fOI‘ a cubic spacelattice, Ax=Ay=Az=06

_ , . TABLE II
EXAMPLES OF FINITE-DIFFERENCE EQUATIONS DERIVED FROM MAXWELL S EQUATIONS .

CHIMGL 2k 12 = BG4

At

u(i, j+ 1/2, k +1/2) | (h

1 a(i . k+1/2)Ar -

o 2e(i, J,k+1/2) E” y i2 | _ o

1- +_-O'(la J‘g _k'+ 1/2)At _ (l J’ | + / ) +1 + G(i, Jj, K +1/2)At :

TGk T 2eikv 1)

_(Hn+_f(l+%a Ja k + 2) Hn+2(l — 5,], kK + 2)) . _
S ) _ - 12
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tives of each carteS1an field component These central dlffer-

ence approximations are displayed in Table I(b). |
The above equations combined wrth the constitutive rela-

tions result in a set of difference equations, examples of

wh1ch are grven in Table II The constltutrvc relatlons are:

—

 D=¢E
 Bouf
.Z.:_— (15)

‘where e, u, and o are the perm1tt1v1ty , permeability, and

~ coductivity, respectlvely All quantities on the right-hand side
- of each difference equation are known from computations
- performed at previous time steps. This results in a fully
- explicit system of difference equations whereby chronological
values of the electric and magnetic field components at each

“location are obtained in a temporal leapfrog manner. Spa-

- tially, the computations are dependent on nearby field compo-._ .
“nents, which enhances the method’s ability to be computed

~on parallel architecture machines [11]. Fi g. l(b) illu strates

the resulting spatlal relatlonshlp between the ﬁeld
components. ' '

been described, the structure of the complete FDTD lattice
~will be discussed. The lattice is partitioned into two volumes,

- atotal field region and a scattered field region, as illustrated
- in Fig. 1(c). Inside the total ﬁeld region both incident and

scattered waves exist. This region also ‘encompasses the

~ principle [15].

At this point it is worthwhlle to remark that some FDTD

' codes do not divide their lattices into total and scattered field
- regions explicitly. In these codes, only scattered. ﬁelds exist
- external to an object, while total fields are in the interior. The

incident field is 1ntroduced by applym g an appropriate bound-

- ary condition on an object s surface. For example, a perfectly

_ conductmg body would have the condition E

scat

= -E,_

applied to E-field components tangent to the body’s surface '
- This methodology becomes quite cumbersome for materrally

complex heterogeneous objects. In add1tlon these codes suf-
fer from accuracy problems in modeling the interior of

shielded cavities and shadow regions [16], [17].

(1)
‘ (14) -

progresses with its calculat1ons
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III ANALYTICAL BASIS OF THE CONTOUR PATH METHOD o

A Introductzon

The CP algorlthm 1s bascd on Ampere S and Faraday s
laws, shown below

fH dl—-// (7. +7) ds+-—//D s
- * 16)
' J ' | (17)

where E D H B J and J denote the electrlc ﬁeld elec-

~tric flux density, magnetic ﬁeld magnetic flux densrty, con-

duction current and source current, respectively, and the C
contours enclose the S surfaces. The contours of Ampere’s
‘and Faraday’s laws intersect each other’s enclosed surface in

much the same way as the hnks In a chain intersect. Fig. 1(a)

1llustrates this relatlonshlp, where the coordinates (u v, W)

are any cyclical permutation of x, y, and z. Implementing
(16), the value of the E, field component at time step n 1s

calculated from the two H, and the two H , field compo-
nents at time step 7 — 1/2 and the value of the E, compo-
‘nent at time step n-—1. Then 1mplement1ng (17), the value
of H,, at time step n + 1/2 is calculated from the two E,

' - - and E ‘components at time step n and the value of H,, at
Now that the structure of an 1nd1v1dual FDTD cell has

time step n — 1/2. In this leap frog manner the CP algorlthm
For contours not near a
media interface, the contour shape is rectangular and the CP
difference equations are identical to the traditional FDTD
difference equations. For example this 1s a CP Faraday

. drlference equatlon not near a media 1nterface
entire scattering body No boundary condition needs to be '

~ applied at the body’s surface, the medium changes 1mphcrt1y |
with the cell to cell change of material characteristics -
(0,¢, p). The overwhelmmg majority of lattlce cells are in
~the total field region, a percentage that increases with the
- lattice size. The scattered field region surrounds the total field
region. The scattered field region is necessary in order to

- utilize an accurate radiation boundary condition 1ntroduced o
- by Mur [12]. The basis of this radiation condition is a
two-term Taylor series approximation of a one-way wave
equation [13]. The existence of a scattered: field region also o
permits the implementation of a near- to far-field transforma-
tion [14], based upon the electromagnetlc field equ1valcnce .

H”* (z J+1/2 k+1/2) -
= H”""(z J + 1/2,k + 1/2)
- - At . o
lE"(z j+ >y k+1) ----l E”(z J+ k) |
X+14E;’(1,J,k+ 2) =1 E”(l j+1 k+ )

(18) 1

In th1s equauon A AyA z, l = l3 = Az and 12 = l
Ay. Thus this equatron 1S 1dent1cal to the FDTD equatlon .
- (11). Consequently, the CP method need only be applied to
~cells near a material interface, with the traditional FDTD
method applied to the remalnlng cells. The total field-scattered
field lattice partltlon the near- to far-field lattice truncation

“and the absorbrng boundary condition are unaffected by th1s
1nclus1on of CP cells in the traditional FDTD grid. '

" Both the CP and the tradltlonal FDTD methods have theh B

~ same capabrhtles regarding time stepping and waveform '_

modeling. The re sults presented here are obtained by illumi-

nating the objects with a step sinusoid and waiting for the
fields to reach steady state. Subtraction noise problems have

never been observed with the tradltlonal FDTD methodology

' and do not occur wrth the CP method e1ther
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‘Scattering Object

' LattiCe Truncation Boundary
Scattered Field - Total Field Boundary
- (© '
~ Fig. 1. ,
- cell of the FDTD Lattice (c) The FDTD lattice structure.

' B. Perfectly Conductmg Objects TE Illummatzon

In this section the CP modelmg of the TE illumination of
perfectly conducting objects is discussed. First, the normally
- rectangular Faraday contours surrounding each H compo-

nent near the object are deformed so as to conform to its
surface. Each H component 1S assumed to represent the

average value of the magnetic field within the patch bounded

by the distorted contour. The electric field, E,,, on the

distorted contour at the object surface is zero. Along the

remaining straight portions of the contour, the electric field
components are assumed to have no variation along their
respective contour segments. Where possible these electric |
field components are calculated using rectangular Ampere L
- contours from adjacent H components. The Ampere con-
tours are not deformed. Also, calculations of Ampere con-
" tours which cross the media boundary are not used, necessi-

tating that the E-field along the corresponding Faraday con-

tour segments, if needed, are computed in some other way.

These Faraday segments which intersect the object’s surface,
‘but are not tangent to it, have the1r E—ﬁeld computed In one

of two ways.

" In the first way, the normal E approx1mat10n shown in .

Fig. 2(a), the projection onto the Faraday contour segment,

of the E-field value at the intersection of the segment and the

B surface, is used. The E-field at this intersection point (E,) is
- normal to the object’s surface. E,, is calculated by setting up

tion are mterpolated from H-field components near the
“surface. ' '

(a) The CP Ampere and Faraday contour relationship. (b) A unit

- an auxiliary Ampere’s law contour computation along the
surface. The H-field values needed for the auxilary computa-

0 denotes interpolated H component
w denotes E,

( m_dtcates Faraday contour

Target surface .

e

®  ©

) Flg 2. CPTE methodology for perfectly conductmg surfaces. (a) Normal

E approx1mat10n (b), (c) Nearest neighbor approx1matlon

The second way, the nearest nelghbor approximation shown

~in Figs. 2(b) and 2(c), uses the near field component that is

collmear w1th the Faraday contour segment, of the same type

(E,, E,, etc.) and on the same side of the media interface as

the Faraday segment. After applying Faraday’s law for the
three illustrative contours of Figs.. 2(b) and 2(c), the follow-

 ing special FDTD time stepping relations are obtained for the

H, components immediately adJ acent to the object surface as
listed below. -

Standard Subcell Fzg Z(b)
H’”‘ (z + 1/2 j+ 1/2)
_ ----C H"""(1+1/2 j+1/2) . .
' +D [E” (i, J+ ) f — E"(1+1 J+ 5) 8
BN+ Lj+1) 5] (19)

where

Standard Stretched Cell I Fzg 2(c) component H, .
H"+2(z + 1/2 j+ 1/2)
C H"“‘(z +1/2,j + 1/2)
D, E is J +3)h
_Egb(i+ 1, .I'i.'l' %) 'f8,1

FE"(i+ 1, j+1) 5] (22)
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~ where

C, — | = _ - 1 . " : .1. . 23 x
| ( ot 2)/( o0 T2 ) &
wA, $Z,\ o

- 1/( a T 12 ! )_., i (24)

Non-standard Subcell ' Fzg 2(c) component H
CHIA (i +1/2, j+1/2) . o
=C, H”“(z+1/2 J+1/2)+D .
' ‘ E”(zJ+ )f2 - (z-ljl _]+ 2)-6
| +E” (z+ > j+ 1) 0 — E;’c(z+ 2> J+- 1‘)""'*h2
; S (25)

~where —
' SZZ

C. - (#oAz B Szzsi)/( po A "
*o\-ee 2 P\ s 2

- a4
D, = 1/(Mo 2

descrrbe a drstorted contour are:

1) the area of the patch A, wrthm the contour;

2) intercept points of the obJ ect surface contour w1th gr1d '

lines; ' -
- 3) the subtended arc length S, of the object surface

4) knowledge of whether E components along the contour

are calculable using the regular Yee algorlthm and

~ 5) variation of the surface 1mpedance Z,, with position

along the object surface contour.

The distorted contour and field approx1matlon mformat10n
obtained from a suitable geometry generation preprocessor,

allows the CP code to the process the conformably modeled

object surface contour as easrly and quickly as the FDTD

code, but with substantially better accuracy, as will be

demonstrated shortly. However, the choice of the nearest

- neighbor or normal E approx1mat10ns provide equal levels of

accuracy. For completeness, we note that no magnetrc or

‘electric field components in the FDTD space lattice, other
- than the H, components immediately adjacent to the Ob] ect

- surface, requlre modified time steppmg relations.

C. Perfectly Conductmg Objects TM Illummatzon

In the modelmg of the TM 1llummat1on of perfectly con-

contours are not deformed and calculations of Ampere con-
tours which cross the media boundary are not used. Each

~ such magnetic field component is assumed to represent the

. average value of the magnetic field within the patch bounded
by the truncated contour. Z_ is the surface 1mpedance of the

- object. The electric field, E, , located on the truncated
contour at the object’s surface is equal to Z_ times the local

azimuthal magnetic field, H,. H, is collocated with E._

~and is obtained by interpolating the known H, and H,

) (26)
> ) e

~In the above equatrons we note that the only data needed to

Fig. 3.

ductmg objects, the Faraday contours surroundmg each H
component located near the object are deformed so as to

- conform to its surface, as illustrated in Fig. 3. The Ampere
- D. Dzelectrzc Objects
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|
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|
|
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|
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|
|
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|
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|
|
+
|

- Faraday contours
Q UnusedElectric Field Components '

Examples of modlﬁed Faraday S Law contour paths for the TM
curved object. -

| components at this locatlon and then addmg thelr prOJectrons

in the tangent direction.

For this study, consider only the case of Z_ = O (perfectly'

~ conducting object). This eliminates the need to calculate a
~ local surface azimuthal magnetic field via interpolation and

vectorial addition. Then applying Faraday’s law to the con-

toursofFrg 3, . -
CHI'a (i, j+ 1/2) H' (i, j+ 1/2)

ot ' ' o
- E”(z j+ 1) (28)
e - ot . .
Hy*:(i+1/2,j) = Hy7(i + 1/2,j)
- T 6t -
+— - ENi, ) (29)
IJvoh ~

where it is noted that the E component at the obj ect surface

is zero. Here, only the intercept point of the object surface
contour with the grrd lines need to be known. This is
substantially less ‘geometry data needed than for the TE

illumination cases discussed earlier. The Faraday segments
which lie along the object s surface are assigned an E-field

value of zero, since the tangentral electrlc ﬁeld at a perfect
' conductor s surface is zero

" For the modelmg of d1electrrc ob; ects, Faraday contours .
are deformed while the Ampere contours are not. Referring
to Fig. 4, the Faraday contours are distorted so as to have

‘them conform to the object’s surface. Each H component is

assumed to represent the average value of the magnetic field

within the patch bounded by the distorted contour. The
~electric field, E, , on the distorted contour at the object
surface is calculated via an auxillary Ampere contour. Along
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Faraday contour segments, if needed, is computed using the -

nearest nelghbor approximation, as described above.

the surface 1s:
H"*z(z + 1/2 j+1/2)
= "“'(z +1/2,j+ 1/2)

' o - E” -+ 6 E” [
p.l p(i.J ) y - E{(p) I,
- +E"(z + 2 ,j+ 1) Ly — E;j(t + 5,J) 1,
‘where - . -
x s .
D= — f(31)
M'OI"'relA B

and /, 1s the length of the contour segment along the media _
B 1nterface I, and /; are the lengths of the bottom and top
contour segments 5 y is the length of the left contour seg-

ment and p is the E,  index. . ,
~ The Ampere s law dlffercnce equatlon for the auxrhary
tangcntlal E—ﬁeld components CH o .

Ef“(p) E"(p) + 61‘

The Faraday s law dlfference equatron for contours near

| | B | a ] - PERFECTLY CONDUCTING CIRCULAR CYLINDER
| g . o '. 0 ~TE ILLUMINATION =~ KA = 5
- qe | ® ! | - N - Series Solution ---_-
| Medium b | - . | | Contour FDTD Solution © 6 ©
-_ : S - ‘ ' Stepped. FODTD Solution 4 4 a
I a | .Ez | | 1- | . J | O. .-nooo | | |
-+ - === > ——— =t - B Tk
o o g | _j_:-_‘-‘_ -
| _ =uwu
, _ Ey | B
| - N
I |
-—+——-—':— - —_— - - ES
Nl o | S | =2 -
| l O I _ éH - 1B T
: ] oy | | Mediume¢ | S
e o N o
-t ---—-ft -+ - -t - - - -+ - ol . . —
N | | | L ©°0 45 90 ‘135 . 180
‘  contours R ANGLE, PHI o
(_ Faraday contours - o
o ST T 0 _ TM LLUMINATION - KA = 5
- .. ~1 Rl o
O Unused Electric Field Components S Congﬁs Flsb%t'gglutron ©00
- o o | _ a Stepped FDTD Solution a a'a
- ¥ Nearest Neighbor- Electric Field Component S, [ e ‘
£
Flg 4. Contour path TE Tangentral E—ﬁeld apprommatlon for d1e1ectr1c ' im,
“objects. o -
J N
the remammg stralght portlons of the contour, the electric =
field components are assumed to have no variation along their "
respective contour segments. Where possible these electric °
field components are calculated using rectangular Ampere -1 7 s
“contours from adjacent H components. Also, calculations of 0 90 o 180
Ampere contours which cross the media boundary are not . - ANGLE, PHI - .
used, necessitating that the E-field along the corresponding Fig. 5. Comparison of traditional FDTD, contour FDTD, and exact

summed eigenseries solutions for surface current induced on a circular

_ conductmg cylinder. (a) TE 111ummat10n (b) T™M 1Ilummatlon (6x = )\0 /20

resolutlon)

where A b and A are areas of the left and rlght portlon of

~ the Ampere’s contour respectlvely, and b,, b,, ¢, and )
- are the coeflicients for the H-field linear interpolation.

~ For the CP modehng of dielectric objects, TM illumination
is the dual of TE illumination. That is, sw1tch1ng the roles of

the magnetrc field and the electric field, the permeability, pu,
~and the pcrm1tt1v1ty , €, and the magnetic current and the
- electric current means that solving a TE illumination problem

~automatically provrdes data for a dual TM 111um1nat10n prob-

lem.

FE. Amsotropzc Objects

The CP modclmg of amsotroptc dielectric ob]ects 1S a

- direct extens1on of 1sotroplc dielectric objects. For ax1a11y

'amsotrOplc d1e1ectr1c med1a the relatlonshlp between the D
and E ﬁelds 1S |

(33)

.
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PERFECTLY CONDUCTING ELLIPTICAL CYLINDER
©TE ILLUMINATION, MAJOR AXIS

1
o

- KA=10, AXIS RATIO 2:1
~ MOM Solution ==

ANGLE PHI

Contour FDTD Solution' @ ® 0

- v P

Flg 6. Compartson of contour FDTD and met.hod of moments solutrons for surface current 1nduced on an elhptrcal conductlng
" cyhnder TE lllummatton (0x = )\0 /20 resolutlon) - |

This tensor relationship results in an Ampere S law dlfference '

equation wh1ch 1s a shght modlﬁcatlon of (32).

EN(p) = EN(p ) + 6t

X |

K=ec,co2é+e,,sin’ ¢ (35)

where qb 1S the angle E,, makes with the posrtlve X-axis.

ﬂlunnnatlon 1S the dual of TE ﬂlumtnatlon

IV NUMERICAL RESULTS

In thlS section analytlcal and numerlcal data validations of

the CP method are presented. Objects of various shapes and

compositions are analyzed

A. Perfectly Conducting Objects

The first shape considered 1s a kya = 5 circular cylinder,
subjected to TE and TM illumination. Fig. 5 is a.plot of the

CP predicted surface current and the traditional (stepped)

'FDTD predicted surface current compared to the series solu-

~ tion. The CP method achieves an accuracy of 1% or better at

most surface points resulting in accurate modeling of the

~peak and null structure of the current distribution. This figure

“also shows that the CP method is a significant 1mprovement
over the traditional FDTD method

(b B30+ 4+ 12) + by H™H (i 4,5+ )/ Ay (i + 5,J)
(e B4 15,4 ]+ HY(i 4 15,0 - )/ AK

where A, and A, are areas of the left and right portlon of
the Ampere s law contour respectively, and b,, b,, ¢, and

¢, are the coeﬂicrents for the H -ﬁeld hnear interpolation, and
‘ o o - null structure of the current distribution.

The next shape considered is an elliptical cylinder, sub-

jected to TE illumination along its major axis. The circumfer-
ence of the cylinder 1s 10 wavelengths and its axis ratio 18

(34)

2:1. Fig._ 6 1s a plot of the CP predicted surface current
compared to the method of moments solution. Once again,
the CP method achieves accurate modeling of the peak and

The final shapes in this category are w1ng 11ke bodies,
depicted in Fig. 7. It consists of a 10 in X 12 in metal plate,
having steeply sloped sides with a central six inch radius

|  chamfer on one side and either flat on the other side or
The Faraday s law difference equation for this case 18 1dent1—- -

~ cal to the isotropic case (30). As in the 1sotrop1c case, TM _

having a symmetrlcally posmoncd V-shaped vertical slot on
the other side. The measured data to be presented are for

~ these three dimensional shapes, while the numerical data (the
- CP method and method of moments) are for the two dimen-
“sional shapes which result from allowing the 12 in dimension

to go to infinity. Fig. 8(a) shows the monostatic radar cross

section of the plate with the flat side. It is illuminated with a

10 GHz ™ polarized wave. Fig. 8(b) shows the monostatic
radar cross section of the plate with the V-—slottcd side. It 1s

illuminated with a 16 GHz TE polartzed wave. There 1is
generally good agreement between the three sets of RCS

data. In the low RCS regime near grazing incidence Fig. 3(b)
shows that the CP method provides substantially better agree-
- ment with the measurements than MM. The residual dis-
‘agreement between the CP and measured data is a conse-

quence. of the difference between the idealized 2-D computa-
tional model and the actual 3-D physical measured target.
 For a given grid density, the CP method permits an object

to be modeled more accurately than the traditional FDTD
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Test Body with No Vertical Slot
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— — —_— I data for the radar cross section of a wing-like body. (a) TM 1llummatlon
- . * | L s wrth no slot, (b) TE illumination with a V-shaped slot. ' '

Fig. 7. Mechanical description of the wing-like body.

‘The final shape in this category is a TE illuminated k,a =

. , ) o - -~ 2.5 anisotropic circular cylinder. The d1e1ectr1c and magnetic
method. Both TE and TM cases are shown. Studies for the coefficients for this object are e, = 2 €9, €,, = 4€¢, and
wing-like object indicate that 1/20\, gridding with CP sur- p.= 2pu,. Fig. 10 is a plot of the CP predicted magnetic
face modeling provides monostatic RCS accuracy better than - :surface current compared to the combined field integral equa-
with 1/80)\, traditional (staircased) FDTD. This effect 1S tion (CFIE) MM solution [18]. The CP method agrees with
most pronounced for incident angles near 90° as shown in the MM results to 1% or better at most surface pomts,
Fig. 8(b). This is a very large advantage in 2-D, more than resultmg in accurate modeling of the peak and null structure
16:1 in storage and 64:1 in run time and in 3 D more than - of the current distributions. '
- 64:1n storage and 256: 1 in run t1me ' ' - B

‘; S . S ' S . V CONCLUSION

_B Duelectric Objects S - ThlS paper has introduced a generahzatlon of the F DTD |
The first shape cons1dered is a TE 111um1nated Kk da S method the contour path method. Examples of CP modeling
circular cylinder, with e, = 4. Fig. 9 is a plot of the CP  of two dimensional electromagnetic wave scattering are pre-
predicted electric and magnetic surface current compared to sented. Objects of various shapes and compositions are ana-
the series solution. The CP method achieves an accuracy of lyzed. The method accurately models the illumination of
1% or better at most surface points resulting in accurate bodies with curved surfaces, yet retains the ability to model
“modeling of the peak and null structure of the current d1str1— corners and edges. The CP modeling of three-dlmensmnal
‘ butlons S L T ~ objects is presently being investigated. |
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