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- We report the initial results for femtosecond pulse propagation and scattering interactions for a Lorentz
medium obtained by a direct time integration of Maxwell’s equations. The computational approach provides
reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10'° Hz
for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and
Brillouin precursors are shown and compared with previous analyses. The present approach is robust and per-
mits two-dimensional and three-dimensional electromagnetic pulse propagation directly from the full-vector

Maxwell’s equations.

A pulse propagating in a dispersive medium such as

an optical fiber exhibits complicated behavior. It is

of interest to have an accurate numerical model for
this behavior as well as for other electromagnetic in-
teractions with frequency-dependent materials.
The finite-difference time-domain (FD-TD)
method is a numerical technique for direct time in-
tegration of Maxwell’s equations.”™ It is a compu-
tationally efficient approach to modeling sinusoidal
- or impulsive electromagnetic interactions with arbi-

trary three-dimensional structures consisting of

linear, possibly anisotropic, lossy dielectric and
permeable media with frequency-independent
parameters. It has been used for predicting elec-
tromagnetic wave scattering, penetration, and radi-
ation for a variety of problems.” Recently, the
range of FD-TD modeling applications has been sub-
stantially expanded to include ultra-high-speed sig-
nal lines,® subpicosecond electro- optlc switches,’ and
linear optlcal directional couplers.®

Attempts have been made to extend FD-TD to
frequency-dependent materials. Chromatic disper-
sion can be expressed in the time domain as a convo-

lution integral involving the electric field and a

causal susceptibility function. This convolution
integral can be efficiently incorporated into the .FD-
TD algorithm for a first-order (Debye) dispersion.’
In this Letter we present a more general approach
that permits modeling of media havmg arbitrary-
order dispersions.
suggestion by Jackson (Ref. 10, p. 331) to relate the
electric displacement D(¢) to the electric field E(Z)
through an ordinary differential equation in time.
We consider a one-dimensional problem with field
components E, and H, propagating in the x direc-
tion. If we assume first that the medium is nonper-
meable, isotropic, and nondispersive, Maxwell’s curl
equations in one dimension are '
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grating an ordinary differential equation in time

~ that relates D,(¢) to E.(t). As suggested by Jackson,
Our approach is based on a

oH, _ 1 E, 1a)

of Mo ax _
oD, _ JH, (1b)
. ot ax x

Here D, = ¢E,, where the permittivity ¢ is indepen-
dent of frequency. Using central differencing in
time and space,’ we can express the curl equations

‘in finite-difference form as the following second-

order accurate leapfrog algorithm:

H 9y + 3 = H"36 + 3)
At . .
+ [E."(i + 1) — E."(1)], (2a)
Mo Ax
E n+1(i) = K n(l) + Al [H n+-—21-(l + ..l..)
e ? cAx -7 2

- H":( - 3)], (2b)

where E."(1) denotes the electric field sampled at
space point x = 1tAx and time point ¢ = n At.
(Please refer to Ref. 2 for the proper numerical sta-
bility criterion.)

For many dispersive media of interest, however,
e = ¢(w). We propose to include this frequency de-
pendence in the FD-TD model by concurrently inte-

this equation 1s derived by taking the inverse
Fourier transform of the complex permittivity
expression, ’

D(w)
E(w)

For an order-M dispersion, the computational model

e(w) =

~(9)

- now becomes a three-step recursive process that re-
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tains the fully explicit nature of the original disper- 1

sionless FD-TD formulation,
H 3G + 3 = H 3 + )
At

T P'fo Ax

D) + 4oL + 3)

[E."(i + 1) — E.*(i)], (4a)

Dzn+1(i) —

~ H*3(G — )], (4b)
Dzn—M + 1; Ezn’ el Ezn—M+1) .
(4c)

At any time step n, this method requlres storage of
M previous values of D, and M — 1 previous values
of E, beyond the current field values. The approach
will be made clear by the following examples:

E;"*Ni) = f(D,...,

Example 1: A flrst-order (Debye) dispersion can

be specified by

D (a)) o
Elo) (9)
where ¢, = £(0), €., = &(®), and 7 is the Debyerelax-

ation time constant. If we take the inverse Fourier
transform of Eq. (5) as defined by

f0) = | Foesp(-jondo,  (©)

the result 1s a first-order differential equatlon in
time relating D, and E,,

dD, E + dEz
e T Tt gy

83."‘"‘8&

8((0) = Eo T

1 — jan'

(7)

This dlfferentlal equatlon can be easily differenced

to solve for E,”*' in terms of known values of E, and
D, for insertion into Eq. (4c¢),

At + 2 At — 21 ~
nt+lery . n+1 ngs:
& - (2) - 2Te. + €, AL D: _ (l) + 2T + esAt .(l)
. . 27800 — &g At .
+ ————— E."(i).
ore. + oAz 2 ). (8)

Example 2: A second-order (Lorentz) dispersion
can be specified by

2
@ = o — 2B =) Do) g
e(w) = €x 0 + 2j0d — w? z(a)) (9)

quency, and é is the damping coefficient. Figure 1
shows the relative permittivity curve for a Lorentz
medium that has the following parameters o

= 2. 2580, Ex = €0, Wo = 4.0 X 1016 rad/s T

6 = 0.28 x 10" s71.

lating D, and E.:

dD, d2D; o dE,
dt dt2 — Wo SsEz + 268m dt

W o

- d?E,
+ Eo

L teegg (10)

from dc to 3 x 10*° Hz. .
step (At = 2.0 x 107'° 5) at a fixed observation point

where ¢, = £(0), €., = &(®), w, is the resonant fre-

Inverse Fourier transformation of Eq. (9) results in
the following second-order dif ferentlal equatlon re-
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This differential equation can be easily differenced
to solve for E,"*" in terms of known values of E, and
D, for insertion into Eq. (4c¢),

E,"" = [(wo*At? + 26 At + 2)D,**' — 4D,"
+ (wo® At® — 26At + 2)D," + 4¢,E,"
— (wo”“ At’e, — 26 Ate.. + 2¢,)E,* ']/
(wo° Atles + 20 Ate. + 2¢.). (11)

We first demonstrate the accuracy of this method
by computing the wideband reflection coefficient for
a planar interface between vacuum and a half-space
made of the Lorentz medium of Fig. 1. A single
0.2-fs duration Gaussian pulse (between the 1/e
points) is normally incident upon the interface.
This pulse has a spectrum that covers the full range
Data are taken every time

on the vacuum side of the interface. The FD-TD
computed complex-valued reflection coefficient is
obtained by taking the ratio of the discrete Fourier
transforms of the reflected and incident pulses.
Figure 2 compares the magnitude and phase of this
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Fig. 1 Complex permittivity of the Lorentz medium

with parameters e, = 2.25¢&¢, €0 = €9, wg = 4.0 X
10"° rad/s, and 6 = 0.28 x 10'® 571
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- Fig. 2 Comparlson of FD-TD and exact results from dec

to 3 X 10 Hz for the magnitude and phase of the reflec-
tion coefficient of a half-space made of the Lorentz

' medlum of Fig. 1.
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Fig. 3. Comparison of FD-TD, asymptotic,'® and Laplace-
transform' results for the Sommerfeld precursor ob-
served at x = 1 um in the Lorentz medium of Fig. 1 for a
- unit-step modulated sinusoidal excitation (w, = 1.0 X

10" rad/s) at x = 0. '
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Fig. 4. FD-TD results for the total signal (including the

Brillouin precursor) at x = 10 um in the Lorentz medium
of Fig. 1 for the unit-step modulated sinusoidal excitation.

reflection coefficient as a function of frequency to
the exact solution (Ref. 10, p. 282). The deviation
from the exact solution over the complete range of dc
to 3 x 10" Hz is less than 6 parts in 10,000. (This
6/10,000 error occurs at the peak of the reflection
magnitude curve.) . . N

The time integration of Maxwell’s equations per-
mits the computation of a pulse propagating in a
dispersive medium at any space-time point. His-
torically, such pulse dynamics have been obtained

only by asymptotic analyses, notably by Sommer-
feld" and Brillouin'® in 1914. More recently, ad-
vances in uniform asymptotic analysis for such
problems have been made by Oughstun and Sher-

manlil and in Laplace transform analysis by Wyns
et al. . _
To demonstrate the integration of Maxwell’s equa-

tions to obtain pulse dynamics, we now use the FD-

TD method to compute the precursor fields for a
unit-step modulated sinusoidal signal propagating
in the Lorentz medium discussed in Figs. 1 and 2.

rier frequency w, is 10" rad/s. Figure 3 compares
the FD-TD computed Sommerfeld precursor ob-

Now the signal source is located at x = 0. The car-
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served at x = 1 um to the asymptotic'® and Laplace-
transform™ predictions. Much closer agreement
with the Laplace-transform calculation is noted.
Extensive numerical convergence studies of the FD-
I'D results indicate that the zero crossings of the
precursor converge quickly (at relatively coarse grid
resolutions), while the envelope converges more
slowly to a limiting distribution. Overall, we
believe that the FD-TD computed envelope distribu-
tion shown in Fig. 3 is within 3% of the limiting dis-
tribution obtained at infinitely fine grid resolution.
For completeness, Fig. 4 shows the total signal at

x = 10 pm in the Lorentz medium computed with

the FD-TD method. This includes the Brillouin

precursor. These results are again somewhat dif-
ferent from the asymptotic results reported in
Ref. 13, yet the FD-TD calculations here exhibit at
least the same degree of convergence as those of
Fig. 3. . .

The method of this Letter should be directly ap-
plicable to full-vector electromagnetic pulse propa-
gation and scattering effects for inhomogeneous
dispersive media in two and three dimensions. We
foresee the possibility of incorporating material
nonlinearity to obtain the dynamics of soliton propa-
gation and scattering directly from the time-depen-
dent Maxwell’s equations. '
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