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Computation of the Electromagnetic Fields and Induced
Temperatures Within a Model of the

Microwave-Irradiated Human Eye

ALLEN TAFLOVE anp MORRIS E. BRODWIN, SENIOR MEMBER, IEEE

Abstract—The electromagnetic fields within a detailed model of
the human eye and its surrounding bony orbit are calculated for
two different frequencies of plane-wave irradiation: 750 MHz and
1.5 GHz. The computation is performed with a finite-difference
algorithm for the time-dependent Maxwell’s equations, carried out
to the sinusoidal steady state. The heating potential, derived from
the square of the electric field, is used to calculate the temperatures
induced within the eyeball of the model. This computation is per-
formed with the implicit alternating-direction (IAD) algorithm for the
heat conduction equation. Using an order-of-magnitude estimate of
the heat-sinking capacity of the retinal blood supply, it is determined
that a hot spot exceeding 40.4°C occurs at the center of the model
eyeball at an incident power level of 100 mW /cm? at 1.5 GHz.

I. INTRODUCTION

AT PRESENT, lhittle theoretical work has been done

in solving for the temperature distribution induced
by microwave radiation in complicated biological struc-

tures. The emphasis has been on experimental investiga-

tion. This has been brought about in part by the expensive
and time-consuming numerical methods required to com-
pute the electromagnetic fields within arbitrary dielectric
scatterers. Indeed, inhomogeneous tissues of great com-
plexity may require so much direct computer storage with
well-known techniques that solution is virtually 1mpos-
“sible.

The eye has been of special experimental interest be-
cause of evidence of microwave-induced cataracts in
humans [1] [2]. Typical experiments involved the ex-
posure of rabbits to high levels of microwave radiation
over a short time interval and the observation of the in-
duced lens opacification over a period of several weeks
| 3], [4]. The relevance of such studies was based upon
the similarity of the anatomy of human and rabbit eyes.
These experiments established time-power density thres-
hold levels for cataract formation. Results indicated that
the dose of microwave radiation required for lens injury
1s based upon average rather than peak power. The mech-
anism of microwave cataract formation is therefore most
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likely thermal [5]. A standard for human exposure, based
upon such animal experimentation, has been published [ 6 ].

The use of animal experimentation to establish a human
exposure standard for microwave radiation implies that
the anatomy, physiology, and electromagnetic environ-

ment of the test animals can be related to that of humans.

However, several elements of this relation remain unclear.
In particular, the role of tissue structure in determining
microwave absorption may be significant. We know that
electromagnetic wave absorption In a lossy dielectric
scatterer 1s a function of 1ts shape and dimensions. It 1s
quite possible that the eye—scatterer of man develops
heating potential contours different in location and mag-
nitude from those of the rabbit because of the dimen-
sional and structural differences in tissue anatomy. This
possibility must be explored if a more precise exposure
standard for man 1s to be established. As Guy |7 | has
stated: ‘““A high priority need in this area 1s a complete
thermodynamic study of the eye under microwave ex-
posure.” '

Direct experimentation with the living human eye using
either cataractogenic exposures similar to those of [3],
4], or using implanted thermocouple techniques [8] 1s
impermissible because of the tissue damage caused by the
experimental procedure. Therefore, the microwave heat-
ing of the human eye must be studied using models of the
actual organ. A theoretical approach would attempt to
solve for the fields and temperatures using some analytical
or numerical method. Such a model would postulate a near-
or far-field irradiation, and simulate the tissue geometry
and thermodynamics to the maximum possible extent,.
This 1s the approach taken in this paper.

Early theoretical work in the area of the biological
effects of electromagnetic radiation centered on the ir-
radiation of models of the entire human body [9 ]. How-
ever, because experimental work indicated that harmful
local tissue temperature rises could occur, interest in
partial body irradiation was stimulated. Cook proposed
the solution of Maxwell’s equations coupled with the heat
conduction equation to solve the problem of local micro-
wave heating [ 10 ]. He developed a theory for the heating
of a tissue half-space composed of layers of skin, fat, and
muscle, by incident plane waves. The temperature dis-
tribution predicted by the theory was verified in his re-
ported experimental procedure. Shapiro et al. modeled the
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plane-wave 1rradiation of a cranial structure [117. The
absorbed power density within concentric spherical shells
was calculated using an approach parallel to that of
Stratton [ 12 ]. It was concluded that calculation of miero-
wave heating using semi-infinite slab models is not ac-
curate for tissue geometries where the ratio of the local
radius of curvature to the wavelength is between 0.05
and 5. In effect, hot spots may develop deep within lossy,
curved tissue scatterers of this size.

The work of Shapiro ef al. may be scaled to model the
eye as a lossy sphere in free space. Such a direct scaling
suggests the presence of hot spots within the model eye-
ball because the important ratio parameter is of the order
of one at microwave frequencies. Yet such a scaling is
faulty 1in that 1t neglects the wave reflection effects of the
tissues of the bony orbit which surround the eyeball.
Unfortunately, any eye model that accounts for these
effects is much more difficult to solve. Inclusion of the
bony orbit eliminates the possibility of an analytic solu-
tion for the fields because the geometry is no longer amen-
able to classical separation-of-variables techniques. The

improved eye model compels the use of some numerical
method to solve for the electromagnetic fields.

Several computer techniques that appear relevant to
this problem have appeared in the recent literature [137-
16 ]. Each of these methods derives a set of linear equa-
tions for either field variables or for field expansion co-
eflicients, and then solves the linear system with a suitable
matrix inversion scheme. However, it seems that none of
these methods has been used to solve the microwave ir-
radiation of the eye. Inspection of the problems involved
with each method indicates either difficulty in setting up
the linear system, or in finding sufficient fast, direct-access
computer storage to invert the matrix of the linear system.

In this paper, we report a calculation of the microwave
fields within a detailed model of the human eye and its
surrounding bony orbit. The fields are computed using
the finite-difference, time-domain solution of Maxwell’s
equations discussed in a previous paper [17]. This tech-
nique has been found to yield first-order accurate solu-
tions of the electromagnetic fields within arbitrary di-
electric scatterers of the order of one wavelength 1n di-
ameter, situated in free space or at the surface of a half-
space. We also report a numerical solution of the heat
conduction equation for the eyeball, using the computed
microwave heating function as the source function. The
heat equation is solved using the implicit alternating-
direction (IAD) method [187, [197. It is determined that a

significant hot spot develops at the center of the eyeball of
the model at an incident frequency of 1.5 GHz.

lI. THE MICROWAVE SCATTERING MODEL

In this section we discuss the finite-difference lattice
used for the eye and bony orbit microwave scattering
problem. The lattice boundary planes and assumed co-
ordinate axes are shown in Fig. 1. The field vector com-

ponents are positioned at distinct half-interval pomts in
the lattice, as shown in [17, fig. 17
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The lattice of Fig. 1 is a 19-by-39-by-19 array of unit-
cell cubes, with a fixed unit-cell diameter § equal to 1.25
mm. A space lattice point is denoted as (7,7,k) = (18,76,ké),
where 1, 7, and k are integers. The eye—scatterer is assumed
to have even symmetry about lattice planes z = 1916
and z = 198. This symmetry allows large savings of com-
puter storage by permitting the solution of the complete
eye model with the programming of only one spatial
quadrant of the model. é is chosen large enough so that,
using this symmetry, the lattice covers a 47.5-mm-by-
48.75-mm-by-47.5-mm volume, which is sufficient to en-
close most of the bony orbit. Yet § is small enough to
fulfill the accuracy requirement of 0.05 wavelength resolu-
tion in all tissue for frequencies up to about 1.5 GHaz.
The 1incident plane wave is assumed to have the field com-
ponents K, and H, and propagate in the 4% direction.
This wave 1s generated at lattice plane y = 36 using a
source condition. At planes y = 0, y = 39, » = 1§, and
2z = 0, the field components are determined using lattice-
truncation conditions. The scatterer symmetry condi-
tions, plane-wave source condition, and lattice- truncation
conditions, are discussed in Section IIT of this paper.

The location of the lattice of Fig. 1 relative to the eye-
ball and to the front of the skull is shown schematically
In Fig. 2, which depicts the location of planes ¥y = 0 and
2 = 198. The angles and dimensions of the skull cross
section are based upon available cephalometric data [ 20 ].
In order to realize an evenly symmetric irradiation of the
eye—scatterer, the incident wave is assumed to propagate
In a direction parallel to the axis of one bony orbit. The
selected orbital axis 1s assumed to be the intersection of
the lattice symmetry planes x = 1936 and z = 195.

The skull surface of Fig. 2 is seen to be approximately
parallel to the x axis of the lattice, within about 1 em of
the right edge of the orbit. Similarly, it may be shown
that immediately above and below the rim of the orbit
the skull surface is almost parallel to the z axis. To con-
struct a model of the eye-scatterer with the assumed sym-
metry, we let the skull surface of the model extend to
infinity parallel to the z—z plane. Thus the model orbit
1s an Indentation centered at (19%,7,19) in an infinite,
planar, bony layer. The space to the rear of this layer is
assumed to contaln only brain tissue. The major micro-
wave reflection effects of the model result from the eye-
ball-orbit juxtaposition alone.

Using available anatomical data [207], [217], we sketch

LY
.%.8'398 |98 |928.398,|98

Fig. 1. Boundary planes of the finite-difference lattice used for the

microwave scattering problem.
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Fig. 2. Location of the lattice of Fig. 1 relative to the eyeball and
the front of the human skull. -'

top and side views of the major tissues of the orbit in
Fig. 3(a) and (b). The lattice of Fig. 1 contains an
1dealized, stepped-surface representation of the tissues
of one quadrant of the orbit. This representation is de-

picted in Fig. 4(a) and (b) at the two lattice symmetry

planes. Comparing Figs. 3 and 4 we see that the model
eye simulates all rectus muscles associated with the eye-
ball. The symmetry assumptions, however, prevent simu-
lation of the oblique muscles. In Fig. 4 no bone-fat inter-
face 1s shown because of the similar dielectric parameters
of these two tissues. Using published data on the composi-
tion of the eyeball media [21] and the electrical param-
eters of the other tissues found in the orbit [117], [227,
the following values of € and o are assigned to each tissue.

ki e . A

L E——

e, ab: ‘o (mhos/meter) at:

Tissue Type 790 MHz 1.5 GHz /50 MHz 1.5 GHz
Skin, muscle, lens 52 49 1.54 1.77
Fat, bone 5.6 5.6 0.09 0.12
Eyeball humors 80 80 1.90 1.90
1.20 1.40

Brain, nerves 49 46

sl

In constructing a model of the eye with the assumed
symmetry, several simplifications of the actual tissue
geometry are necessary. The symmetric model cannot
take 1nto account the curvature of the skull at the sides
of the orbit, the sinus cavities of the skull, the existence
of the oblique muscles, and the exact shape and thickness
of the orbital wall. The accuracy of the model may be
increased by omitting the assumed symmetry and using
a lattice to cover the entire eye-scatterer. Further, the
maximum frequency of irradiation may be increased by
decreasing the lattice spacing. These elaborations are de-
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Fig. 3. The major tissues of the orbit. (a) Top view. (b) Side view.
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pendent upon the acquisition of sufficient computer time
on a machine with more fast storage capacity than the
Northwestern University CDC 6400 which was used for
the present research. However, the symmetric model
simulates the basic geometry of the eye-scatterer, that of
a water-like sphere encased in a low-loss dielectric cavity.
This model should be accurate enough to locate and de-
termine the magnitude of any high concentrations of
microwave energy, with an acceptable level of uncertainty.

III. ELEMENTS OF THE MICROWAVE
SCATTERING ALGORITHM!

In this section we discuss the modifications of the al-
gorithm of [ 17 ] necessary for the present research. These
- modifications 1nclude a time-stepping algorithm with
fewer multiplications, simpler symmetry conditions, adap-
tive lattice-truncation conditions, and increased stability
considerations. In the discussion, any function of space
and time 1s denoted as F"(7,7,k) = F(18,76,kd,nédt).

Assuming that the quantity ét/u(7,7,k)é 1s constant for
all (2,7,k) of the lattice, the algorithm of (6a)—(6f) of
[ 17 ] requires nine multiplications per unit cell per time
step. The number of required multiplications can be re-
duced to six and the algorithm considerably simplified
in the following manner. We define the constants

R = dt/¢ (1a)
Ra = 0t%/ (6*uoeo) (1b)
Ry, = 6t/ ued (1c)
Ca(m) = 1.0 = Ro(m) /ex(m) (1d)
Co(m) = R./e,(m) (le)

where m 1s a tissue-type integer from 1 to 5 assigned in the
following way: 1, air; 2, skin, muscle, lens tissue; 3, fat,
bone tissue; 4, eyeball humors; 5, brain, nerve tissue. We
also define the proportional electric-field vector

iy

E = RE. (2)

Using the definitions of (la)-(le) and (2), we rewrite
[17, eq. (6a)—(6¢) ] In a manner similar to the following:

H, 21,74+ 3,k + 3) = Hxn*wlfz(i,g' + 1k 4+ 1)
+ E/ (6 + 3k + 1)
— E,; (4,5 + 3,k)
+ E(i,7,k + 1)
—ErGi+1Lk+3). (3)

This modification eliminates the three multiplications
previously needed in the H part of the algorithm. Further,
we rewrlte [ 17, eq. (6d)—(6f) | In a manner similar to the
following:

m = MEDIA(2 + 3,7,k) (4a)

1 The listing of the 362 card Fortran IV source deck is available
from the authors. -
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B (i + 15k = Calm)E (i + L7,k)
b Co(m)[H M2+ 3,5 + k)
— H. 25 4 3,5 — 3,k)
+ H,/ 42 (e 4 5,0,k — %)

— H, M2 (0 + 5,0k + 3) ] (4b)
This modification eliminates the need for computer storage
of separate ¢ and o lattices. Now, only a mEDIA lattice,
which specifies the tissue type at each lattice point, need be
stored. In addition, the ¢, and o of cach tissue can now be
changed without having to repunch a large data card deck.
Such a change 1involves only the recalculation of the five

values of C,(m) and the five values of Cy(m). Finally, we
rewrite [ 17, eq. (10) ] as

E(,3,k + 1) «— 1000R, sin (27 fn 8t) + E.»(4,3,k + 1).
(D)

This modification 1s needed to provide a plane-wave source
condition at lattice plane y = 36 that agrees with the
definition of E.

Symmetry condition [ 17, eq. (12) | requires extension
of the lattice 0.56 beyond the plane of symmetry. A set of
conditions useful for the assumed even symmetry of the
eye—scatterer, and requiring no lattice points beyond the
symmetry planes, 1s given as

Hr 1955k + 1) = H (1957 + 3k) =0 (6a)

E (1 + 55,19) = E, (4,5 + $,19) = 0. (6b)
- We next consider a set of simple, approximate lattice-
truncation conditions analogous to [17, eq. [9a)—(9d) ].

From the basic time-step relation of this algorithm
2¢ot = 0 (7)

1t 1s seen that a wave requires two time steps to propagate
across a single unit cell, in air. We define the integer con-
stant

[(m) = 2\(1)/A(m), A(m): wavelength 1n

tissue-type m  (8)

as the number of time steps required for a wave to propa-
gate across a single unit cell, in tissue-type m. We also

define the stored field vectors

E(5,j)k) = Er-tOEDIAG.i8 (G, j ) (92)

H(i,jk) = H~'MEDIAG38 (4 jk).  (9b)
Then the truncation condition for lattice plane z = 26 1s
given by '

6

Hyn('il’":j;k + %) — [ﬁy(%)j:k T "11?) + gy(%)j;k + %)

T+ I?y(%)j)k + %)]/3 (10a)



892

Hzn(%)j + %3’0) — [ﬁz(%ﬂ + %7’6 o 1) + ﬁZ(%;j + i’l_')k)
+ M3+ 3k +1)/3. (10b)
For plane y = 0

G420k = B2+ 31k (10¢)
Er(0k + 1) = E2(4,1,k + 1), (10d)
For plane y = 396
B+ 3,39k) = E.(i + 3,38,k) (10¢)
B 639k + 1) = B.(5,38% + 1). (10f)
For plane z = (
Er(i+ 3,50) = [E.(6 — 1,5,1) + B.(6 + 1,5,1)
+ B+ 3,5,1)7/3 (10g)

BrGij+30) = [B,(i — 17+ 31) + B,(,j + 1,1)
+ B,Gi+ 1,7+ 1,1)7/3. (10h)

To 1llustrate the use of the lattice-truncation conditions,

we consider the programming implementation of (10e) -

at point (74 3,39,k). The values E,» (i + 1,38k),
Emn_2(7: T %)38)10)7' ) ')Em(i + %)387]5) )Exn(i + %)39;1‘:) are
stored In an array which is manipulated like a shift register,
with one shift for each time step. This simulates the propa-
gation delay of a scattered wave between the lattice planes
y = 380 and y = 394. The propagation delays of several

types of tissue can be simulated by providing a sufficiently

large register to account for the maximum delay case,
and by performing the shifting operation through only
[(MEDIA (2 + 3,38,k)) + 1 words of the array. In this
way the truncation condition can be made to adapt to
the type of tissue at each lattice-truncation plane.

We now consider the problem of the stability of the
overall algorithm. A comparison of the value of 8t of (7)
with the maximum value of ét allowed by stability condi-

tion [17, eq. (14b) ]

ol = 0 < :
2  c(8)e

(11)

indicates that the time-stepping algorithm should be
absolutely stable. However, the inclusion of the lattice-
truncation conditions perturbs the basic algorithm to the
extent that this 1s not correct. Equations (10a)—(10h)
have been found to induce a slowly growing instability.
No simple reformulation of the lattice truncations has
yet been found that eliminates this problem while still
holding wave reflections at the truncations to an accept-
able level. The growth of the instability has been found
to be greatly slowed by increasing the size of the lattice,
or by increasing the losses of the dielectric media of the
lattice. The modeling of the irradiation of the eye—scatterer
1s made possible by assuming a small valve of ¢ for the air

In front of the eye. At 750 MHz, ¢(1) = 0.04 mho/m:

~at 1.5 GHz, ¢(1) = 0.025 mho/m. These values of con-
ductivity are chosen small enough so that the incident
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helds are reduced less than 10 percent in propagating from
the wave source at y = 38 to the surface of the scatterer:
yet these values are large enough to suppress the instability
for more than 600 time steps of the algorithm. This is
sufficient time for the fields to reach the sinusoidal steady
state.

IV. RESULTS OF THE MICROWAVE
SCATTERING PROGRAMS

In this section we compare the results of the microwave
scattering programs for two different frequencies of ir-
radiation, 750 MHz and 1.5 GHz. The storage and ex-
ecution time requirements of each program are noted.
Next, the computed results are presented as contour maps
of the normalized heating potential @, at the two sym-
metry planes of the lattice. Last, the accuracy of the loca-
tions and magnitudes of the contours of Q, is estimated.

Kach run of the microwave scattering program required
about 16 000 words of central memory and 213 280 words
of extended core storage for compilation. A high-optimiza-
tion Fortran compiler was used to minimize the execution
time of each run. The 750-MHz program was run 640
time steps (with 8¢ = §/2¢ = 2.083 ps), or exactly one
cycle of the incident wave. Over the last half-cycle of the
incident wave, or 320 time steps, the program determined
the envelope of the electric field at each unit cell of the
lattice. A total of 2300-s central processor time was re-
quired to execute this run. The 1.5-GHz program was run
600 time steps (with 6t = 2.083 ps). This reduction of 40
time steps from the previous run was necessary to avoid
the onset of instability which was hastened by the use
of a smaller value of ¢(1) for this run. The envelope of the
electric field was determined over the last half-cycle of
the incident wave, or 160 time steps. A total of 2100 s was
required for program execution.

Fig. 5(a) and (b) gives contour maps of the computed,
normalized heating potential

Qn(7,5,k) = 20(3,7,k) | E(3,3,k) |*/Eine®

at lattice symmetry plane z = 194, for incident frequencies
of 750 MHz and 1.5 GHz, respectively. Fig. 6(a) and (b)
are the corresponding maps at symmetry plane z = 1915.
In all of the maps the dashed lines indicate the boundaries
of the tissues.

Within the model eyeball, the heating potential due to
irradiation at 750 MHz peaks at the muscle interface at
the front of the eye and gradually decreases with depth.
Some peaking is noted at the muscle interface directly
below the eye. Assuming an incident power level P;,. of
100 mW /em?, the total power dissipated within the model
eye 1s 0.13 W. The average density of absorbed power for
this condition 1s 0.022 W/em?® (assuming a model eyeball
volume of 5.9 em?). The peak absorbed power density at
the front of the eye 1s 0.16 W/em3, a level 7.3 times the
average. I‘or comparison, we note the measured data ob-
tained by Guy et al. [8] for the rabbit eye irradiated at
915 MHz at the level P;... Here, absorption was almost
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Fig. 5. Maps of the computed, normalized heating potential @, at

lattice symmetry plane z = 195. (a) Incident frequency = 750
MHz. (b) Incident frequency = 1.5 GHz. '
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Fig. 6. Maps of the computed, normalized heating potential Q, at

lattice symmetry plane £ = 1934. (a) Incident frequency = 750
MHz. (b) Incident frequency = 1.5 GHz.

constant within the eyeball at a density of 0.024 W /cmé,
but peaked to 0.036 W/em3, 1 em behind the orbit in the
brain. -

The heating potential due to 1.5-GHz irradiation shows
a pronounced peak near the center of the model eyeball.
The potential also peaks strongly at the muscle interfaces
below and 1in front of the eye. Assuming Pj,. = 100
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mW/cm?, the total power dissipated within the model
eye 18 0.19 W. The average absorbed power density for
this condition 1s 0.033 W /ecm3. The peak absorbed power
density at the center of the eyeball 1s 0.11 W/em?, a level
3.3 times the average. IFor comparison, we again note the
data of Guy et al., but consider the results for the rabbit
irradiated at 2.45 GHz at the level Pji... Here a distinct
peak was observed in the vitreous body near the retina
with a density of 0.092 W /cms.

The frequency-dependent position of the heating po-
tential peak reported in this paper and observed by Guy
et al. In the rabbit might be explained on the basis of dis-
tinct resonances of the eve—scatterer and the head as a
whole. At the lower microwave frequency, the dimensions
of the eye—orbit combination are too small to support a
wave concentration effect. Any peaking i1s probably due
to a resonance of the whole head and should therefore
occur behind the orbit 1in the brain as Guy et al. observed.
However, at the higher microwave frequency, the eye-—
scatterer can support a resonant behavior independent
of possible concentration effects of the whole head. There-
fore, heating potential peaks are expected within the
tissues of the orbit above 1.5 GHz.

Any estimate of the accuracy of the microwave scatter-
ing model of the eye must take into account both the ac-
curacy of the tissue model and the accuracy of the com-
puter algorithm. The simplifications of the tissue model
have been discussed 1n Section II of this paper. Assuming
that this model conforms to the physical reality, we esti-
mate that the algorithm locates heating potential peaks
and contours with a maximum error of 426, or about 4-10
percent of the diameter of the eyeball. The uncertainty
of the magnitudes of the heating potential peaks 1s esti-
mated as 410 percent. These estimates are based upon
prior runs of the algorithm for geometries solvable by
analytic methods. The maln sources of error have been
found to be the stepped-surface approximation of the
scatterer and the residual wave reflections at the lattice
truncations. With the present model, the error contributed
by the stepped surfaces should be of greater significance
because the effect of the 1imperfect lattice truncation is
reduced by the loss of the tissue media.

V. THE HEAT CONDUCTION MODEL

In this section we discuss the assumptions on which the
heat conduction model of the microwave-irradiated eye
1s based. These assumptions involve the mechanism of heat
transfer from the eye and the selection of the thermal pa-
rameters of the media of the cye. The implementation of
these assumptions in the solution of the heat conduction
equation 1s then discussed. Throughout, the tissue geom-
etry and lattice point notation 1s consistent with that used
for the microwave scattering problem.

The basic assumption of the heat conduction model of
the irradiated eye 1s that the chief cooling mechanism 1s
localized at the surface of the eyeball in the form of the
retinal blood supply. This 1s supported by two observa-
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tions. First, the interior of the eyeball is largely without
blood supply [ 20 ]. Second, 70 percent of the overall blood

stream supplied to the eye flows through the capillary layer

of the choroid, which 1s adjacent to the retina and mainly
responsible for its cooling [23]. This capillary layer ex-
tends over much of the surface of the eyeball. Over the
remalnder, surface cooling is accomplished through the
tearing and wiping mechanism of the eyelids. Therefore,
in formulating the heat conduction model of the eye, cool-
Ing of the eyeball through contact with the fat and muscle
tissues of the orbit i1s ignored. The heat conduction equa-
tion 1s solved only for lattice points within the interior of
the eyeball, subject to a boundary condition approximating
the cooling of the retinal blood supply and the eyelids.
For simplicity 1n solving the heat conduction equation,

the eye-tissue parameters p (density), C, (specific heat),

and K (thermal conductivity) are taken to be independent
of position, temperature, and time. Further, these param-
eters are assumed to be those of water: p = 1000 kg/ms3,
C, = 4178 J/kg-°C, K = 0.627 W/m-°C. This assump-
ton is made because the aqueous and vitreous humors,

which comprise the bulk of the eyeball, have a water con-

tent of about 99 percent by weight [217].
The partial differential equation of heat conduction
that 1s solved over the volume of the eyeball is

oT (x,t)

Py (12a)

G, — KV*T(x,0) + Q(x,0)

where T' 1s the unknown temperature function and Q is
the heating potential due to microwave irradiation. Q(x,t)
1s related to the incident power level P;,. and the com-
puted normalized microwave heating potential Q, by

o(x) | E(x) |2

— Ein02
Q(x,t) Y

U(t) = QﬂOPinc'Qn(x) ) U(t)

(12b)

where 7o = (upo/€) %, Pinc 1s given in watts/m?2, and U (¢) is
the unit step function at ¢ = 0. The initial conditions are
given by

T(x,0)

The boundary condition at the surface of the eyeball,
approximating the coohng of the retinal blood supply, is
given by

= 37°C (nominal body temperature). (12¢)

o1 (r,t)

he (T(rl) — 37) = K
on

(12d)

where 7 1s a point on the eyeball surface, n is the unit vector
normal to the surface at r, and A is a heat transfer param-
eter In units of W/m?2-°C. h 1s assumed constant over the
entire surface of the eye and may range in value from zero
to infimty. For A = 0, 7 /dn = 0 at the eye surface and
the eye 1s insulated. For h = o, T = 37°C at the eye
surface, the nominal body temperature. .

We now estimate a range of values of A that is physically
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meaningful for this model. The average metabolic rate of
body tissues 1s given as 1 mW /em?® [24 ]. We assume that
the heat transfer mechanism of (12d), working over the
entire surface of the eyeball, is capable of dealing with
this magnitude of heat generation over the volume of the
eye. Therefore, h 1s estimated as

-y metabohc rate - volume of model eyeball
(eye surfa,ce temperature — 37°C) .surface area of

model eyeball.
(13a)

On an order-of-magnitude basis, the temperature differ-
ence at the interface of the eye media and the retinal
blood supply is estimated to be in the range 0.05°C to
0.5°C under normal conditions with no irradiation. With
a model eyeball volume of 5.9 em? and a surface area of
24.2 em?, h 1s thus estimated to satisfy the inequality

5 W/m2-°C < h < 50 W/m2-°C.  (13b)

During microwave irradiation, kA i1s assumed to remain
fixed at 1ts estimated, nominal value.

There 1s one major simplification implicit in the heat
conduction model of (12a)—-(12d) : the blood-flow network

_ at the eye surface is assumed to have no detailed structure.

A more sophisticated model would consider the effects of
the location of blood vessels, the velocity and temperature
of blood flow, and the variation of blood-flow parameters
with temperature. Guy et al. [ 25] have recently developed
several elements of the improved model for the rabbit eye.
The further elaboration of this method and its applica-
tion to the human eye is a subject of future work.

The boundary and initial value problem posed by (12a)—
(12d) 1s solved numerically using an IAD algorithm.2 The
lattice points used are those points of the lattice of Fig. 1
that he within the model eyeball. In this way, a value of
the computed microwave heating potential Q, is available
at each lattice point. Symmetry is again used to reduce the
storage and execution-time requirements of the program.
The even symmetry of the eye geometry and the potential
Q. assures that T'(x,t) must also possess even symmetry.
This can be programmed as

' (20,,k) = T"(19,3,k)
T (7’;.7119 ) = Tn(z 7;18 )

(14a)
(14b)

Boundary condition (12d) may be translated into a form
useful for the IAD algorithm. For example, in calculating
the intermediate temperature value T*(7,7,k) along each
lattice line parallel to the z axis, we have

3708 KT*(imin + 1,jik)
K + hs K + hs

as the necessary boundary condition at point (%min,7,k).
In (15), i1t is assumed that points (imin + 1,5,k),

T* (imimj’k) =

(15)

2 The listing of the 195 card Fortran IV source deck is available
from the authors.
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(Tmin + 2,2,k),+ <+, (19,7,k) lie in the interior of the model
eyeball, and that the values of T* at these points are to
be obtained with a simultaneous solution. Conditions
similar to (15) can be formulated or the 7** and 7"+

iterations along y- and z-directed lines, respectively.

VI. RESULTS OF THE HEAT CONDUCTION
PROGRAMS '

In this section, we compare the results of the heat con-
duction programs for the two frequencies of irradiation of
the model eye. The storage and execution time require-
ments of each program are noted. Next, the computed
results are presented as contour maps of the steady-state
temperature function at the two symmetry planes of the
eyeball. Then the effect of varying parameter & on the
approach of the temperature function to the steady state
1s examined. Last, the significance of the results is dis-
cussed. '

Fach run of the heat conduction program required about
18 000 words of central memory for compilation. All pro-
grams were run for 200 time steps, with 6 = 4 s. This
proved sufficient to reach the thermal steady state for all
cases except for those with 4 fixed at the minimum wvalue
in its range. The execution time required for each run
was 3838 8. _ o

Iig. 7(a) and (b) gives contour maps of the computed
steady-state temperatures at lattice symmetry plane
z = 196 for incident frequencies of 750 MHz and 1.5 GHz,
respectively. Fig. 8(a) and (b) are the corresponding con-
tour maps at lattice svmmetry plane x = 19%5. In all
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Fig. 7. Maps of the computed steady-state temperatures at lattice
symmetry plane z = 196 for Py, = 100 mW/em? and A = 50
W/m2-°C. (a) Incident frequency = 750 MHz. (b) Incident
frequency = 1.5 GHz. .
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Fig. 8. Maps of the computed steady-state temperatures at lattice
symmetry plane £ = 1936 for Pi,, = 100 mW /em? and h = 50
W/m?-°C. (a) Incident frequency = 750 MHz. (b) Incident
frequency = 1.5 GHz.

of the maps, parameter h 1s fixed at 50W/m2-°C, and
power level Piy. 1s fixed at 100 mW /em?. The dashed lines
indicate the boundaries of the tissues of the eyeball.

For the case of 750-MHz irradiation, the peak temper-
ature of 39.3°C is located at the back of the lens. For the

1.5-GHz case, the peak temperature of 40.4°C 1s located

at about the center of the eyeball. We see that the lens
temperature due to 1.5-GHz heating 1s higher than that
due to 750-MHz heating, even though the magnitude of
the heating potential in the lens area follows an exactly
opposite behavior. Evidently, this is because the surface
cooling mechanism of the model eye is more effective for
the shallow 750-MHz heating pattern than for the rela-
tively deep 1.5-GHz heating pattern. This is a strong in-
dication that tissue i}hermodynamics must be taken into
account when analyzing microwave heating of organs.
Fig. 9 is a graph of the peak eye temperature versus
time, for the 1.5-GHz case. The two curves plotted repre-
sent the behavior of this temperature for the extreme
values of the range of 2 of (13b). Irradiation 1s assumed to
begin at { = 0 and continue from then on with a con-
stant power level of 100 mW/cm2 We see that for
h = 50 W/m2-°C thermal equilibrium is reached about
10 min after the start of heating, with a maximum tem-
perature of about 40.4°C. However, for h = 5 W/m?2-°C,
equilibrium is not attained until much later, estimated
to be about 45 min. For this case, the maximum achieved
temperature 1s about 56°C. This implies that the peak
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Fig. 9. Range of the peak eye temperature versus time for incident
frequency = 1.5 GHz and P, = 100 mW /em?2.

temperature within the model eye 1s in the range of 40.4°C
to H6°C tfor the assumed range of values of A.

For comparison with the results presented here, we note
the temperature distribution within the rabbit eye ir-
radiated at 2.45 GHz, computed by Guy et al. [25]. For
Pine = 100 mW/em?, a maximum temperature of 40.0°C
was calculated on the center line of the eyeball, approxi-
mately 2 of the eyeball diameter from the front surface.
Thermal equilibrium was reached within about 20 min of
the start of irradiation. The magnitude and position of the
peak rabbit-eye temperature and the time required to
reach the steady state agree well with the 1.5-GHz re-
sults (with A = 50 W/m?:°C) for the human-eye model
reported 1n this paper. This agreement offers promise that
a relation between the microwave heating of the rabbit
eye and of the human eye can be established.

VII. CONCLUSIONS

The absorbed power distribution pattern within a de-
talled model of the microwave-irradiated human eye has
been computed for two different frequencies of plane-wave
irradiation, 750 MHz and 1.5 GHz. The temperature dis-
tribution induced by the microwave heating within the
model eye has been computed. The results indicate that
a distinct hot spot exceeding 40.4°C probably occurs deep
within the eye at a frequency of 1.5 GHz. The results
imply that hot spots within the eye are to be expected at
frequencies higher than 1.5 GHz, due to wave-concentra-
tion effects of the eyeball-orbit juxtaposition. Comparison
of the temperatures within the human-eye model with
those calculated by Guy et al. [25] for the rabbit eye
indicates the possibility of relating the microwave heating
patterns within the respective organs. A more detailed
model of the human eye and computer runs for frequencies
higher than 1.5 GHz are required to explore this possible
relation.
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