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Abstract—This paper analyzes for the first time electromag-

netic wave penetration and scattering interactions for a material

half-space having sinusoidally time-varying conductivity. Two
limiting cases are considered. The first assumes that the material
conductivity is almost a constant with a small temporal pertur-
bation. The problem is accordingly attacked with first-order
perturbation methods. The second exploits a large dimensionless
parameter and yields an asymptotic expansion of the field inside

a highly conducting material undergoing sinusoidal time varia- -

tion. Illustrative examples are given which agree well with nu-
merically obtained finite-difference time-domain (FDTD) results.

I. INTRODUCTION

LECTROMAGNETIC wave propagatlon and scattering
interactions with media having time-varying parameters
has been extensively studied. However, most published work
considers only time-varying permittivity or permeability

volumetric conductivity resulting from a nuclear burst, atmo-
spheric fluctuations, or other environmental -changes can

 face conductivity can affect the fields that are radiated and
scattered from objects. These phenomena can be exploited
for engineering benefit if appropriate understanding could be
developed. ~
Scattering = problems involving media with temporally
and /or spatially varying permittivity have been analyzed

using Mathieu functions [1] and Floquet representations [5],
[6]. Although a general Floquet representation is possible for

a medium with time-varying conductivity, the resulting re-
cursive relation describing the modal amplitudes 1s very
complicated and difficult to solve. Here, 1t 1s no longer
possible to obtain a Mathieu type differential equation, re-
gardless of the assumed conductivity variation. .

~ In this paper, we consider the scattering and propagation

periodic function of time alone. The emphasis is on the
. mathematical tools utilized to obtain an approximate solution. -
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[11-[4], and not time-varying conductivity. Yet, time-varying

markedly affect wave propagation. Further, time-varying sur-

~ to study the short-term behavior of parabolic equations. In

problem for a material half-space whose conductivity is a
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A physical interpretation of the final results is also presented.

To verify our analytical results, comparison is made when-
ever possible, against purely numerical results generated by a

finite-difference time-domain (FDTD) method [7]. Finally,

and to further verify our results, the analysis is checked in
the limit of constant conductivity both analytically and nu-
merically. The incident radiation is a step-modulated tlme-b

harmonic plane wave of frequency w,;. To enable an approxi-
mate mathematical result, we analyze two different cases and |
limits. In Case 1, the conductivity is given by o(Z) = gy(1 +
ef(1)), where o, is a reference conduct1v1ty, is the ampli-
tude of the modulatlon and f(¢) is a periodic function of
time with period w,. We develop an asymptotic approxima-
tion of the fields in the limit as € = 0 with ¢, and w, held
fixed. This results in 81mp1e expressions that agree well with

FDTD results.

In Case 2, the conduct1v1ty is 1ven by a(t) = 0, / 1+
e f(1)], but now € and w, are fixed while g, — o. Here, the

material half-space is hi ghly conductive with a substantial

time variation. We develop two asymptotic schemes for

analyzing this limit. To obtain the scattered field, we apply a
boundary layer analysis for the material region close to the
interface. To obtain the fields within the material, we apply
(with some modifications) a method developed by Lewis [8]

the present context, we assume that the fields within the
material are proportional to the product of a slowly changing

- amplitude and a rapidly decaying exponential. The determi-
- nation of the exponent and the amplitude parallels classical
- geometrical optics in as much as a nonlinear first-order

partial differential eikonal equation determines the exponent
and a ‘‘transport’’ equation determines the amplitude. We
obtain space-time rays, which carry the wave into the half-

- space. This representation breaks down near the interface.

However, this nonuniformity can be removed by matching
the ‘‘ray’’ solution to the boundary layer solution mentioned
above [12]. _

The remainder of the paper is organized as follows. Sec-
tion II defines the problem and introduces the dimensionless
quantities of interest. Section III analyzes Case 1, the half-
space with slightly modulated conductivity. Section IV pre-
sents the two analyses for Case 2 and determines the scat-
tered field in the large-conductivity limit. Section V describes

“the matching of the asymptotic solutions of Case 2. Finally,
“Section VI summarizes the various results and conclusions.

0018-926X/91/0700-0898$01.00 © 1991 IEEE
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1. PROBLEM DEFINITION o

A plane electromagnetrc wave travehng in the + x drrec-- '

tion is normally incident on a material half-spacc with a

time-varying conductrvrty o(t) = o f (vt) (see Flg 1. The_

partial differential equation describing the normalized wave
clcctrrc ﬁeld in the mcdlum Q0= E / E0 , is grvcn by

. Jlﬂxx""‘ Qtt T a(Qf)t,

kx', t = w;t’; kK and w; are, respcctrvcly . the free space
'wavenumber and the 1ncrdent ‘wave frequency , and where o

and y are dimensionless parameters defined by o = 0, /€qw;,
y = w, /w;. Here, the primes denote the dimensioned quanti-

ties and E, is the amplitude of the incident wave Parameter
o 1S denoted as the material dissipation factor.

grven by

—

E=E{U(t - x)H(t - x xo) + Usc(x 0}z,

1dent1fy1ng H as the Heavrsrdc step functlon, Uir = U (t -
x)H(t — x — x;) as the incident field, and U* as the scat-
tered field. Throu ghout this paper, we assume a smusordal

dependence of the 1nc1dcnt wave,

U(t—x) = sin(t - x - %) . (3)

The rcqulred contrnurty of the tangentral E and H ﬁelds at '

- the medium interface and the form of (2) grves the followmg
boundary condrtron for () at X = = 0: S

(0 t)--.

In_addrtron to (4), 13 must be an outgoing wave at X = o and
satisfy the initial conditions '

(x>0,0) = ,(x>o o)....o

g

1 These initial conditions are duc to the Heav 1side step functron

at x = —X, at time ¢ = 0.

form solution for any time-periodic conductrvrty We shall,

therefore, develop asymptotic approximations to the fields for
‘the two separate cases described in the introduction, and
validate these approxrmatrons using the purely numerrcal

FDTD method.

/ Half-space medium with
Plane wave incident on a half- space media wrth a time-varying

problem is grvcn by

Q- QOx = 2H(t — x,) cos (t — xo)

where X and ¢ are d1mens1on1ess varrablcs deﬁned by x =

‘We assume that the total ﬁeld m free space x < O 1s where the 1nterval [0, 1] deﬁnes a branch cut in the complex

- Qo =

(4) T - *
o ( | ) | whrch now has a forced term due to Q 0 and the prcsence of
 the modulated conductivity. Again, this problem can be

present in the incident field, and 1mply that thc wavefront is

‘The 1nitial boundary value problem (1) (5) has no closed- ‘

~ III. CasE 1: PERTURBATION ANALYSIS FOR THE
- Low-AMPLITUDE CONDUCTIVITY VARIATION

~In this section, we consrder half- space conductrvrty varia-
tlons of the form . .

o) = ool +esin(vt+¥))  (6)

where ¢ < 1 and y is a phase shift. We first assume that Q is
‘given inside the medium by the regular perturbation expan-

sion

Q(x t)-—-Q +eQ, + €20, + , x>0 (7)

Inscrtlng this expansron into (l) 4), and (5) and equatmg to

zero the coefficients of the powers of ¢, we obtain an infinite

set of differential equations, boundary conditions, and initial
data which sequentrally deternune the Q The zero- ordcr

x>0 (8
x=0 (9)
o)

QOxx = Qou + aQO,,

- Q, —QO,-—-O t-—O

- The complete solution of this problem can be obtained by

transform methods because the conductivity bias g, is con-
stant. Thc transient solutron 1S grvcn by the integral

2a 3 e""“”t /v -

® Jo 1"‘0‘ v

(11)

planc of 1ntegratlon The ‘“ Steady-state’ ' g olutr onas £ = oo is
grvcn by ' .

2
[(1 - 'Yr) + 7:2] - ? -
\/ joa — 1 isthe complcx propagation

cos (t + 'y,x + ga) (12)

where v = v, + Jv; =

~ constant. The phase shrft «,o 1s 1ntroduced by the complex
nature of v. - o e
~ The ﬁrst-order problem for 91 is grven by

Q= ol,, + aQ,, + asin vtoo, + v cos vtﬂo (13)
" - ol, — olx... 0, x=0 - (14)
Q= ol, =0, [ t = 0' (15)

solved completely by transform tcchmques The stcady -state

* rcsult can be shown to bc

| JQI __2__ Re {[k e'yx + Aeox] ej(v-l-l)t _

[k2 e + BeB"] ef(1 ! } (16)

: ozr - v + 1
Rt

2 (7] :
[J(v+ 1) -'v] '
- d [5 EDE

o ' (117)

A

(13)



(20)

bias g,, and is equal to 2 /Il + Vje—-1]1.

To find the scattered field, we assume again a solution of

the form

,UsC..__.; UOSC+ GUiSC + 62U23c + o

that each U,° term satisfies a homogeneous wave equation in
free space, the zero-order steady-state scattered field can be
shown to be '

| Uo™ =Re"pef(‘+“x) B
whero p is the reflection coeflicient due to the constant bias
00_9 . ‘
o 1 - Vja-1
p =
1+ \/Ja—+_

‘The ﬁrst-order steady -state scattered ﬁeld can be shown to
equal

o

Ulsc __2__ Re {[k + A] ej(v+1)(x+t)

+ [k + B] ef<1 "><x+‘>} (24)

where kl, A, k2, B are deﬁned above .

- We now compare the total scattered field amplitude ob-
tained (to order e 2) from 21)-(24) to purely numerical
‘results obtained using FDTD. Fig. 2 shows the variation of

the scattered-field amplitude at the illumination frequency

versus the initial phase shift (g(/) between the 1ncrdent wave

and the time-varying conductivity for g, = 1, ¢ = 0.2, and
v = 2 and 3. The first-order approximation is seen to agree
very well with the FDTD results. We also see that for » = 2,
i.e., w, = 2w,, there exists an amplitude dependence on the
1n1t1al phase shift. (The same behavior will also be observed
in Section IV with the asymptotic result.) For » = 3 and
other values of » # 2 (not shown here), there is no amphtude
‘ dependence on phase shift. This is found to be true even for
values quite close to 2, as for example » = 2.1. This strongly
suggests an interference effect that occurs only for conductiv-
ity variations at twice the incident frequency Such an effect
at v = 2 is plausible since the scattered field at the boundary
involve a zero-order term like cos (¢ + ¢) and a first-order

term like cos ((v — 1)¢). For » = 2 these two terms can then
add up to result in a reflected field amplitude at the illumina-

tion frequency that varies wrth the phase ¥ and i1s 2«
penodlc ‘

- (19)

and Re denotes the real part of a complex number. The new
variable 7 is the transmission coefficient due to a constant

_. (21) -

From the continuity of the field at the boundary and the fact

@)
' (23) -

1n Sectlon IV-A.
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Fig. 2. Reflected field amplitude at the illumination frequency versus the

initial phase shift ¢ as obtained both by FDTD and the first-order perturba-
tion analysis.

-

IV. CASE 2: BOUNDARY LAYER ANALYSIS FOR THE
TIME-VARIABLE HIGHLY CONDUCTING HALF-SPACE

‘In this section, we consider half-space conductivity varia-
tions of the form o(#) = 0,/1 + esin(v? + ) in the limit

of large conductivity; i.e,. o, = o with » and ¢ fixed. If we

wish only to determine the scattered field, the required

“information can be obtained by analysis of the structure of

the half-space field within the first few skin depths. In terms
of the dimensionless distance x, this corresponds to Xx =
1/Va . The analysis of this ‘boundary-layer’ ’ is carried out

If, on the other hand ‘'we require detarled knowledge of the '
field penetrating the time varying conductor, a different type
of field expansion is needed. In Section IV-B, an asymptotic

- approximation is constructed which is strictly valid for x »

1/Va and ¢t » 1/«. This approximation becomes invalid
near x = O for all time, where the boundary layer expansion
of Section IV-A becomes valid. However, both representa-

tions are valid in a small region, and this permits the expan-
“sions to be matched. '

Finally, we observe that both ﬁeld expansrons become
1nva11d near x =t = 0. In Section V, we will perform a

local analysis and show that it matches into the other repre-
sentatlons - -

A. The Boundary Layer Near x =20

_ We be grn by mtroducmg the stretched (or boundary layer)
varlable X¥ = Vax (which we take to be of order unity) into
(1) and (4). We obtarn

x>0 (25)

(26)

For large o, we as sume that Q has the asymptotic representa-
ton ' , c T . T el

at x = 0.

m=o 1 '
= Y — 0 27
_ ;l Wro (27)



Substituting this ansatz in (25) and (26) and equatmg to zero'

the coefficients of the powers of Voo, we obtain an infinite
set of boundary value problems which 'sequentially determine

the {1 . Since we are only interested in a leadin g-order term,
we restnct our attentlon to {2,. It satisfies

15 = (2,), (29
=g(1) (29)
{2 (55 0) lt(x 0) = 0 (30)

where (30) follows from (5) and (27) By performlng the
following charige of variables ~

Q,(x,1)f(t) = Vi(X,1) (31)
reodt .

f = | —— ' ' (32

- e ) @)

we transform (28)-(30)to =~ R
le."f= -12’ £>O . (33) .

1,?-—-11(5) x--O s>o - (34)

-V--O -atE 0 (35)

verse of (32). This is a diffusion equatton and we have

accordingly only prescribed one homo geneous piece of initial
data, (35). The solution to (3 3) can not satlsfy the second
= 0 at Y = 0. This gives rise
to a nonumforrmty in (27) wh1ch we resolve 1n Section V. It
is therefore seen that for large « the equation takes the form
of a diffusion equation. This is in accordance with the general

condition in (30), namely V1 |

approach to solve Maxwell’s equations with large «. Here

conduction current. This leads to a diffusion equatron in

electric field. The amblgurty as to how cani we match a

propagating wave solution in region I to a diffu

agating) wave solutlon in region II will become clear later.

As mentioned in the beglnnln g of Section IV this solution is
valid only in a region of order l/a and breaks down at

x=t=0. | .
The solution of (33) is readlly found by transform or
Green S functlon techmques [9] - o

. _1
Vl("?ae) =

When X > 1, so that we are beglnnlng to penetrate several
skin depths into the materlal (36) reduces to

23/2 )

1(x 5) —— e 4

x

(37)

as we can show by integrating (36) by parts Thus for a fixed

t (and hence £), the field decays as a Gaussran dlstrlbutlon
The value of V, at x=01s glven by S

21 e h(E
1(0 E) \/—1;_'/0""'”""(“““‘2“"515 -

. (33)
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‘ proceed further with our analysis. In this case h(£) is

where h(E) = g(t(‘.;’))f(t(&)) and t(€) is glven by the in-

‘in the statement of (33). Thus, as ¢ = o we have £ .
Now, in this llnut (42) s1mphﬁes to

sing (nonprop-

901

and 1s needed to deterrmne the scattered field. Its evaluatlon '
can be done, in principle, by numerical quadrature. How-
ever, if » 1s an integer, or the reciprocal of an integer (so that
»w, and w; are harmonically related frequencies), we can

perlodlc functlon of £ and can be written as

(39)

h(E)-—-Zce’

wherc the coeﬂiclents c, are deﬁned by
S n2, R 2«ne

.n T jg h(g)eﬂj

The parameter (1s a perlod of h(¢). By 1ntroduc1ng t as the
variable of inte gratlon via (32), (40) becomes

- @

at.

- 2wn(t)

O (a1)

where T is the perlod of h as a function of ¢. -

We now introduce (39) itito (38) and 1nterchange the order
of integration and summation. We obtaln after a change of
vanables in the integral ‘

oo

z

n=oo

2 g_

nw

(42)

VI(O, E) = 2"””"" F(Zmr )

where F 1s the Fresnel 1ntegral deﬁned here by

F(s) _ [ " . (43)

. ‘ / S eI dp

Slnce the conductlvrty functlon J( t) 1S pos1t1ve S(t) mono-

the dlsplacement current is neglected with re spect to the - tonically 1 increases with ¢, a fact that we have taken 1rnp11c1tly

£a3) e

- (#5)

It should be noted here that at x O and t = oo the solutron
form for V given by (44) is osc1llat1ng in time. This
osc1llatlon 1S neccssary to match the propagatrng solution to
the drffuswe equation at the boundary x = 0 between the two
‘regions. Finally, we combine (44), (27), (28), and (2) with
the fact that E is contlnuous at x =x =0 to obtaln -

- '1 ‘ Vl(_O ’5(1))

US"(O t) - —sin? 4+ —= + O(l/a) (46)

‘where O(1 /a) denotes the remarmng terms in (27) Slnce the
scattered field satisfies the wave equation for x < 0, it must

- be a function of the argurnent x + t. Thus, the scattered field

is given for large time and for x < 0 by (46) w1th t replaced

- by (¢ +x)
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Fig. 4. " Reflected field amphtudc at illumination frequency versus initial
‘phase as obtained both asymptottcally and by FDTD for v =3, gy = 3, and

o= 5.

To illustrate how these results can be applied to a speciﬁc _

problem, we shall cons1der the spcc1al case where

EChE e A

For this partlcular ch01cc of f (1), thc varlable E deﬁned in
(32) is given exp11c1tly by

2 =t+ -E(cosd — Cos (Bt+ \I/)) (48)
" ThlS can be inserted into (41) to detcrrmnc the c,. The

integrals are reminiscent of Bessel functions and can be

~ numerically 1ntegrated Combmmg these results Wlth (44) we
- can deduce the surface value of the scattered field.

Figs. 3 and 4 show the results obtained by both FDTD and

the above analy31s wnh €e=0.6 and » = -2 and 3. The
Fourier senes summatlon glven by (44) was computed nu-

Fig. 3. Reﬁcctcd field amplltudc at illumination frequency versus 1n1t1al '

bands as obtained by FDTD and the above analysis for two

B Deeper Penetratzon in to the Tlme- Variable Half Space

o(t)=1/(1 +O.23in(2t+2ﬂ/5))

“©

o  100g a=18, 0,=1

o . '

= 3 S

- | )

- 0.1 "

o 0.01 5

@ 1o FD-TD value :
3 0.001 3 7 Analyitcal values ,

- 0 2 4 6 8 10
§ Normohzed spotnol frequency we/ w;

F1g 5. Reﬂected field spcctrum as obtained both asymptotlcally and by

FDTDforv-2 00 - 1, anda- 18.

o(t) 3/(1 +Q. 6S|n(0 5t+7r/1 O))

I

(% . =54, O, ---3
g '

< 10 o

% .; \ Q -_- .. 9 .

c 1

CEJ X °

5 0.1 = .

0.01 o FD—TD values _

‘§ 3] x Andlytical values
“go 001 ~+r—rr—rr—rrrr T
= 0 1 2 3 4
,Zo Normalized spotlol frequency we/w;

' Fig. 6 Rcﬂectcd field spectrum as obtained both asymptoucally and by

FDTD for » = 0.5, oo=3 and a = 54.

merlcally by taklng up to 50 terms. The cocﬂimcnts c, are

computed from integrating (41) using Simpson’s rule. We

observe agam from Fig. 4 the interference effect occurring at
only y = 2. .
Figs. 5 and 6 cornpare the scattered field spectrum side-

dtfferent values of v and «a. ‘Here, the field magnitude is
given in percentage. As o 1ncreases, the correspondence
- between both results nnprovcs This is to be expectcd for an
- asymptotic large-a solution.

Tables I-III list the ammnude of the scattered field spec-

trum sidebands for fixed values of o = 54, » = 1, and three

different values of amplitude modulations € = 0.2, 0.6, 0.8.
In all cases, a good agreement 1s shown between the analyti-

‘cal and FDTD numerical results. The degree of agreement 1S

seen to be 1ndepcndent of the ch01cc of €.

Fi g. 7 is a schcmatlc dlagram of the dtfferent boundary

. layers prcscnt in space-time coordinates for our problem. In
‘the previous section, we solved for the field in a thin layer
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Fig. 7. Boundary-layers in a media with a time-varying conductivity. A:

parameter solutlon

TABLE I

FOURIER COMPONENTS OF THE REFLECTED SIGNAL FOR € = O 8, ao =3, a=54

AND Vv = 1 AS OBTAINED ANALYTICALLY AND NUMERICALLY

FDTD Value _

Frequency Analytlcal Value
w,l _ 84 772 84.737

w; + 1o, 16.3494 7.8026
w; + 20, 0.9818 " 0.9974

0 + 30, 0.2184 T 02252
0; + 4w, " 0.0565 0.0626

0; + 5w, 0.0162 0.0196

w; + 6w, 0.0062 0.0074

TABLE II

FOURIER COMPONENTS OF THE REFLECTED SIGNAL FOR € = 0. 6 oo
AND » = 1 AS OBTAINED ANALYTICALLY AND NUMERICALLY

FDTD Value

Diffusion solution, B: osc111at1ng solutlon C propagatmg solution, D: large

3 a—-54

~ (the analogs of rays) which are everywhere orthogonal to the

Frequency Analyttcal Value
_ w,-_ ' ' - 83.951 83.923
w; + 1o, 42760 52934
w0 + 2w, 04478 0.4397
w; + 3w, 0.0687 ~ 0.0668
w; + 4, 0.0123 - 00126
0, + 5w, T 0.0257 T 0.0274
TABLE III

FouriER COMPONENTS OF THE REFLECTED SIGNAL FOR € = 0.2, 6 =3, a= - 54

AND » = 1 AS OBTAINED ANALYTICALLY AND NUMERICALLY -

Frequency Analytrcal Value _ FDTD Value ,
e 82961 83.116 _
w; +lw, - 1.2882 - 16106
 w;+ 20, - 0.0421 ' - 0.0401
w; + 30, T 00197 - 00191
oW+ 4o, o 0002 - 0.0001

around x = 0. ThlS is represented in F1 g. 7 by the e gron

labeled as A ‘Here the form of solution is diffusive. En-
closed in region A is the boundary region, labeled B, where
‘the solution is oscillating in time. Still, both regions A and B

“do not result in a propagating solution. But, a propagating

solution in the conductive region is seen to originate from
region C next to the space time origin where the solution

- form in regions A and B are not valid. In this section, we

shall seek a solution for the fields in region D, away from the
thin layer, where x > 0. Later, in Section V, we will match

- the solution forms in regions C and D.

To obtain an accurate approximation of the exponentially
small fields in this region, we employ an analysis similar to
that found in geometrical optics. We assume that the field is
of the form '

Q= e"“‘b(x”)[A(x, t) + O(—-—)}. (49)
] . o o .

As o — o, This representation 1s formally valid except in
boundary layers and near caustics, if they exist. We note here
the similarity with a ray analysis or high-frequency method,

‘where instead of the wavenumber kX, we now have «.

Substituting (49) 1nto (1) and equating coeﬂicrents of like
powcrs of o, We obtam to two orders iIn o«

- , V/x - \bt + ‘//zf — 0 - (50)
2A,y, + A_‘/’xx - 2A, + Ay, — (Af), =0 (51)

- which are the analogs of the eikonal and transport equations
respectively. Equation (50) is a nonlinear first-order partial

differential equation, with a time-varying coefficient which
can be solved by the method of characteristics [10], [11].

- Accordingly we begin by defining the following variables:

p=v.(x,1); qg=v(x,t) (52
H(p, q,1) = p° -¢*+qf=0.  (53)

We now 1ntroduce a family of curves called characteristics

surface defined by H = constant. Denoting by 7 the parame-
ter which parameterizes a curve, i.e., x = x('r) and ¢ = t('r),
the ortho gonallty condrtlon leads to

dx

- =
o
dr

(54)

(55)

From these equations we obtain

d\lf
' d'r

) “qf - 56

It can also be shown that [10] [11]

- (57)
8

because H does not depend exphcltly upon v,l/ .
The data needed to solve the initial-value problern (54) (5 8)

. requlres knowledge of X, q, p and Y along a curve which is
‘not a characteristic,
problem, the curve de; generates into a point, the origin, as
this is the

“characteristics emanating from the origin are labeled by

in the x — ¢ plane. For the given

‘source’’ of the field (see Section V). The
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Fig. 8 Rays tracmg in (x, t) space for a given time-modulated conductiv-

ity and different firing angles.

curve. The values of x(0) and t(O) are both zero and q(O) 1S
detcrrmned from (53) If we wnte e

Do = f( ) sinh 0 - (59)
then q(O) 1S given by (53) as . .
- cosh 9 '
0 _ 60

Finally, the value of 1//(0) 1S unknown at thlS stage and wﬂl

be determined in Section V. Solvmg the equation H = O for

we obtain .

- o @

| Comblmng (55), (59), (61) and the fact that p po, we ﬁnd
that x is given by | '

X(t) =f(0) sinh 6 /tm | (62)

where 0 is now the new label of a ray. We now have a

formula for the characteristics (or rays) in the space time
coordinates given by the inte gral solution for x(t).

Fig. 8 shows several characteristics for different values of

0 where a = f(0) sinh (6). Therefore each variable ¢ in Fig.
8 represents a particular angle 0 referred to as firing angle.
- All the curves are confined to the region ¢ > x, showing that
the solution is causal. For vertlcally launched rays (0 — 0),
the modulation is less apparent and the ray acts more like a

straight line. Moreover, this region is devoid of any geomet-

ric singularity such as caustics (bending rays) or foci (inter-

1n prm01ple to determlne the phase yleldmg

v=v0) - [ a()(t(x)) ar

@)

~ where J is the Jacobian given by

p0) =p,, as p remains a constant by (57) along each-

q, inserting this express1on into (55) and notmg that p = po '

of order o
secting rays). Finally, we observe that (56) can be 1ntegrated -

the branch cuts, it can be shown that the steady-state response
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By introducing 7 and 6 as new mdependent varlables in
(51), we find that A satlsﬁes '

J. f,)A .y

27 2) - &)

A+ (5

_ _ x,,té — Xol.. - (65)
" The solution of (64) is '
‘ ' _C) _

A(T) T € Jy2 djr (66)

We observe that the J acobian vanishes at the origin, so that
(49) is invalid there. The local analysis required to remove

this nonuniformity is presented in the next section. The
‘constant C(G) will be computed there.

V. MATCHING OF THE ASYMPTOTIC AND BOUNDARY
LAYER SOLUTIONS

We shall ﬁrst 111ustrate ‘how the results obtamed in the
previous section are applied by considering the case of a

fixed half-space conductivity ao Under such circumstances,
it 1s found that '

2(t2-—x ) :

J(x t) y

(67)

(;( 2 — x2 —t).

(68)

V(x,1)

This leads to

Q(x t)

The line x =t deﬁnes a caustlc, or more precisely, the

“boundary of the Fresnel region that separates the ‘‘lit’’
region from the ‘‘shadow’ region. The solution given by
(69) reduces to the diffusion solution obtained earlier, as we
approach the thin boundary layer strip at x=0.A matching
of the results of (36) and (69) leads to

Th1s matchrng procedure 1S based on the assumptlon that the
regions where (36) and (69) are valid overlap. Matching is
performed by comparing the asymptotic expansion of (69) as
x — 0 with the solution of (36) as X — . It is noted that C
is a function of x/¢. This is an expected result because for

small x, p,= xa,/2t so C(po) becomes C(x/t). The
field description around the origin can be found with the

change of variables x — a X and t - al. By retammg terms
2 , we obtam “ ' '

R

U sin g the Laplace transform and a contour integral around .

o Qxx = Qtt + 009
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Frg 9. Variations of the reflected field amplitude versus fixed conductlvrty

oo as obtamed both exactly and asymptotically.
1S given by .
' ze-—-—t taxe-—tt _

V e

At x = 0 the above equatron can be wrrtten as

2 (t oo ) .
Ve )
This corresponds exactly to the solution that would be ob-
tained by using (44) and (46) with a fixed conductivity. To

_ e l . ™)

9(0, t)=

~ have an idea on the range of « satisfying the definition of

‘ large’ ’ the reflected field magmtude is calculated using the

asymptotrc solutlon (46) for ﬁxed conductlvrty and rewntten

(74)

The ammrtude of the reﬂected field is deﬁned as the square -

root of the sum of the square coefficients rnultlplymg the sin

and cos terms. This latter is compared against the exact

formula of the reﬂectlon coefﬁcwnt grven as

J1- Vie=1|

)

905
- 0=0.5
> _ FD—TD values '
= 7
_%) 2
2 4
= /
3 Yy
- _ /
- —=0.15
o / B .
2 /| Simpson's values
g . / '
2 /o
C B
-0 20 . 40
SR Tlme scole in N seconds
t (25+N)6t

Fig. 10 Transrent response in the reflected field from a material with a
constant conduct1V1ty T as obtalned by numerlcal mtcgratlon and FDTD

Results are plotted in Flg 9. The trans1ent rcsponsc is grven

o by the integral

T ____2___/ |

et
]l + o v2 _ _ L
[-—-—v sin (aﬁx) + Bcos an ] dv (76)

where 6 Vv — v? Equatlon (76) reduces to (1 1) for

'x = 0. This integral can be evaluated numerically and com-
‘pared against the FDTD results.

x = 0 is shown in Fig. 10. For a fixed ¥ and ¢, it can be

Such a comparison for

shown the results given by (72) and (76) reduce to the result

derived from (36) as « — oo. It can also be shown that by
fixing (x, ¢) and letting o — 0o, these results converge to the

geometrical optics result given by (69). The resulting expres-

~ sion for C obtained by matching both results along a ray

defined by ¢t = mx, where m is large, reduces to the same
expression for C defined in (70). .

It has been shown the results obtarned so far are valid for
the constant-conductmty case. We shall now reconsider the
case of a time-varying conductivity. The results describing

our amplitude and phase functions are, in general, 1mpossrb1e

to solve exactly because of the dlﬁiculty in solving for 7 and

P, in terms of x and ¢. However, we can consider limiting

cases. Our interest is in finding a solution in the narrow stnp
next to the boundary As po ind O it can be shown that '

\(/( f) = 'Z-g o - (77)
_ _ ) V28 1(§) . (78)
where again * I .
' ' ot odr
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Therefore,
C(po) ar”

Qx,8) = —— 2 e .

V2E f(§)

A matching of (80) with (36) leads to _
- 4V2 £\%
C(py) = — ——— h(0
. (7o) o Vr | )( )

(80)

(81)

which is similar in form to (70). The next limiting case is
when 7 — 0. This case leads to results similar to the fixed-
conductivity case, where g, in (69) is replaced by f(0), and
where f(¢) behaves like f(0) next to the origin where ¢ = 0.

X

V1. SUMMARY AND CONCLUSION

electromagnetic wave 1nteractions with a material half-space
having time-varying conductivity. At each stage, the results
were verified by considering limiting cases. We also per-

formed a matching of the different solution regions. Three

different analysis methods were utilized: a simple first-order
regular perturbation method; a large-parameter asymptotic
analysis; and a large-parameter analysis similar to geometri-

cal optics. A purely numerical FDTD code was used to

obtain comparative results. Numerical and analytical results
for the two types of conductivity variations considered were
found to be 1n good agreement. .

Our results indicate the presence of sidebands in the scat-
tered field spectrum and an interference effect occurring
when the material conductivity varies at twice the illuminat-
ing frequency. The characteristics inside the half-space are
modulated as they propagate inside the material, and are seen
to emanate from the origin in the x — ¢ coordinate system.
No intersection of rays (focusing effect) 1s detected. With the
introduction of boundary layers, it becomes clear how the
propagating and nonpropagating dissipative solutions are gen-
erated inside a conductive material. '

Finally, the FDTD method has been shown to provide in a
-straightforward manner numerical predictions for scattering
by the time-varying half-space that closely agree with the
data obtained from the detailed analysis. We note that the

FDTD model 1s restricted to the limiting cases of material

conductivity variation required to make the detailed analysis
tractable. Therefore, extension of the FDTD numerical model
of time-varying media to two dimensions appears to be

feasible. This would permit simulation of compact material
targets having time-varying volumetric or surface constitutive

parameters generating unusual electromagnetic phenomena.
It may be possible to exploit these phenomena for engineer-

ing to achieve real-time control of target radiation and scat-

tering properties.
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