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ABSTRACT

Combined-field surface integral equations are applied to analyze electromagnetic
scattering from coated perfectly conducting objects. The conducting core and the
homogeneous anisotropic coating layers covering it are assumed to be two-
dimensional and of arbitrary shape. Furthermore, individual layers of anisotropic
material constituting the composite clad structure are allowed to have distinct
medium tensor properties. Numerical solution of the resulting integral equations is
facilitated by the method of moments. Equivalent surface currents on the metal
core and the jacket surface are computed, and along with the corresponding radar
cross section are presented for a variety of scattering geometries.

1. INTRODUCTION

Scattering by homogeneous anisotropic objects has attracted a great deal of
interest in recent years. Numerical methods based on integral [1]-[6] as well as
differential [7] equations have been employed to analyze this problem. Although
the research effort in the past was primarily concentrated on two-dimensional (2-D)
geometries, some progress has been made in the analysis of three-dimensional
(3-D) anisotropic scatterers [6], [8] as well. In two-dimensions, for bulk anisotropic
objects a good amount of work has already been done. While volumetnc integral
equations, (VIEs), were used to analyze electromagnetic scattering properties of
circular as well as elliptic cylinders [1], [2], variational methods were considered for
the treatment of more general shapes, such as the square cylinder [3]. However,
both the variational and VIE formulations were restricted to objects with small
electrical dimensions.

More recently, to overcome size limitations, surface integral equations were
developed to allow for the treatment of anisotropic scatterers whose dimensions
are nearing the resonant region, and in some cases even extend beyond it.
Particularly, a combined-field surface integral equation or the CFSIE approach was
found to be very useful for the numerical analysis of such problems [4]-[6]. This
method is very similar to that which is most commonly applied to isotropic
scatterers [9]. It is based on the potential representation of electromagnetic (EM)
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fields in the anisotropic region with the equivalence principle invoked to obtain the
integral equations for the unknown equivalent surface currents. The most attractive
feature of this method is its natural ability to treat scatterers with arbitrary
geometrical shapes. The applicability of the CFSIE approach to solve boundary-
value problems involving bulk anisotropic objects was already demonstrated by
computing the equivalent surface currents and the corresponding radar Cross
sections (RCS) for a variety of scattering geometries [4], [5]. |

The numerical flexibility of CFSIEs is offered by the nature of the formulation, since
integration is confined to object's surface only; whereas for volumetric methods,
the integration must be performed throughout entire volume of the scatterer. Of
course, there is a limit imposed by object's size, for which the surface formulation
to EM scattering is no longer computationally efficient. But nonetheless, for
scatterers with reasonable dimensions, the CFSIE approach will lend itself as a
more effective tool in the numerical analysis of such problems than VIEs or
variational techniques.

In addition to the CFSIEs, yet another surface formulation, has recently become
available [10]). As opposed to the potential representation of the electromagnetic
field inside the homogeneous anisotropic region, the method of [10] is based on
~ integral equations for the fields themselves. Numerical implementation of this
approach to the solution of the scattering problem has also been employed in
calculations of the RCS for bulk anisotropic objects bounded by smooth as well a

discontinuous contours. . -

In contrast to the integral equation methodologies, numerical approaches based
on differential equations have also been considered for isotropic [7] as well as
anisotropic objects [5]. The most popular of the available techniques is the Finite-
Ditierence Time-Domain, (FD-TD), approach. It has been used extensively for
comparison purposes in conjunction with the CFSIEs in the past, [5], and will be
used herein for anisotropically coated arbitrarily shaped objects as well.

Theoretical as well as the numerical treatment of anisotropically coated metallic
objects, thus far, has been primarily restricted to two-dimensions [11]-{13].
However, even for the 2-D case no comprehensive effort dealing with composite
structures of arbitrary shapes and medium parameters has been performed to
date. The work presented in [11] is limited to a special class of composite
scatterers only. The objects consist of a perfectly conducting circular cylinder and
a number of coaxial circular anisotropic layers separated by intermediate isotropic
regions. The anisotropic layers are very thin, thereby allowing for great
simplifications in the analytical formulation. Specifically, in the modal solution of
the problem, anisotropic layers are accounted for by using jump impedance
boundary conditions.

A somewhat more general case of the coated structure, as compared to that
analyzed in [11], is treated in [12]. Therein, the circular metallic core is surrounded
by a single annular layer of biaxial material having a finite thickness. In addition to
this shield, an impedance sheet is also placed over the anisotropic jacket. The
scattered fields from the overall composite structure are obtained by using a modal
solution to the boundary-value problem.
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Finally, the surface method proposed in [10] was also used in treating the coated
object problem, and in particular to calculate its RCS [13]. Although the
formulation, developed in [10], apparently is applicable to anisotropic media with
arpitrary invertible tensors, for coated objects it was reduced and numerically
implemented for shielding structures with rotationally invariant (gyrotropic-type)
materials [13]. That is, both ¢ and p were now assumed as skew-symmetric, in
addition to having two of their transverse diagonal elements equal to one another,
thereby simplifying the scattering problem significantly. |

In this paper, scattering by objects consisting of a metallic core covered by a
number of layers of homogeneous anisotropic material is considered. Their two-
dimensional shapes are assumed to be arbitrary and may contain surface
discontinuities. The numerical analysis is based on the combined-field surface
integral equations (CFSIEs). Two variations of the formulation will be presented,
and the advantages of each will briefly be discussed. One will deal with CFSIEs in
which the Lorentz gauge condition is used to eliminate the scalar potential,
whereas the other will focus on the mixed potential formulation, wherein both
scalar and vector potentials are retained in the resulting integral equations.
However, the emphasis of the paper is on the versatility of the CFSIEs and the
numerical results which will be calculated using them for various geometries of
anisotropically coated metaliic objects. Equivalent surface currents, often excluded
from previous studies, and the corresponding RCS patterns will be computed and
presented for coated circular, elliptic, and square cylinders which presently are
unavailable elsewhere in the literature. ' '

2. INTEGRAL EQUATIONS FOR COATED 2-D SCATTERERS

The electromagnetic field in an infinite two-dimensional (6/0z — 0) homogeneous
anisotropic medium occupying region i/ and characterized by € ; and u ; may be
decomposed into its TE (Transverse Electric) and TM ( Transverse” magnetic)
parts [4]. For such problems, duality is applicable in determining the fields for one
polarization (TE) whenever their representations for the other polarization (TM) are
known [4]. As a result, the detailed portion of the ensuing development will be
restricted to the TM polarization, while for the TE case, discussion will be brief,
highlighting just the principles invoked to find the corresponding CFSIE set.

2.1 TM Scattering

According to [4], for the TM case, expressions for the nonzero field components in
terms of vector and scalar potentials which have been derived earlier, [4], are
given by | '

Ez(r) = - j0Azi(di) - @z - (€)1 - (VX Fi(M;) Ve, (1)
Hi(r) = - joFi(M) - V yi(M) + () (VX A(J) Vi 1 (2)
It is clear that in equations (1) and (2), the currents J; = J,;a8, and M; = M;a. act as

the sources for the potentials and consequently for the fields E,; and H.. The
integral expressions for A, v;, and F; were previously obtained from Helmholtz
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equations which they satisfy [4], and are restated below for the sake of
completeness | |

Azi(r) = po/4 I C'l’mi (Hyxbyy)i 172 J2i(r) ( Ho@HKamiRmi) ) dS' (3)
i

Fi(r) = (e0€22)¥4] IC Ymi (ocyy)i 2 (171 - Mi(P) ) (Ho@(KamiBmi) ) ds’  (4)

Vi = VG810 ) ity )2 o) (HokamiBim) ) 05 . ()

where, of course, the charge density, p™ in equation (5), is related to M via the
continuity equation. The remaining parameters k,my; and Ry, appearing in (3)
through (5) are defined as

K2ami = Ko? (€22)i Ymi = K% (E2z)i(HxxMyy + Kxy®); ' (6)

Rzﬁ'li = (X = X)/(iyx)i + (Y - ¥ (Hyy)i ' (7)

with the permittivity and the permeability tensors of the medium (g ), and ( 1 )
given by the following relations : = E

€xx Ey O Mxx Hxy O ] .
(Eli= | -Exy €&y O (L) = ~Hxy Hyy O |. (8)
0 0 €22 | . 0 0 Hzz |

While the most general, anisotropic medium, would be described by tensors with
Qyy * - Oy, Where a may be taken as any element of either g or i , the skew-
symmetric nature of the permittivity and permeability will, nonetheless, still
represent a wide array of physically realizable media. Whenever the diagonal
elements of € and y are real, and at the same time, the off-diagonal terms are
purely imaginary, thése tensors are Hermitian. And in addition, if either ., is equal
Hyy OF Exy is equal egy, then u and ¢ will correspond to Ferntes or Plasmas,
- respectively [14]. Furthermore, Tor such tensors, if elements o,y and oy are also
real, but negatives of one another, they will depict rotationally invariant media
treated in [13], which is just a special case of the formulation discussed herein.

Equations (8) are also capable of describing, yet another, important class of
anisotropic media. Uniaxial and biaxial materals, having their principal axes
aligned with the coordinate axes of the scatterer geometry, are characterized by
permittivity and permeability tensors whose off-diagonal terms are zero. Therefore,
the skew-symmetric forms of € and y, as given by equation (8), are not intended to
represent any specific medium, but rather they provide for a conveniently compact
mathematical description encompassing a wide variety of media which may be
treated by the CFSIE method. '

In order to obtain another, but equall_y valid, representation for the magnetic field
inside the medium, the Lorentz gauge condition, (jo V- (- Fi)=Kami Vi),
may be employed to eliminate the scalar potential y; from equation (2). This,
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subsequently, will allow for the H-field integral equation to be rewritten in terms of
vector potentials alone, i. e.,

Hi(r) = - joF(M)) - joV (V- (- Fi(M) )/K2am;i) + (1) (V X Ai(d) Vo (9)

and now, along with the companion equation for the electric field, relation (9) may
serve as an alternative in representating the EM field inside the homogeneous
anisotropic region. This action may be warranted for situations, wherein derivatives
of the current density (i. e., the charge) in the numerical solution of the CFSIEs
most often are avoided. Such applications will appear in practice whenever
Pocklington-type integral equations must be solved, as for example, in the analysis
EM coupling to wires throught narrow slots in perfectly conducting screens, [15], or
other kinds of apertures [16]. Discussion regarding the advantages and
disadvantages of the two formulations (vector vs. mixed potential) outlined above,
as they pertain to the anisotropic medium, will be expanded and will be presented
later in conjunction with the calculated results. '

‘Consider now a boundary-value problem consisting of a perfectly conducting
object coated with several layers of anisotropic material. As illustrated in Fig. 1, the
core as well as each anisotropic layer may be arbitrarily shaped and have distinct
medium properties. Moreover, the composite structure is also assumed to be
excited by a TM-polarized, normally incident, plane wave. Then according to [4]
and the preceding discussion, under such conditions the fields in region i due to
equivalent currents J; and M; are given by equations (1) and (2) or (1) and (9),
wherein the subscript attached to the potential denotes the appropriate Green's
function of the medium which occupies the subspace /. And correspondingly, the
subscripts on J or M will point to the location of the boundary contour where these
equivalent currents are assumed to flow. The integral expressions for the
potentials Az, Fj, and y; appearing in (1) and (9) were earlier defined for region i
through the relations (3), (4), and (5).

Region | + 1

FIGURE 1: Geometry of an arbitrarily shaped coated metallic scatterer
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Notice however, that equations (1) and (2) will only partially contribute to tota!
fields (E;™ and HT) within the space enclosed by contours C; 4 and C;. The currents
Ji.1 and M;_4, which influence the E,T and HT therein as well, will provide for the
remaining contributions to the total fields. But to enforce the boundary conditions
at the intertace C;, the total fields setup within the region i+7 will also be required.
From Fig. 1 it is quite clear that surface currents J; , M; and J;,4 , M;,{ will be
responsible for giving rise to E, 47 and H, 47 inside this region, with integrat
expressions for these fields obtained from (1) and (2) by using an appropriate
substitution of the subscripts. '

The continuity of the tangential components of E and H across the contour C will

lead to two equations for currents (J; , M; ), (Jiy1 . Mi,4 ). and (Ji.q , Mi_¢ ) at this
interface, namely to

O={-[Ex4(J;. M) + Ez,4(J;i . M) ] + [ Ezi(Jiq . Miq) ]

+[ Ezip1(die1 . Miyq) ]} (10)
and
O=ap x{-[H(J;j. M)+ H 1(J;. M) ] +[H(Ji.g . M) ]
- +[Hiy1(diy1 M) 1 (11)
with ap; denoting an outward pointing unit normal to C;. In the same manner,
boundary conditions at all other internal interfaces, i = 2, ... , N-1, separating any

two individual anisotropic coating sheets may be imposed as well. But for the
ambient medium and the first external anisotropic layer (i = 2), equations (10) and
(11) must now be modified to take into account the excitation as well as isotropic
properties of the free-space. This may be readily achieved by letting in above
equations for J;.4 and M; 4 to act as sources for the incident field, i. e., J; and M.,
and in addition, for the free-space, equations (3) through (5) must also be adjusted
to allow for g, — €4 and u4 — u4. In other words, for the outermost boundary (C4)
separating two distinct media (e. g., regions 1 and 2 as illustrated in Fig. 1), the
tollowing set of equations is obtained for J; and My flowing on contour C;:

"Ez1=-j0(Azy +Azp) -8, - {(VXFy)eger +(g2)'- (VXxFa)e0}  (12)
“8nxHy=-a,x{jo(F1+F2)+V(yy+yo)} +anx{ (VXA; )y +

+(h2 )" (VX Az )ito ) - . (13)

where subscripts on the potentials will once again refer to the appropriate Green's
function of the medium. Note also that the incident fields Ei,4 and H{, assumed to
exist in region 1, are now included in both expressions (12) and (13).

Next, in the method of moments solution, the unknown equivalent currents J, 4 and
Mg as usual will be expanded in terms of staggered weighted pulse functions as
shown in Fig. 2. The same set of basis functions will subsequently be employed to
test equations (12) and (13), thereby providing desired matrix equations for
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contour C4. But if the problem involves more than a single boundary, such as for
the coated scatterer, then the procedure outlined for interface C, may be repeated
for every other interface to obtain the required matrix equations for the equivalent
currents on all remaining contours.

J M J
Y N
o3
a; // A
/
//
/ ( =2’ E’z)
/ i
/
/
// -
/ S R
.-f",
/__,...--"" | ( X l~l1) X

- FIGURE 2: Segmented outermost boundary contour

In order to include the effects of the metallic core into the formulation (i = N), the
fields E,;,1( J; or Ji 4 ) and H,1( J;,1 ) appearing in equations (10) and (11) must
be set equal to zero, for there are no fields inside the perfect conductor. In
addition, in equation (11), the quantity a,y x Hy,1( Jn ) must also be taken to
represent the current Jy, which now will be confined to the surface of the
conductor. As a result of these modifications, the presence of the core may be
accounted for by a single equivalent electric surface current density alone, thereby
reducing (10) and (11) to the following simple forms

0={-E;n(JN) + Ezn(INn-1. MN-1) Jon (14)

In=Jn8z=ann X { - Hn(IN) + HN(IN-1. M-t ) Jen . (15)

Obviously, since there is only one unknown, namely the current, Jy, flowing on the
surface of the conductor (Cy), one of the equations in the set of (14) and (15)
becomes redundant, thereby allowing for the use of either E- or H-field integral
equation in formulating the required CFSIEs. In other words, either one of the two
potential representations for the E and H fields - |

En(In) = - jo An(IN) - Volpen) (16)
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or
HyN) = (RN)7 - (VX AnIN) Vi (17)

may be selected to enforce the boundary conditions at the conductor surface.
Although it plays no role in TM scattering, the integral representation for the
electric scalar potential ¢ is now defined as the dual of y, which is given by
equation (5).

- The choice of whether E- or H-field integral equation is employed in the resulting
CFSIEs is quite subjective, and is primarily dictated by the desired degree of
numerical simplicity; namely, by the ease with which either (16) or (17) can be
incorporated into the solution algorithm. To generate results presented in this
paper, the E-field integral equation was used to represent the fields which are
setup by the electric current flowing on the metallic core. However, at all internal
boundaries, equatlons (10) and (11) were used instead, thereby accounting for the
presence of all remaining anisotropic layers composing the shielding structure. In
order to reduce the surface integral equations for the coated scatterer into their
matrix form, a similar approach to that discussed for boundary C; was
implemented here as well. Just as before, appropriately staggered pulse
- distributions were employed to expand the unknown surface currents J and M.on
each boundary. And subsequently, the same set of basis functions were also
utilized to test the integral equations on the corresponding boundaries, thereby
providing the desired set of final matrix equations.

2.2 TE Scattering

As opposed to an infinite anisotropic medium or a bulk anisotropic object, for
coated scatterers some caution must be exercised when invoking the duality
principle to obtain the CFSIEs for the TE incidence — even though such equations
for the TM case already exist. This is required since the metal core supports two
different components of the current Jy, depending on the polarization of the
external excitation. The axial component, J,N, will be induced on the conductor
surface under TM-polarization, whereas circumferential current (Jgy) will be setup
for when the excitation is TE polarized. With this in mind, the fnelds within
anisotropic medium may now be stated as

Hai(r) = - joF () + 8- ()1 (V x Ai(J_i) Vg (18)
E{(r) =- joA() - V i) - (£ (V X Fi(M) Veg . (19)

wherein the corresponding integral expressions for the potentials F,;, A,, and ¢, are
now defined to be

Falr) = eo/4jJ Yoi (Exxyy) 2 Mzi(F) ( Ho@(KaeiRe) ) dS " (20)
i |

A(r) = (uouzz),m;{: Yoi (ExEyy) 2 (€7 - () ) ( Ho@(KaeiRe) ) O’ (21)
|

cp.(r)-wurteo)f (6o 2 pE(0) (HokaaR) ) 65 L@
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which, simply, are the duals of A,;, F;, and ;, respectively. Parameters kg, ¥ei, and
Rei appearing in equations (20) through (22) may be obtained from (6) and (7) by
the replacement of all ¢'s with p's, and correspondi_ngly with every u replaced by e.

In order to obtain the CFSIEs for treating coated scatterers exposed to plane wave
incidence (TE), the boundary conditions on the tangential fields must be enforced
at every interface. Equations (10) and (11), with E, replaced by H,; and H
replaced by E;, may be employed at each internal boundary, and simplified at C4 to
take into account the excitation and the surrounding free-space into the
formulation. The minor changes, required in equation set (12) and (13), stem from
the fact that signs on curl expressions for A as well as F must be reversed, as
indicated by relations for H,; and E;, respectively. The final step in derivation of
CFSIEs is to include the presence of the metal core via relations (14) or (15),
where once again, numerical simplicity will influence the choice of whether E- or H-
field integral equation will be used.

3. NUMERICAL RESULTS

The vanous two-dimensional scattering geometries for which numerical results
using the CFSIEs have been calculated are displayed in Fig. 3. As illustrated, all
structures are excited by a normally incident TM-polarized plane wave. Unless
otherwise stated, the frequency of this excitation is 300 MHz, and the free-space
propagation constant is denoted by k throughout the discussion of this entire
section, i. e., k = 2wA,. For all scatterers, C; and C, are taken to denote their
external and internal contours, respectively. The C4 5 = 0 value corresponds to y =
0and x> 0, i. 8., the positive x-axis. Exception to this convention occurs in Figs. 4
and 5, where s = 0 denotes the center of the shadow region and s = 0.5 is located
at the center of the illuminated face of the square. |

The first example is that of a bulk anisotropic square. lts electrical side dimension
Is ks = 10 and its medium parameters are given by: e,, = 1.5,/ = 2, and Hyy =

1.5. Results for this cylinder using CFSIEs with vector potentials (i. e., equations
(1) and (9)) were previously validated against the FD-TD [5]. There it was found
that for J, the agreement was good everywhere, except for the corner regions. For
Mg, however, the results obtained by the two methods did not agree very well in
the vicinity of corners as well as on the shadow face of the square. When the
same case was repeated with the mixed potential formulation (equations (1) and
(2)), the agreement for both J, and Mg as compared to the FD-TD was improved
considerably. But since the CFSIEs with mixed potentials are in a very close
agreement with the FD-TD, resuits calculated via the latter method are omitted
here in order to avoid unnecessary cluttering of Figs. 4.

For the reported calculations, carried out based on vector and mixed potential
formulations, the electric (J,) and the magnetic (M¢) equivalent surface currents for
the square are displayed in Figs. 4a and 4b. Notice that the results for J,
computed via the two methods agree very well along-the entire perimeter of the
square. On the other hand, the computed values of M differ in the vicinity of every
corner (i. e., s = 0.125 ann 0.25) as well as the shadow side of the square. This
latter behavior may be directly attributed to the numerical approach used to handie
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FIGURE 4a: Surface electric current distribution on a bulk anisotropic square.
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FIGURE 4b: Surface magnetic current distribution on a bulk anisotropic square.
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FIGURE 4c: Bistatic RCS of a bulk anisotropic square.
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FIGURE 5a: J, on the coating of a P.C. Square with a square anisotropic layer
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singularities at contour discontinuities. Recall that the vector potential approach
involves two derivatives of the Green's function. This gives rise to higher order
Hankel functions such as Ho@(x) in the integrand of the H-field equation.
Furthermore, this integrand may aiso be shown to have both odd and even parts
as well, which play an important role in the evaluation of principal values [5,
equation (10d)]. |

If the contour is smooth, then the principal value of such integrals may be obtained
asymptotically to a very high degree of accuracy [5], [6]. Otherwise, for
discontinuous boundaries, principal values must to be evaluated over each My half
pulse situated on both sides of the bend (see Fig. 2). While this procedure is
numerically effective for the even part of the integrand containing H»(2}(x) as x — 0,
for the odd part it is gives undue weight to the difference between the functionals
with angular terms which are multiplied by high values of H>)(x) on either side of
the discontinuity. As a result, numerical anomalies become apparent in the
computed surface currents near the corners of the square when displayed
alongside the results obtained via the mixed potential CFSIEs or the FD-TD (see
Figs. 4a and 4b). However, despite such discrepancies, the RCS computed by the
two methods is not expected to be significantly different. This, of course, is due to
- the smoothing property of far field integration. And indeed, resuits displayed in Fig.
~ 4c verify this assertion. |

In the next example a perfectly conducting square coated by a single layer of
anisotropic matenal is exposed to an external plane wave excitation. For this case
the frequency of the incident field is 150 MHz. The side dimensions of the core and
the coating are given by kl = 2.6 and ks = 5, respectively. The medium parameters
of the anisotropic coating layer covering the metallic core are e,, = 2, pu,y = 2, and
'pyy = 4. The equivalent surface currents on the external contour and the
corresponding RCS for this composite structure were calculated via CFSIEs and
are compared to those obtained via FD-TD (see Figs. 5). Notice that the surface
equivalent current distributions J, and Mg calculated via the FD-TD and CFSIEs
exhibit similar behavior. However, there is a slight disagreement between them
which is not unusual and may be attributed to the moderate, as opposed to high,
resolution of the FD-TD (50 cells per side on C4, 26 cells per side on C,, and 16
cycles). On the other hand, RCS patterns displayed in Fig. 5¢ show a very close
agreement in the numerncal results. But this is naturally expected since the far
fields are practically insensitive to small perturbations of the surface currents.

As opposed to scattering geometries discussed thus far, results of Figs. 6 and 7
are for objects bounded by smooth contours (see Figs. 3¢ and 3d). Displayed in
Figs. 6a and 6b are the equivalent electric and magnetic current distributions on
the surface of the anisotropic circular jacket covering a circular conducting core.
The jacket and the core have dimensions of ka = 4 and kb = 2, with the medium
properties of the coating layer given by:e;; = 1.5, 1y = 1.5, pyy = 2.5, and i,y = 3.
In both cases, a comparison between the vector and the mixed potential approach
was made. Calculated results confirm the fact that whenever the scatterer contour
is smooth, principal values of all integrals, including those involving H,(2)(x), may
be evaluated with good accuracy. The currents and the corresponding RCS
computed via the two versions of CFSIEs are in good agreement with one another,
except for soma minor discrepancies for Mg. This is due to different convergence
rates of the two methods. And since the currents in Figs. 6 were generated using
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FIGURE 6a: J, on the coating of a P.C. circle with a circular anisotropic layer
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FIGURE 6b: M on the coating of a P.C. circle with a circular anisotropic layer
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FIGU RE 7a: J, on the coating of a P.C. ellipse with an elliptic anisotropic layer
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the same number of unknowns, it is natural to expect that the two approaches will
yieid slightly dissimilar results.

Note that in contrast to the first two scatterers whose tensors are diagonal, for
coated objects with asymmetric ¢ and py, the symmetry about the direction of
excitation ceases to exist. Therefore, in Figs. 6 through 9, the surface currents had
been plotted along the entire perimeter of each scatterer, whereas in Figs. 4 and 5
the same was done along the contour half-length only

The next example involves an elliptic conducting core and an elliptic coating layer
shown in Fig. 3d. Electrical dimensions of the core and the jacket for this
composite structure are kd = 1, kc = 2 and kb = 2, ka = 4, respectively. Material
properties of the jacket are same as those of the clad circular cylinder. The
currents on the external boundary and the RCS for the elliptical scatterer were
once again computed using vector as well as mixed potentials, and are presented
in Figs. 7. As for the clad circular cyllnder the calculated results are in a good
agreement.

‘A scatterer combining both smooth and discontinuous bounding surfaces was
considered for the numerical solution as well. A perfectly conducting cylindrica!
square core was covered by an anisotropic layer havmg a circular externa!
boundary (see Fig. 3e). The anisotropic coating material is characterized by the
same tensor elements used for elliptic and circular clad cylinders. The side
dimension of the core is ks = 2 and the normalized diameter of the jacket is ka =
6.4. lilustrated in Fig. 8a are the surface current distributions J, and Mg on the
external contour C4. The corresponding electric current dlstnbutnon on the surface
of the conducting core, C,, is shown in Fig. 8b. Notice that the current is singular
near the edges of the square. This behavior of J, is well known for conductors
imbedded in free-space. But as can be seen from Fig. 8b, such behavior of the
electric current near surface discontinuities of metallic objects is also present for
conductors imbedded inside the anisotropic medium. And, finally, the calculated
RCS for this scatterer is presented in Fig. 8c.

To illustrate applicability of CFSIEs to TE scattering by coated objects, the surface
currents and the RCS were calculated for a perfectly conducting clad circular
cylinder as well. The medium parameters of the anisotropic shield were taken as
Hyy = 1.5, £y = 1.5, 'ﬁf." 2.5, and g,y = 3 with same electrical dimensions as those
depicted in Fig. 3c. The magnitudes of currents M, and Js on the external layer are
now displayed in Fig. 9a, while magnitude of Jg on the metalhc core is plotted in
Fig. 9b. The correspondmg RCS of the composite structure was also calculated,
and it appears in Fig. 9c. .

4. CONCLUSION

Combined-field surface integral equations were applied to scattering by coated
two-dimensional metallic objects. The method was shown to be applicable to
coatings as well as the metal cores of arbitrary shape, including surface
discontinuities. In addition, the coating material was allowed to have homogeneous
anisotropic tensor properties. It was also demonstrated that the CFSIE approach is
simple to implement numerically. As illustrated by numerous examples, for such
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coated scattering geometries the surface integral equation method yields good

results when compared to other numerical methods such as the FD-TD. From the

calculated resuits it was also concluded that for anisotropic scatterers it is more

beneficial to work with mixed potentials in the CFSIEs as opposed to vector

potentials only. in this manner, numerical difficulties present in evaiuating singular

portions of integrals containing higher orders of the Green's function are
completely avoided.
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