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Direct time integration of Maxwell's equations in nonlinear
dispersive media for propagation and
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We report the initial results for femtosecond electromagnetic soliton propagatlon and collision obtained from
first principles, i.e., by a direct time integration of Maxwell’s equations. The time integration efficiently imple-
ments linear and nonlinear convolutions for the electric polarization and can take into account such quantum
effects as Kerr and Raman interactions. The present approach is robust and should permit the modeling of
two- and three-dimensional optical sollton propagatlon scattering, and swﬂ:chmg from the full Vector Maxwell’s

equatlons

This Letter introduces a direct solution to Maxwell’s
vector-field equations suitable (in principle) for mod-
eling the propagation and scattering of optical
pulses, including solitons, in inhomogeneous nonlin-
ear dispersive media. We believe that this approach
will eventually provide a modeling capability for

millimeter-scale integrated optical circuits beyond
that of existing techniques that use the generahzed '

nonlinear Schrodinger equation (GNLSE).
In Ref. 1, we discussed an efficient finite-

difference tlme domain (FD-TD) numerical ap-

proach for the direct time integration of Maxwell’s
equations to model linear media that have arbitrary-
order chromatic dispersions. The approach was
~ based on a suggestion by Jackson® to relate D(¢) to
E(t) with an ordinary differential equation 1n time
integrated concurrently with the Maxwell equations.
In this manner, we computed reflection coefficients
“accurate to better than 6 parts in 10,000 over the
frequency range of dc to 3 X 10'° Hz for a single

0.2-fs Gaussian pulse incident upon a Lorentz half-

space and obtained new results for the Sommerfeld
and Brillouin precursors. .

In this Letter, we report a generalization of the
above to deal With the nonlinear terms of the electric
polarization. The FD-TD direct time integration of
Maxwell’s equations can now incorporate nonlinear

instantaneous and nonlinear dispersive effects as

well as linear dispersive effects, thereby permitting
the modeling of optical solitons that have large in-

stantaneous bandwidths.
We again consider a one-dimensional problem Wlth

field components, E, and H,, propagating in the x di-
rection. Assuming that the medium is nonperme-

able and isotropic, we see that Maxwell’s equations in
one dimension are written as -
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Here we asssume that the polarization consists of
two parts a linear part P,, and a nonlinear part

P,..° P, is given by a linear convolution of E.(x, t)
and the susceptlblllty function y', ~

zL(x t) = € J ) (”(t ~ t)E (x,¢)dt, (2a)

~and PzNL 1S glven by a nonlinear convolution of

E.(x,t) and the third-order susceptlblhty Y,

PzNL(x, t) = € f ' J f YO — byt — tot — ts)
X E (x tl)E (x tz)E (x t3)dt1dtzdt3 (2b)

" This provides the physws of a nonlinearity with

time retardation or memory, i.e., a dispersive non-
hnearlty that can occur because of quantum effects
in silica at time scales of 1-100 fs. Note that y
may differ from x'" in physical properties such as
resonances and dampings.

We consider a material having a Lorentz hnear
dispersion characterized by the following x*:
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where w,* = wo(e, — £o) and vo® = wy? — 5°/4.

Further, the material nonlinearity is assumed to be
characterized by the nonlinear single time convolu-
tion for P, ,*

PzNL(x, t) = EOX(3)Ez(x: t)
X fw [aﬁ(t — t’) + (1 — a)gR(t — t’)]Ezz(-’;a t’)dt’- (4)

Here x" is the nonlinear coefficient, §(¢) models
Kerr nonresonant virtual electronic transitions
on the order of about 1 fs or less, gr(¢) =
[(71* + 72°)/m1m2%]e "2 sin(¢/r;) and models transient
Raman scattering, and a parameterizes the relative
strengths of the Kerr and Raman interactions. Ef-
fectively, gr(¢) models a single Lorentzian line that is
centered on the optical phonon frequency 1/r; and
has a bandwidth of 1/r, (the reciprocal phonon
lifetime). . *
- We now describe a system of coupled nonlinear or-
dinary differential equations to characterize the
physics of Egs. (3) and (4). Assuming zero initial

conditions at ¢ = 0, we define the functions F(z)

and G(¢), respectively, as the linear and nonlinear
convolutions, '

PO =« [ 2% - DB@eAy, 6

0
2

G(t) = e f gr(t — t)E,X(x,t)dt" (6)

0

T'hen, F and G satisfy the following coupled system
of nonlinear ordinary differential equations:

- —— —— e, 8

where 6 = 2/r, and @y° = (1/r1)® + (1/m2)°. Equa-
tions (7) and (8) are first solved simultaneously for F
and G at the latest time step by using a second-
order-accurate finite-difference scheme that oper-
ates on data for the current value of D and previous
values of D, E, F, and G. Only two time levels of stor-
age are required with this approach. Then, the
latest value of E can be obtained by means of
Newton’s iteration of the following equation, using
the new values of D, F, and G:
n D-F -1 - axyYEG -
60(609 + 49 ¢ E ) _
T'he algorithm for the system of Egs. (7), (8), and (9)
1s inserted to implement Eq. (1¢). This, combined
with the usual FD-TD realization of Eqs. (1a) and
(1b),' makes up the complete solution method.

We now demonstrate the integration of Maxwell’s
equations to obtain soliton dynamics. A pulsed opti-
cal signal source is assumed to be located at x = 0.
T'he pulse is assumed to have unity amplitude of its
sinusoldal-carrier electric field, a carrier frequency
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- teristic time constant of 14.6 fs.
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fo = 1.37 x 10" Hz (w, = 8.61 x 10 rad/s), and a
hyperbolic-secant envelope function with a charac-
Approximately
seven cycles of the carrier are contained within the
pulse envelope, and the center of the pulse coincides
with a zero crossing of the sinusoid. To achieve soli-
ton formation over short propagation spans of less
than 200 um, we scale values of group-velocity dis-
persion B, and nonlinear coefficient y©®. For
example, let &, = 5.25¢¢, €. = 2.25¢¢, wo = 4.0 X
10 rad/s, 6 = 2.0 x 10°s™!, y® = 7 x 1072 (V/m)~2,
a = 0.7 1 =12.2 fs, and 7, = 32 fs. (The last
three values are from Ref. 4.) This results in B,
varying widely over the spectral width of the pulse;
i.e., from —7 to —75 ps?’/m over the range
(1.37 = 0.2) x 10" Hz. Finally, by choosing a uni-

tform FD-TD space resolution of 5 nm (=1,/300), the

numerical phase velocity error is limited to approxi-
mately 1 part in 10°, small compared with that of
the physical dispersions being modeled.
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Fig. 1. Finite-difference time-domain results for the op-
tical carrier pulse (linear case) after it has propagated
90 um and 126 um in the Lorentz medium.
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Fig. 2. Finite-difference time-domain results for the op-
tical soliton carrier pulse that correspond to the observa-
tion locations of Fig. 1.
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20— predict the carrier frequency shift that we have

con puted for this pulse. Also, in both cases de-

. 000. 2y picted in Figs. 1 and 2, by observing a video of the

R oy o pulse evolution, it was noted that the phase velocity

; / W\ —— x= 55um of the carrier was substantially greater than the
800 - 0/ G\ T x=1Zbum group velocity of the envelope

| ; ‘igure 3 depicts the Fourier spectrun of the main

. y L . 5  solitons shown in Fig. 2. The figure shows a 4-THz

600- Y \ red shift and a sharpening of the spectrum as the

- ,_'- V) ‘ pulse propagates. From GNLSE theory, the red

400 - - ” shift is predicted because of the Raman effect’s™

- ’ Y\ ; occurring as a higher-order dispersive nonlinearity

| _ 'f modeled by the function gz(¢) in the kernel of Eq. (4).

200- 7 \ 1 Last, we consider the collision of two counter-

| y _ N | ~ propagating solitons. They are identical and have

s ~ all the parameters of the above case. As is charac-

1,095014 197E+014  1.47E+014 1 _—57“54.044 teristic of colliding solitons,” after the collisions,

Frequency both main and daughter pulses separate and move
Fig. 3. Red shift of the Fourier spectrum of the main apart without changing their general appearances.
propagating soliton of Fig. 2. However, there are lagging phase shifts due to the
0020 — o collision: 12° for the carrier in the main solitons
| —— after collision and 31° for the carrier in the daughters. To illus-
0.015 - ' ~_ ——— no collision trate this, in Fig. 4 we plot the space ¢ ependence of
' _ \ " the cer tral part of the rightward-moving daughter
0.010 - VAV for the original uncollided case and the collided case,
' | . \ with both curves at exactly 30,000 time steps of the
Such phase shifts, not easily detected
may be a basis for optical switching

Relative Intensity

0.005 - /1 \ ' algorlthm

- [/ \ i by GNLSE,
0.000 4 [ 1 -.-dev1ces

\ \ 9 The approach of this Letter assumes nothing

~0.005 - / \ N / about the homogeneity or isotropy of the optical

| / \ /- | medium, the magnitude of its nonlinearity, the na-

~0.0104 [/ / \\ /) ture of its w—pB variation, and the shape or duration

[ ~/ ., \N\/ , of the optical pulse. By retaining the optical carrier,

~0.015 - T o the new method solves for fundamental quantities,

. the optical electric and magnetic fields in space and

—0. 02?69 =0 16975 17000 17025 17650 time, rather than a nonphysical envelope function.

" Grid cell o T Thus it is extendable to full-vector optical fields in

Fig. 4. Phase lag of the rightward-moving daughter soli- iwo and three dimensions to permit rigorous

ton as a result of collisions with counterpropagating boundary-value problem studies of nonlinear vector-

solitons. wave polarlzatlon dlffractlon scattering, and inter-

ference effects. -
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- Figure 1 depicts the FD-TD computed propagating . o o __ | N
pulse for the linear rase [x® = 0] observed at - The authors acknowledge the assistance of Rose
n =2 % 10* and 4 X 10* time steps, corresponding oseph in thls research, mcl;av dir ;g many I elpful dis-
to prOPagatlon to x = 55 um and 126 um. Note CUSB101L: riormance of some Ol ine calculatior
pulse broadening, diminishing amplitude, and car-
rier frequency modulation (> f. on the leading side
and <f. on the trailing side), Wthh cause an asym
metrical shifting of the envelope, a higher-order dis-
persive effect. These qualitative features of the
effect of anomalous dispersion have been predicted®
but until now have not been computed by directly
integrating Maxwell’s equ tions.

In Fig. 2, we set y¥ = 7 x 1 V/m)~*, whicl
yields a SOll;_ on that retalns 1ts af pllt -de and “T; .
However, a second, low-ampli ' 2.

‘move out and ahead of he main sohton T'hec
frequency of this da,: iter soliton is upshift S Nawr
=49 X 10" Hz, app-; oximately 3.6 times that of the - 4 K J Bl
O
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