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Simple Analytical Solution to Electromagnetic
Scattering by Two-Dimensional Conducting
Object with Edges and Corners: Part I—
TM Polarization

Korada Umashankar, Senior Member, IEEE, Wan Chun, Student Member, IEEE, and
Allen Taflove, Fellow, IEEE

Abstract—A simple and approximate analytical solution is
presented by invoking on-surface radiation condition (OSRC)
theory for the analysis of electromagnetic scattering by a per-
fectly conducting two-dimensional object. The scattering object
is assumed to be placed in a free space medium and is excited by
a time harmonic plane wave having transverse magnetic (TM)
polarization. The closed form analytical result for the mono-
static as well as bistatic radar cross section is approximate and is
useful in many engineering studies. It is applicable only for the
case of a convex shaped conducting object having arbitrary two
dimensional cross section with arbitrary edges and corners.
Canonical scattering objects, such as a triangular shaped scat-
terer and a thin strip scatterer are analyzed for the transverse
magnetic excitation to evaluate usefulness of the analytical re-
sults reported in this paper. Numerical data for the monostatic
as well as the bistatic radar cross section are also presented by
comparing them with respect to the numerical solution obtained
by solving an electric field integral equation based on the method
of moments technique.

[. INTRODUCTION

HERE exist numerous analytical and numerical ap-

proaches for analyzing the electromagnetic scattering by
a perfectly conducting object [11-[7]. Generally, the formula-
tion of the scattering problem is accomplished in terms of
either a differential equation or an integral equation by treat-
ing it as a boundary value problem. The analytical approach
is limited in its application to canonical objects, and for
analyzing practical scattering geometries the numerical ap-
proaches based on the matrix method [3], the finite element
or the finite difference method [7] are widely used. Even
though many analytical and numerical methods are widely
reported [2], [7] in the literature for various class of material
and scattering geometries, still in many engineering applica-
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tions involving electromagnetic scattering studies, there ex-
ists a need for simple analytical tools for the induced electric
current and the corresponding radar cross section of arbitrary
shaped conducting object. The purpose of this paper is to
report a possible approach to obtain simple and approximate
solution (yet form an useful tool for many engineering appli-
cations) of the electromagnetic scattering by a perfectly con-
ducting object having arbitrary edges and corners. The study
reported in the following section is limited to the two-dimen-
sional scattering object placed in a free space medium which
is excited by a time harmonic plane wave having transverse
magnetic (TM) polarization. The analysis is accomplished by
invoking the on-surface radiation condition (OSRC) theory
[8]. It can be noted that the OSRC approach basically utilizes
an additional boundary relationship for the normal derivative
of the scattered electric field which is proportional to the
scattered magnetic field by implementing, in a limit, a higher
order near field radiation boundary condition [9], [10] di-
rectly on the surface of scattering object. In fact, for the
study of scattering by two-dimensional convex conducting
object, the OSRC has exposed [11], [14] substantial simpli-
fication of the usual integral equation for the induced surface
electric current distribution, and it is interesting to note that
claborate numerical approaches are no longer required.

A preliminary OSRC study using the first- and second-order
operators is reported in [8] for the electromagnetic scattering
by a two-dimensional circular conducting scatterer for TM
and transverse electric (TE) plane wave excitations. The
validation data for the induced surface current and the bistatic
radar cross section with the application of second-order OSRC
operator show agreement in the illuminated region for both
the TM and TE excitations. But the results are inconclusive
with respect to very low level field distribution in the deep
shadow region for the TM excitation, and similarly, are
inconclusive to predict creeping wave fields deep in the
shadow region for the TE excitation. In fact, using the third
and fourth higher order OSRC operators a detailed study is
assessed in [14] for the OSRC analysis of scattering by a
circular conducting object for both TM and TE excitations.
Even though a third- or a fourth-order differential equation is
to be solved for the application of higher order OSRC
operators, the ‘investigation [14] predicts the distribution of
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low level fields with the TM excitation, and similarly, pre-
dicts behavior of creeping wave fields deep in the shadow
region with the TE excitation. In a separate study, the
application of second-order OSRC is also extended for the
‘analysis of electromagnetic scattering and penetration by a
homogeneous convex dielectric object [11], [12]. Further, in
the OSRC study reported in [8] for the cases of thin strip and
square scatterer, the dominant effect of the singular electric
currents at the geometric corners are not considered, but only
the physical optics type currents are taken into account in the
calculation of radar cross section.

For considering application to engineering oriented prob-
lems, this paper presents a simple and approximate analysis
to include the additional effects due to radiation from the
sharp corners [4], [6], [14] so that arbitrary cross-sectional
convex geometries consisting of arbitrary edges and corners
can be systematically analyzed. For the scattering geometries
considered, it is shown that the second-order OSRC result for
the induced electric current has a some relevance to the
electric currents of the physical theory of diffraction. Two
canonical conducting objects, such as a triangular shaped
scatterer and a thin strip scatterer are analyzed for the plane
wave excitation with TM polarization to evaluate the simple
and approximate analytical results reported in this paper.
Comparative data for the monostatic as well as the bistatic
radar cross section are also presented by comparing the
second-order OSRC results with respect to the numerical
solution obtained by solving the electric field integral equa-
tion based on the method of moments technique [3]. Similar
analytical study [14] can also be considered for a plane wave
excitation with TE polarization, and is reported separately.

II. FORMULATION—TM POLARIZATION

Let us consider a two-dimensional, convex, conducting
scatterer having an arbitrary cross section with arbitrary
edges and corners. It is excited normally by a TM polarized
plane wave as shown in Fig. 1. The scatterer is assumed to
be uniform in z coordinate direction and the various electric
and magnetic field quantities are independent of the z coordi-
nate variation. The cross section of the arbitrary conducting
scatterer is contained in region 2 and is bounded by a contour
C,. Outside region 2 is region 1 representing an isotropic
free space medium. Referring to Fig. 1, let

(E;f s Ef): scattered electric and magnetic fields in region 1
(E;,H'): incident electric and magnetic fields in region 1.

For the TM polarized excitation, the z component of the

incident plane wave electric field can be written as
Ei(p,qb) - Eoe—jkpcos(¢—¢">
z

(1)
where

k: propagation constant of the free space medium

¢’ incident angle of the exciting TM plane wave.
Further, the z component of scattered electric field [1], [2] in
the regions 1 is obtained by

) = § [9.5) + 75, 7)] as

CS

(2a)
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Fig. 1. Two-dimensional arbitrary shaped convex conducting

scatterer—TM excitation.

OE;(7)

2(55) - 6. Ly
76,7 = - 82D

where the two-dimensional Green’s function

- 1 -
G(p,7) = ;}Héz’(kl p—rl). (2d)
H is the Hankel function of second kind and zero order

On the scatterer boundary contour C, n’ and s’ represent
the normal and the tangential variables along the correspond-
ing unit vectors given by

A =2%"cos ® + ' sind’

(32)
(3b)

&’ is the angle of the normal unit vector with respect to x
coordinate axis

On referring to (2a), the scattered electric field at any point
outside the conducting scatterer can be calculated, if the
scattered electric field and the normal derivative of the
scattered electric field are known along the boundary contour
C,. To determine these two unknown field quantities, the
following two near-field boundary relationships are utilized.
The relationship for the scattered electric field is obtained by
enforcing the regular conducting boundary condition that the
tangential z component of the total electric field is equal to
zero on the boundary contour C;

E}(p) = ~E(F), 7 )

The relationship for the normal derivative of scattered elec-
tric field is obtained by (invoking directly on the boundary
contour C;) the second-order on-surface radiation boundary
condition [8], [10], [14] for the outgoing scattered cylindrical
waves. According to the OSRC approach [8], the axial
component of the scattered electric field at a radial distance p
should satisfy the following outgoing radiation boundary
condition in terms of radial coordinate variables

o

§ = —X'sin®’ + y’cos ®’.

on C,.

S az 'S ; 2 a S
ngz= —")—2sz+ 2Jk+; —a';Ez
3jk 3
+|-2k24+ =+ —|Es=0(p~°?). (52
L e o). 9
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The above second-order OSRC boundary operator yields a
relationship for the normal derivative of scattered electric
field on the conducting scatterer and is given by

IEN(P) |E(s) JE2(S) o
a1 T2 +Jk+mEz(P)
i PEUF)

M 2[k —ji(s)] s (5)

£(s") is the curvature of the osculating circle at location s” on
contour C

aZEi =7 )
_a;(zp')’ = —k?[sin> ®'cos” ¢' + cos? ®'sin’ ¢’
v

—2sin &’ cos ®’ cos ¢’ sin q&i] Ei(P). (5¢)
The two boundary conditions (4) and (5b) for the scattered
electric field and its normal derivative on the contour C; are
now substituted into expressions (2b) and (2c), and the
scattered electric near-field distribution in region 1, expres-
sion (2a), can be calculated for a given arbitrary boundary
contour C,. Further, for the case of TM excitation, the z
directed induced electric current on the conducting scatterer
is directly proportional to the normal derivative of the total
electric field and is given by

~i[9EF) | OEUP)
nk an' an’

J () = (6)
where 7 is the intrinsic impedance of region 1. The far-field
distribution can also be derived using the expression (2a)

with the two-dimensional Green’s function term (2d) replaced
with its large argument approximation.

III. CoNDUCTING TRIANGULAR SCATTERER

To illustrate a procedure to analyze an arbitrary convex
conducting scatterer with edges and corners, and to obtain a
simple analytical solution by performing the integration along
the close boundary contour C, a triangular scattering geome-
try of Fig. 2, with three straight edges and three wedge type
corners is considered. At the sharp corners, there exists a
geometrical discontinuity and thus the curvature of the oscu-
lating circle for the corner region is undefined. In order to
overcome this difficulty, the sharp corners of the scattering
geometry are rounded off [13], [14] by smooth contours, for
example, small circular regions are inserted with a limiting
radius e and centered at the cornmers. A virtual boundary
contour C, is now drawn enclosing the conducting scatterer
such that it is always parallel to the original boundary
contour C and is also drawn tangential to each of the small
limiting circles located at the geometrical sharp corners as
shown in Fig. 2. In a limit as the radius e tends to zero, the
virtual boundary contour C, exactly coincides with the origi-
nal boundary contour C; of the conducting scattering object.
On referring to expression (2) and Fig. 2, the z component
of scattered electric field at any point in the region 1 is given
by

Ei5 _hmf[ypp)n? )l as. (1)
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Fig. 2. Geometry of triangular conducting scatterer—TM excitation.

C, are contour segments FA + AB + BC + CD + DE +
EF where the virtual contour C, enclosing the triangular
scatterer, is split into six segments. The terms in integrand of
the integral expression (7) are completely known in terms of
the geometrical parameters of the scattering object and the
plane wave incident field. Since the radius of the limiting
circle located around the corners, m = 1, 2, and 3, is very
small and in a limit tends to zero, it is assumed that the
integrand of (7) does not vary along the arc length of the
limiting circle. Hence, the integral expression for the scat-
tered electric field distribution in region 1 simplifies to the
sum of two specific terms consisting of the three smooth edge
contributions and the three corner contributions with explicit
dependence on the angle of incidence of TM plane wave
excitation, and is given by

- [, ] fiimssi

LY s

m=1 32]
(k|5 = 3y |) e Thomeon @m0, (8)

By taking the large argument approximation for the Green’s
function (2d), expression (8) can be conveniently simplified
to obtain an analytical solution for the scattered electric far
field distribution. Hence, in the far-field region, (8) yields

- ) HY

e—j?r/4 —jko
E;(p,9) T3 Ay + Z C ]Eo 7 (9a)
A, = + +
° /op /PQ /QO
AEL(P)

™ + jk cos (¢ — <I>’)Ej,:(5’)]

. ejkp’ cos (¢ —¢") ds’ (9b)

) eJ"Yole -1
= Jk{Top + cos (¢ — @5p) } .
JYor
+ jk{Tpg + cos (¢ — @p0)}
I:ejprLzsin 8 _ g-Jvpolising }
. elaroLy

jWPQ
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+ Jjk{Tyo + cos (¢ — D40)}
1 — e JYool2
Jgo |

3 o g ,
Cm = E(.ﬂ. _ Bm)e—Jkp,,,[cosw,,.—d:)—cos(¢m—d>)] (9d)

(%)

and

where the various angular terms are given by
1 . .
Top=1- 2 {sin” ®,,p cos® ¢’ + cos? &, p sin® ¢’
—2sin ®,p cos € cos ¢’ sin ¢’} (10a)
Yop = k[ —cos (¢pp ~ ¢') + cos (¢5p — ¢)] (10b)

1 ;
Tpp=1- > sin? ¢’ (11a)
Ypo = k[ —sin ¢’ + sin (b] (11b)
opg = k[—cos ¢’ + cos qS] cos 8, (11¢)

1 . .

Too=1- 3 {sin® &, cos® ¢° + cos® B sin” ¢
—2sin &5 cos Py, cos ¢’ sin d)i}

Yoo = k[cos (¢00 — ¢') — cos (dpo — )] .

The radar cross section of the conducting triangular scat-
terer can now be calculated using the far-field expression (9a)

E(9) |
Ei(d) | (13)

Similar to the treatment in physical theory of diffraction [4],
[6], the scattered electric field distribution can be viewed as
the contribution from the induced electric currents on the
triangular shaped conducting scatterer. It consists of the
contribution due to currents on the three smooth edges and
the localized currents due to the three corner effects. As can
be seen, the distribution of the electric current due to corner
effects is only approximate. In the context of presenting a
simple and an approximate analytical solution, the corner
effects are considered only due to the dominant curvature
effect, but the remaining minor contribution [15] due to slope
of the radius of curvature is excluded. The z directed in-
duced electric current distribution at any point along the
triangular edge OP is given by

JZ(EI) = JZ(E’) i edge effect + ‘]z(b_’) | corners * El

(12b)

RCS = lim 27p

p—o

on OP.
(14a)

Using (1), (5b), and (6), the electric current due to edge
effect is given by

IE;(7)
an’ ’

—i[E(P)
nk an’

Jz(ﬁl) | edge OP —

5 onOP (14b)

(128)

1 . .
=— [1 -3 {sin’> ®,,p cos® ¢’ + cos” ;p sin® ¢’
n

—2sin @, cos &(,p cos ¢’ sin ¢’}
—cos (®pp — ¢') | EL(Pbp) - (14c)

Further, in (8), the scattered electric field distribution due to
the three wedge type corners can be viewed as the contribu-
tion due to the localized electric current distributions which
principally exist at the three corners m = 1, 2, and 3 of the
scatterer in the form of isolated line sources with weighted
amplitudes corresponding to the internal wedge angle (,, and
the angle of TM incident excitation.

Based on (9a) and (13), Fig. 3(a) shows the monostatic
radar cross section in decibels for the case of a perfectly
conducting triangular scatterer as a function of monostatic
angle ¢ = T + ¢'. For the triangular scatterer, the dimen-
sions are selected as kKL, = kL, = 10 and the angle 3, =
7 /3 which corresponds to an equilateral triangular scatterer.
The OSRC result for the radar cross section shown in Fig.
3(a) is also compared with an alternative numerical solution
obtained based on the electric field integral equation [3] for a
two-dimensional conducting scatterer. The electric field inte-
gral equation is solved using the method of moments numeri-
cal scheme with a resolution of 20 pulse samples for every
half-wavelength. Two types of monostatic comparison data
are presented in Fig. 3(a). If the three corner effects are
excluded, the comparison between OSRC and integral equa-
tion monostatic data is poor for certain incident angles. With
the three corner effects included, a better comparison is
obtained for various excitation angles including broadside
and grazing angles of incidence. Similarly, Fig. 3(b) shows
comparative result for the bistatic radar cross section in
decibels for the same triangular scatterer with broad side
excitation on one edge.

IV. CoNDUCTING THIN STRIP SCATTERER

In order to illustrate further the application of the integral
expression (7) and to obtain a simple analytical solution by
performing the integration along the close boundary contour
C,, a thin strip scattering geometry of Fig. 4 with one
straight edge and two corners is considered. Again, the two
sharp corners of the thin strip scattering geometry are rounded
off [13], [14] by inserting small circular regions with a
limiting radius e and centered at the corners. A virtual
boundary contour C, is now drawn enclosing the thin strip
scatterer such that it is always parallel to the original bound-
ary contour C, and is also drawn tangential to each of the
small limiting circles. Referring to the Fig. 4, in a limit as
the radius e tends to zero, the virtual boundary contour C,
exactly coincides with the original boundary contour C; of
the scattering object. Now, the axial component of scattered
electric field at any point in region 1 is given by

E3(p) = lim fc (7 (5,5) + #(5. )] ds'. (1)

C, are contour segments DA + AB + BC + CD and where
the virtual contour C, enclosing the thin strip scatterer, is
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Fig. 3. Monostatic radar cross section of triangular conducting scatterer

using second-order OSRC—TM excitation. (b) Bistatic radar cross section of
triangular conducting scatterer using second-order OSRC—TM excitation,
¢’ = 180.

split into four segments. The terms in integrand of the
integral expression (15) are completely known in terms of the
geometrical parameters of the thin strip and the plane wave
incident field. Since the radius of the limiting circle located
around a corner is very small and in a limit tends to zero,
again it is assumed that the integrands of (15) do not vary
along the arc length of the limiting circle. Hence, the integral
expression for the scattered electric field distribution in re-
gion 1 simplifies to the sum of two specific terms consisting
of the smooth edge contribution and the two corner contribu-
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Fig. 4. Geometry of thin strip conducting scatterer—TM excitation.

tions, m = 1 and 2, and is given by

UOP /PO] (5.7) + J(5. 7)) ds

3E,
+— Ox Q’(kp)
321

3E, L cos &
+ T HP (k|5 — 5y |)e ke,

32 (16)

By taking the large argument approximation for the Green’s
function (2d), (16) can be conveniently simplified to obtain
an analytical solution for the scattered electric far field
distribution. Hence, in the far-field region, (16) yields

—Jjm /4 e Jke

\/——[A +C, + GlE v/ (

el f,0 )

Ei(p,¢) ~ 17a)

AE( o .
[# + jk cos (¢ — @’)E;(E')]
an
. glkp cos (6 -6 o (17b)
e/vorl _ 1
- a2
JYor
1 — e S0l
+ jk{Tpo + sin ¢} | ——— (17¢)
JYpo
and
3
C=—-x (17d)
C2 — _We—jkL[cos @' —cos @] (176)
where the various angular terms are given by
1 :
Top=1- 5 cos? ¢ (18a)
p = k[ —cos ¢’ + cos d)] (18b)
1 )
Tpo=1- 3 cos? ¢ (19a)
Ypo = k[cos ¢' — cos ¢]. (19b)

The radar cross section of the conducting thin strip scat-
terer can now be calculated using (13). A similar monostatic
radar cross section result is also reported in [13] using elliptic
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coordinates where the virtual contour C, is selected as an
elliptic boundary and the thin strip scatterer is simulated by
taking the limit as the minor axis of the ellipse tending to
zero and the major axis tending to length of the thin strip
scatterer. It is interesting to note that the analytical result
obtained in this section for the thin strip scatterer also can be
verified based on the analytical result of the triangular scat-
terer, (8)-(12), by substituting the side lengths L, = L, = L,
the angles 6, = 0 and 8, = 0. The z directed induced elec-
tric current distribution at any point on the strip is given by

JZ(E,) = {Jiﬁ(ﬁ,) - Jz+(ﬁl)} |edgeeffect + Jz(El) I corners

p onstrip. (20a)

Again, the scattered electric field distribution can be viewed
as the contribution from the induced electric currents on the
thin strip conducting scatterer. It consists of the contribution
due to currents on two sides of the smooth edge and the
currents due to the two corner effects. As discussed earlier,
in the context of presenting a simple and an approximate
analytical solution, the corner effects are considered only due
to the dominant curvature effect, but the remaining minor
contribution [15] due to slope of the radius of curvature is
excluded. Using (1), (5b), and (6), the electric current distri-
bution on the thin strip scatterer is calculated as the difference
between the induced current on the bottom contour AB and
the top contour CD in a limit as e tends to zero, and is given
by

o _ —J[ENR) | 3E(R)
z(P)'edgeOP_W on' + an ’
p onOA,_+ OA .
2E Y
= 22 sin gl ke 05, (20b)
n

In (16), the scattered electric field distribution due to the two
wedge type corners can be viewed as the contribution due to
the electric current distribution which principally exists at the
two corners m = 1 and 2 of the scatterer in the form of
isolated line sources with weighted amplitudes corresponding
to the internal wedge angles and the angle of TM incident
excitation. Based on (13) and (17a), Fig. 5(a) shows the
monostatic radar cross section in decibels for the case of a
perfectly conducting thin strip scatterer as a function of
monostatic angle ¢ = = + ¢’. The dimension of the strip
scatterer is selected as kL = 10 and the angle 8, = 0. The
OSRC result for the radar cross section shown in the Fig.
5(a) is also compared with the numerical solution obtained
based on the electric field integral equation [3]. The electric
field integral equation is solved using the method of moments
numerical scheme with a resolution of 20 pulse samples for
every half-wavelength. Two types of monostatic comparison
data are presented in Fig. 5(a). If the two corner effects are
excluded, the comparison between OSRC and integral equa-
tion monostatic data is poor for certain incident angles. With
the two corner effects included, a better comparison is ob-
tained for various excitation angles including broadside and
grazing angles of incidence. Similarly, Fig. 5(b) shows com-

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 39, NO. 12, DECEMBER 1991

20

15} ~ EFIE/MOM ‘

10r . osrcwiTH A #
st CORNER EFFECTS A
ot ;

RCS (monostatic) in dB
o

20}
251 '

- STRIP
-30T : SCATTERER
35T kL =10
40t
-45}

e e Yy e
180 190 200 210 220 230 240 250 260 270

¢ (monostatic angle)
(a)

20
P EFIE / MOM )
OSRC
0[N\, OSRCWITH /
sl CORNER EFFECTS j
ot
3 s}
£
= 1o} -
L :
5 .5l . STRIP
2 SCATTERER
£ 20
3 )
-25
o !
30 \1'—— kL =10
vy 1:90
-35
-40
-45

5:10 110 130 150 170 190 210 230 250 270
¢ (bistatic angle)
®)
Fig. 5. Monostatic radar cross section of thin strip conducting scatterer
using second-order OSRC—TM excitation. (b) Bistatic radar cross section of

thin strip conducting scatterer using second-order OSRC—TM excitation,
¢' = 90. ’

parative result for the bistatic radar cross section in decibels
for the same thin strip scatterer with broad side excitation.

V. CoNcCLUSION

With engineering applications in mind, this paper pre-
sented a simple and an approximate analytical solution for the
analysis of electromagnetic scattering by a perfectly conduct-
ing two dimensional object by invoking on-surface radiation
condition theory. The close form analytical result for the
induced electric current distribution and the radar cross sec-
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tion is applicable to the case of a convex conducting object
having two dimensional cross section with arbitrary edges
and corners. Canonical scattering objects, such as, a triangu-
lar shaped scatterer and a thin strip scatterer are analyzed,
and numerical data concerning both the monostatic and the
bistatic radar cross section for the transverse magnetic excita-
tion are presented with comparison to assess usefulness of the
results. Similar study of the two dimensional conducting
scatterer is also undertaken for the transverse electric excita-
tion and is reported separately.
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