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ABSTHACT

This paper succinctly reviews the background and formulation of the finite-
difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave
interactions with arbitrary structures. Selected 3-D results are given showing compar-
isons with both measured data and other numerical modeling approaches. An assessment is
made of the present horizon of FD-TD modeling capabilities, and possible future directions.

1. INTRODUCTION

Accurate numerical modeling of full-vector electromagnetic (EM) wave inter-
actions with arbitrary structures is difficult. Typical structures of engineering interest
have shapes, apertures, cavities, and material compositions that produce near fields that
- cannot be resolved into finite sets of modes or rays. Proper numerical modeling of such

near fields requires samplmg at sub- wavelength (sub-A) resolution to avoid aliasing of

magnitude and phase information. The goal is to provide a self-consistent model of the
mutual coupling of the electrically-smali cells compnsung the structure, even if the

structure spans tens ot A in 3-D.

This paper reviews the formulation and applications of a candidate numerical
modeling approach for this purpose: the finite-difference time-domain (FD-TD) solution
of Maxwell's curl equations. FD-TD is very simple in concept and execution. However, it
is remarkably robust, providing highly accurate modeling predictions for a wide variety of
- EM wave interaction problems. FD-TD is analogous to existing finite-difference solutions
of scalar wave propagation and fluid flow problems in that the numerical model is based
upon a direct, time-domain solution of the governing partial differential equatton Yet, FD-
TD is a nontraditional approach to numerical electromagnetics for engineering applications
where frequency-domain integral equatuen approaches have domlnated for 25 years.

| O_ne of the goals of thls paper is to demonstrate that recent advances_ in FD-TD

modeling concepts and software implementation, combined with advances in computers,
have expanded the scope, accuracy, and speed of FD-TD modeling to the point where it may
be the best choice for large EM wave interaction problems. With this in mind, this paper -
will succinctly review selected 2-D and 3-D FD-TD modeling validations and examples:

1. EM wave penetratlen and coupling |
a. Narrow slot in a thick screen (2-D, TE -polarized case)
b. Wires in free space and in a metal cavity (2-D and 3-D)
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2. Scattering and radar cross section (RCS)
a. T-shaped conducting target, multiple monostatic looks (3-D)
b. Trihedral corner reflector, both bare metal and with absorbing coating (3-D)

c. Wing-like structure, conformally modeled (2-D, TM-polarized case)
d. Jet engine inlet, conformally modeled (3-D)

Finally, this paper will conclude with an assessment of the present horizon of FD-
TD modeling capabilities, and possible future directions. |

2. GENERAL CHARACTERISTICS OF FD-TD

FD-TD is a direct solution of Maxwell's time-dependent curl equations. It employs
no potentials. Instead, it applies simple, second-order accurate central-difference
approximations [1] for the space and time derivatives of the electric (E) and magnetic (H)
fields directly to the differential operators of the curl equations. This achieves a sampled-
data reduction of the continuous EM field in a volume of space over a period of time. Space
and time discretizations are selected to bound errors in the sampling process and to insure
numerical stability of the algorithm [2]. Overall, FD-TD is a marching-in-time
procedure which simulates the continuous actual waves by sampled-data numerical analogs
propagating in a computer data space. The system of equations to update E and H is fully
explicit, so that there is no need to solve simultaneous equations. Thus, the required

computer storage and running time is dimensionally low, proportional only to N, where N
is the number of EM field unknowns in the volume modeied.

Fig. 1a illustrates the time-domain wave tracking concept of the FD-TD method. A
region of space having initially zero fields is selected for field sampling in space and time.
At t=0, it is assumed that an incident plane wave enters the region. Propagation of this
wave is modeled by time-stepping, i.e., simply implementing the finite-difference analog
of the curl equations. Time-stepping continues as the numerical analog of the incident wave
strikes the modeled target embedded within the sampling region. All outgoing scattered
wave analogs ideally propagate through the lattice truncation planes with negligible
reflection to exit the region. Phenomena such as induction of surface currents, scattering
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Fig. 1. Basic elements of the FD-TD space lattice.
(a) Time-domain wave tracking concept; (b) Lattice unit cell in Cartesian coordinates.
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and multiple scattering, aperture penetration, and cavity excitation are modeled time-step
by time-step by the action of the curl equations analog. Self-consistency of these modeled

phenomena is generally assured if their spatial and temporal variations are well resolved
by the space and time sampling process.

Time-stepping is continued until the desired late-time pulse response or steady-
state behavior is observed. An important example of the latter is the sinusoidal steady
state, wherein the incident wave is assumed to have a sinusoidal dependence, and time-
stepping is continued until all fields in the sampling region exhibit sinusoidal repetition.
This is a consequence of the limiting amplitude principle [3]. Extensive numerical
experimentation with FD-TD has shown that the number of complete cycles of the incident

wave required to be time-stepped to achieve the sinusoidal steady state is a function of
two (possibly related) factors:

1) Target electrical size. Numerical wave analogs must be permitted time to propagate
in the FD-TD grid to causally connect the physics of all regions of the target. For many
targets, this requires a number of time steps sufficient to permit at least two front-to-
back-to-front traverses of the target by a wave analog. For example, assuming a target

spanning10\, at least 40 cycles of the incident wave should be time-stepped to approach

the sinusoidal steady state. For a grid resolution of A/10, this corresponds to 800 time
steps.

2) Target Q factor. Targets having well-defined low-loss cavities or low-loss
dielectric compositions may require the number of complete cycles of the incident wave to
be time-stepped to approach the Q factor of the resonance. Because Q can be large even for

electrically moderate size cavities, this can dictate how many time steps the FD-TD code
must be run. “

In the RCS area, target electrical size may often be the dominant factor. Cauvities for
RCS problems (such as engine inlets) tend to be open, and therefore moderate Q; and the

use of radar-absorbing material (RAM) serves further to reduce the Q factors of
structures. :

Fig. 1b illustrates the positions of the E and H vector components about a unit cell
of the FD-TD lattice in Cartesian coordinates [1].  Note that each H component is
surrounded by four circulating E components, and vice versa. This arrangement permits
not only a centered-difference analog to the space derivatives of the curl equations, but also
a natural geometry for implementing the integral form of Faraday's Law and Ampere's Law
at the space-cell level.  This integral interpretation permits a simple but effective

modeling of the physics of thin-slot coupling, thin-wire coupling, and smoothly curved
target surfaces, as will be seen in Section 4. | -

An arbitrary 3-D scatterer can be embedded in an FD-TD lattice simply by
assigning desired values of electrical permitiivity and conductivity are to each lattice E
component, and magnetic permeability and equivalent loss to each H component. These are
interpreted by the FD-TD program as local coefficients for the time-stepping algorithm.
Specification of media properties in this component-by-component manner results in a
~ staircase approximation of curved surfaces, and assures continuity of tangential fields at
the interface of dissimilar media with no need for special field matching. In the 1970's
through mid-1980's, the staircase approximation of curved surfaces was found to be
adequate in FD-TD modeling problems invoiving EM wave interactions with biological
tissues [4],[5], penetration into cavities [6]-[8], and pulse interactions with structures
[9]-[11). However, recent interest in wide dynamic range models of scattering has

prompted the development of fully surface-conforming FD-TD approaches. One such
approach is summarized in Section 4c.
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3. BASIC FD-TD ALGORITHM DETAILS

a. Time-Stepping Algorithm

| Ta_ble. 1 lists_, the six coupled equations for E and H that comprise Maxwell's equations
in Qartes:gn- goordmates, and the central-difference approximations to the space and time
partial derivatives of these equations, using a sampled-field notation.

OH.

_ 1 (BEy BEZ. o H )
ot i\ 0z dy i
0H, 1 (BEI OF, , )
= - H
at a\8z 8z ¥
BH; _ 1 (aEI oL, p'Hz)
ot p\ o0y Oz
oF. _ 1 (BH; dH, aEI)
Ot e \ Oy dz
OF, _ }_(BHI 0H, crEy)
ot € \ Oz a0z
BE; _ 1 (BHF | BH? G"E;)
ot € \ Oz dy
where:
E.,E,,E, = Cartesian components of electric field, volts/meter
H,,H, H, = Cartesian components of magnetic field, volts/meter
¢ = electric perrrﬁttivity, farads/meter
o = electric conductivity, siemens/meter
g = magnetic permeability, henrys/meter
o' = equivalent magnetic loss, ohms/meter
(1,7, k) = (idz,jAy, kAz)
F"(i,j,k) = F(iAz,jAy, kAz,nAt)
2 3 i . ni- l R _ ni- _ l - k
OF"(i,j. k) _ I (i+3,5.k) - F7s AEL ; - order(Az?)
oz | Az |
. s nd L/ _ N PR
OF SEM) _F :(z,J,k)mFﬂ 2 (i3, k) order( AL?)

For a cubic space lattice, Az = Ay = Az =6

Table 1. Maxwell's equations and central-difference approximations.
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Upon substituting the central-difference approximations for the space and time
derivatives into Maxwell's equations, six coupled finite-difference time-stepping
expressions arise for the Cartesian components of E and H. These expressions permit a
progressive time integration of the Maxwell's equations suitable for the solution of an

initial-value problem. The following is a sample time-stepping expression for an electric
field component:

.. o{1,5,k+1/2)At

EPHi(i, g,k +1/2) = —— 2R 0L prgi gk +1/2) +

]

X
o(1,7,k+1/2 . o(i,5,k+1/2)At
14 é:igk—{-l}_r 14 2¢(3,7,k+1/2)
[ +1 . . +1,. R 1)
}:,%(H: 2(t+%131k+%)*ﬂ;1 2(3_%1.711‘77'%))_!’1 ()
At

€(1,5,k+1/2) :
n+ n+=.,. .
[ Ay (Hz i j— 3kt 3) - He ”(%H%aﬂ%)) J

Time-stepping expressions for the other electric field components follow by analogy. For
the magnetic field components, the magnetic permeability | and equivalent loss p' simply

appear in place of the electric permittivity € and conductivity ©.

The time-stepping system represented by (1) is fully explicit. That is, the new
value of a field vector component at any lattice point depends only on its previous value and
on previous values of the other field. Therefore, at any given time step, the updating of a

field vector can proceed one point at a time; or, if p parallel processors are employed
concurrently, p points at a time.

To insure the stability of the time-stepping algorithm exemplified by (1), At s
chosen 1o satisfy the inequality [2].[8]

At < - I | ' (2)

1 1 1 %
Cmu{z?f"'z;ﬂrm}

where ¢, is the maximum EM wave phase velocity within the media being modeled. Note
that the corresponding stability criterion in [1, Eqns. (7) and (8)] is incorrect [2],[8].

b. Numerical Di'spersion

The numerical algorithm for Maxwell's curl equations represented by (1) causes
dispersmn of the simulated wave modes in the computational lattice. That is, the phase
velocity of numerical modes in the FD-TD lattice can vary with modal wavelength, direction
of propagation, and lattice discretization. Since numerical dispersion can lead to non-
- physical results such as pulse distortion, anisotropy, and refraction, it is a factor in FD--

TD modeling that must be accounted to understand the operatuon of the algorithm and its
accuracy limits.

Following the analysis"in [8], it can be shown that the numerical dispersion
relation for the 3-D case represented by (1) is given by
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1 2,2 wAt 1 | 5 (kAz 1 . o [kyAy
() o0 (°3°) = mar o (%57) + e’ (P2)

3
Ll (k,m) _ ; (3)
Az? 2 o

where Ky, ky, and kZ are, respectively, the x, y, and z components of the wavevector;

~is the wave angular frequency; and c is the speed of light in the homogeneous material
being modeled.

In contrast to the numerical dispersion relation, the analytical dispersion relation
for a plane wave in a continuous, lossless medium is just

W fe? = k2 + k2 4 k2 (4)

for the 3-D case. We can easily show that (3) reduces to (4) in the limit as At, Ax,

Ay,and Az all go to zero. Qualitatively, this suggests that numerical dispersion can be
reduced to any degree that is desired if we only use a fine-enough FD-TD gridding.

To quantitatively illustrate the dependence of numerical dispersion upon FD-TD
grid discretization, we shall take as an example the 2-D case (Az =), assuming for

simpliqity square unit cells. Fig.'2 provides results for this case showing the variation of
numerical wave phase velocity with wave propagation angle in the grid [8].
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Fig. 2. Variation of FD-TD numerical wave phase velocity with
wave propagation angle in the grid for three different grid discretizations.
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In Fig. 2, three different grid resolutions of the propagating wave are examined:
A/5; A/10; and A/20. For each resolution, the relation cAt = 8/2 is maintained. This

relation is commonly used in 2-D and 3-D FD-TD codes to satisfy the numerical stability
criterion of (2) with ample safety margin. It is seen that the numerical phase velocity is

maximum at 45° (oblique incidence), and minimum at 0° and 90° (incidence along either
Cartesian grid axis) for all grid resolutions. This represents a numerical anisotropy that
IS inherent in the Yee algorithm. However, the velocity error diminishes quadratically

with grid resolution, so that the worst-case velocity error is -1.3% for A/10 grid
resolution, but only -0.31% for A/20 resolution. '

In addition to numerical phase velocity anisotropy and pulse distortion effects,
numerical dispersion could lead to non-physical refraction of propagating modes if the cell
size is a function of position in the grid. This is because the modal phase velocity
distribution would vary with position in the grid, just as in an inhomogeneous medium. The
error level would depend upon the magnitude and abruptness of the changes of the phase

velocity distribution, and could be estimated by using conventional theory for wave
refraction at dielectric interfaces.

c. Lattice Zoning and Plane Wave Source Condition

The numerical algorithm for Maxwell's curl equations defined by the finite-
difference system reviewed above has a linear dependence upon the components of the EM
field vectors. Therefore, this system can be applied with equal validity to either the
incident-field, the scattered-field, or the total-field vector components. Present FD-TD
codes utilize this property to divide the numerical lattice into two distinct zones, a total-
field zone and a scattered-field zone, as shown in Fig. 3a. These zones are separated by a
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Fig. 3. Zoning of the FD-TD Iattice. '(é) Total-field and scattered-field regions;
(b) Near-to-far field integration surface located in the scattered-field region.
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rectangular virtual surface which serves to connect the fields in each region [12],[13].
The interacting structure of interest is embedded within the total-field zone.

The total-field/scattered-field lattice zoning shown in Fig. 3a provides a number of

key features which enhance the computational flexibility and dynamic range of the FD-TD
method: |

1) Arbitrary incident wave. The connecting condition provided at the interface of the
inner and outer regions, which assures consistency of the numerical space derivative
operations across the interface, simultaneously generates an arbitrary incident plane
wave in Region 1 having a user-specified time waveform, angle of incidence, and angle of
polarization. This connecting condition, discussed in [8], almost completely confines the

incident wave to Region 1 and yet is transparent to outgoing scattered wave modes which
are free 1o enter Region 2.

2) Simple programming of inhomogeneous structures. Embedding the modeled
structure in the total-field region permits a natural satisfaction of tangential field
continuity across media interfaces without having to compute the incident field at possibly
tens of thousands of points along complicated media-interface loci that are unique to each
structure. The zoning arrangement of Fig. 3a requires computation of the incident field
only along the rectangular connecting surface between total-field and scattered-field
regions. This surface is fixed, i.e., independent of the shape or composition of the enclosed
modeled structure. A substantial benefit in computer running time arises as a result, one
that increases as the complexity of the target increases.

3) Large near-field computational dynamic range. Because the modeled structure is
embedded in the total-field region, low total-field levels in shadow regions or within
shielding enclosures are computed directly without suffering subtraction noise (as would
be the case if scattered fields in such regions were time-stepped, and then added to a
cancelling incident field to obtain the low total-field levels). Avoidance of subtraction noise
Is the key to obtaining near-field computational dynamic ranges exceeding 60 dB.

4)  Systematic computation of bistatic RCS. The provision of a well-defined scattered-
field region in the FD-TD lattice permits the near-to-far field transformation illustrated
in Fig. 3b [13]. The dashed virtual surface shown in Fig. 3b can be located along convenient
lattice planes in the scattered-field region of Fig. 3a. Tangential scattered E and H fields
computed via FD-TD at this virtual surface can then be weighted by the free-space Green's
function and integrated (summed) to provide the far-field response and RCS (full bistatic
response for the assumed illumination angle) [13]-[15]. The near-field integration

surface has a fixed rectangular shape independent of the shape or composition of the
enclosed modeled structure. | |

d. Lattice Truncations

The fields at the outermost lattice planes cannot be computed using central
differences because of the absence of known field data at points outside of the lattice.
Therefore, an auxiliary lattice truncation condition is necessary. This condition must

permit an outgoing scattered-wave numerical analog to exit the lattice without appreciable
nonphysical reflection. |

It has been shown that the required lattice truncation condition is really a radiation
condition in the near field [16]-[18]. A successful second-order-accurate finite-
difference approximation of the exact radiation condition in Cartesian coordinates was
introduced in [12]. This was subsequently used in a variety of 2-D and 3-D FD-TD
scattering codes [13]-[15], yielding excellent results for both near and far fields
(including those of this paper). However, recent interest in improved models of scattering
has prompted research in higher-order near-field radiation conditions [19]-[21]. The
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goal is to reduce numerical noise due to imperfect lattice truncations by at least one order
-of magnitude (20 dB) relative to that achieved by [12].

4. CONTOUR PATH INTERPRETATION

The original FD-TD algorithm was devised to directly approximate the pointwise
derivatives of Maxwell's time-dependent curl equations by numerical central differences
[1]. While this thinking is usefu! for understanding how FD-TD models wave propagation
in free space, it sheds little light on what modifications are needed to mode! the physics of
fine structural features such as wires and slots requiring sub-cell spatial resolution.

Recent work has indicated that FD-TD modeling can be extended by starting with a
more macroscopic description based upon Ampere's Law and Faraday's Law in integral
form, implemented on an array of electrically small, spatially orthogonal contours. These
contours mesh in the manner of links in a chain, filling the FD-TD modeled space. It can be
easily shown that the original pointwise and new contour path interpretations are
equivalent for the free-space case [22]. Further, it can shown that wires, slots, and curved
surfaces can be modeled by incorporating appropriate field behavior into the contour and
surface integrals implementing Ampere's Law and Faraday's Law at selected meshes, and by
deforming contour paths as required to conform with surface curvature.

a. Example 1: Application to the Thin Slot

To illustrate how the contour path interpretation provides the basis for FD-TD
modeling of fine geometrical features requiring sub-cell spatial resolution, we first
consider the thin slot in a planar conducting screen (TE case) [22]. Fig. 4 illustrates the
slot geometry and the Faraday's Law contour paths, C,, C,, and Cg3, used to derive special

FD-TD algorithms for the longitudinal magnetic field components, H,, located immediately
adgjacent to the screen. o |
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Fig. 4. Faraday's Law contour paths for the planar conducting screen
with narrow straight slot (TE case).
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Very simple assumptions are made regarding the field behavior near the slotted
screen: |

1) At contour C,, H, and E, have no varlatlon iny. Evaluated at the x midpoint of C,
H, and E, represent the average values of their respective fields over the full x interval.

2) At contour C,, H, is the average value of the magnetic field over the free-space part
of S,. Ey has no variation in y, and E, is the average value over the full x interval.

3) At contour C,, H, is the average value of the magnetic field over the full y mterval
and H, and E, have no vanatlon in the x direction (across the slot gap).

After applying Faraday's Law for the three contours subject to the above
assumptions, the following special FD-TD time-stepping relations are obtained for H,

components [22]:
Away from the slot (contour C,)

CHz,w) - B Az, m)
At

[Ey(z = 5.30) = Ep(z + 5,30)] - (3 + @) = EX(z,00 — §) -6
#od(% + a)

At the opening (aperture) of the slot {contour Co)

H?"’*(:vo,yo) - H?'*(zo,yo) -~
. At -

( E2(20,% + £) -9~ EX(z0,%0 — £)- 6+ ) (5b)

[Ey (zo — 3,30) — Ep(z0 + £, 30)] - (% + @)
o - [6(2 +a)+g(¢ - a)]

Within the slot (contour Cj)

A4 ¥ (z0,9) — B2 H(20,9) _ EZ(zo,y + §) -9 EX(zo,y— 3)- g (5¢)
At B pogd '

No H or E components in the FD-TD grid other than these H, components
immediately adjacent to the screen require modified time-stepping relations.
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b. Example 2: Application to the Thin Wire

The contour path interpretation is next applied to model coupling to a sub-cell
diameter wire [23]. Fig. 5 illustrates the Faraday's Law contour path used to derive the
special FD-TD algorithm for the circumferential H immediately adjacent to the wire.

Thin wire incident field components: E,, B, (TM case)
AN
3
3 €403 .20+3)
Z = 2,+% ] I o
i I
£,(0,2.) 8 £ Xo/10 @ E,(8,2,)
S
H’('E,zu)
~dR
S<A /10 s ©
- o
z = zu-% — Iy 3 ~c
EI{ zszg_ D )
| S
I I— x =, £ F]
xr =0 X = B

" Fig. 5. Faraday's Law contour path for thin-wire model.

Although only Hy'and E, are shown, the analysis is easily generalized for the other adjacent

looping H (H,) and radial E (EY)' Very simple assumptions are made regarding the field
behavior near the wire:

1) The scattered circumferential H and the scattered radial E components vary as 1/,
where r is the distance from the wire center. (In Fig. 5, 1/r is interpreted as 1/x.)

2) With r constrained to be less than A/10 at any point in C by FD-TD spatial

resolution requirements, the 1/r singularity behavior of the scattered circumferential H

and radial E dominates the respective incident fields, so that the total circumferential H and
total radial E also take on the 1/r singularity. |

3) The total circumferential H and the total longitudinal E, evaluated at the z midpoint

of the contour, represent the average values of their respective fields over the full z
interval.

Using these assumptions, we now apply Faraday's Law along contour C. The 1/x
varia-tions in Hy and E, yield natural logarithms upon integration. This yields the

following [23]: . - |
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an§(2rzﬁ) HU %(gazﬂ)w
- At -

E2(%,20 - §) = E2($,20 + §)]- Ein (£) + EP(8, 20)

- Jln(u)

where r, (assumed to be less than &6/2) is the wire radius. Isolatlon of H rl+1"2(5/2 Z,)

on the left hand side of (9) yields the required modified time- steppmg relatlon No Hor E
components in the FD-TD lattice other than the circumferential H components’ immediately
adjacent to the wire require modlfled time-stepping relations.

c. Example 3: Application to Curved Surfaces

The contour path interpretation is -IaSt applied to model scattering by targets having
curved surfaces [24]. Fig. 6 depicts the embedding of such a target in a 2-D TE grid.
Faraday's Law can be used to define integration contours that either split or stretch selected

grid cells in a manner to conform with the curved target surface. Very simple assumptions
are made regarding the field behavior at these special cells:

1) Each H, com'ponent"is evaluated at its usual grid position, and is the average value '
within the patch bounded by the deformed cell contour.

2) Each E, or Ey' comp'onent IS evaluated at its usual grid position, and is the average
value over its respective straight portion of the cell contour.

3) Where possible, E, and E are calculated by finite-differencing adjacent H,'s.
Where such differencing would cut across the target surface, E, or E IS obtained s:mpiy

by taking the value of its nearest co-linear E, or E neighbor Iocated on the same side of the
target surface.

Fig. 6. Faraday's Law contour paths for conformal FD-TD modeling of a curved target.
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4) An auxiliary field, E,, ., defined along the portion of the deformed cell contour that

conforms to the target surface, represents the average value of the surface tangential E.
For conducting targets having surface resistivity, E;_, can be easily related to the local

tangential magnetic field by the surface resistivity, R..

5) For dielectric targe’ts, Ein IS calculated by time-stepping using an Ampere's Law
contour path that pierces the surface at a right angle. Exterior and interior H,'s needed for

this time-stepping are obtained via linear interpolation of stored H,'s at standard grid
locations. ' '

Using these assumptions, we now apply Faraday's Law about the contours of Fig. 6 to
- obtain modified time-stepping relations for H, suitable for conducting structures [24]:

~ Standard surface-conforming cell (contour C))

n+# n-3 n n :
H ~ (C.<H + D.,[E -f, -E -g, +E_°*8 (7a)
;1 1 Z, 1 Y, 1 Yh 1 X
where, assuming that R, is the local surface resistivity,
. SR
(qul - L Sl) 1
At Va
Cp 7 R ’ ;= S R (70)
u A >1%s H A 1's
At 2 At Vi
Non-standard surface-conforming cell (contour C,)
nt+i n-% N N n Nn :
H « C,rH_..- + D,-[E -f,-E *86+E_ -8 -E_ -h, (8a)
Z, fa Z, 2 Yi Vi Y. Xi, X 2
where, assuming that R, is the local surface resistivity,
S AR
(quz ) Z 52) ,
C, = = — D, = SR (80)
H A >2"s n A 2°'S
At 2 At Va

This procedure allows the conformal modeling of arbitrary curved targets
essentially as easily and as quickly as the original stepped-surface FD-TD code, but with
substantially better accuracy. No H or E components in the FD-TD space grid other than the
H, components immediately adjacent to the object surface require modified time-stepping

relations.
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5. FD-TD MODELING VALIDATIONS FOR PENETRATION AND COUPLING

a. EM Wave Penetration Through a Narrow Siot

The accuracy of the contour path model for sub-cell-gap slots (Section 4a) will now.
be illustrated for the case of a straight slot in a thick conducting screen [22]

Fig. 7 depicts modeling results for a A/10-thick conducting screen that extends A/2
to each side of a straight slot which has a gap of A/40. Broadside TE illumination is
assumed. Three types of predictive data are compared: (a) A A/10 FD-TD model using the
contour path approach to treat the slot as a 1/4-cell gap; (b) A high-resolution (A/40)

FD-TD model treating the slot as a 1-cell gap; and (c) A very-high-resolution (A/400

sampling in the slot) frequency-domain electric field integral equatlon (EFIE) model solved
via MoM .

From Fig. 7, we see that there is excellent agreement between all three sets of

predictive data in both magnitude and phaSe. It is seen that A/10 FD-TD gridding can

accurately model the physics of wave penetration through sub-cell slots with the contour

path approach. This can substantially reduce computer resource requirements for FD-TD
models of complex structures

b. EM Wave Coupling to Thin Wires and Bundles

The accuracy of the contour path technique for modeling EM wave coupling to sub-
cell-diameter wires (Section 4b) will now be illustrated for: (1) An infinitely long wire

(over a wide range of radius); (2) A thin dipole; and (3) A wire-pair within a metal
cavity [23].

Fig. 8a graphs the scattered azimuthal H field at a fixed distance of A/20 from the
center of an infinitely long wire having a radius ranging between A/30,000 and A/30.
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Fig. 7. Comparison of FD-TD and MoM solutions for the

- gap electric field distribution:

(a) magnitude; (b) phase.
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TM illumination is assumed. There is excellent agreement between the exact series
solution and the A/10 FD-TD contour path model over the entire 3-decade range of wire

radius. Fig. 8b graphs the scattered azimuthal H distribution along a 2.0-A (antiresonant)
wire of radius A/300. Broadside TM illumination is assumed, and the field is observed at a
fixed distance of A/20 from the wire center. There is excellent agreement between an EFIE

MoM solution sampling the wire current at A/60 increments and the A/10 FD-TD contour
path model. |
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Fig. 8. Comparison of FD-TD and benchmark frequency-domain solutions for the
scattered circumferential magnetic field: (a) infinite wire; (b) 2-A wire.
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The FD-TD contour path model for single thin wires can be extended to treat thin
wire bundles [23]. Fig. 9 shows the geometry and test results for such a model involving a
wire-pair centered within a 3-D cylindrical metal cavity. The cavity, referenced to a large
ground plane, is 1.0-m high, 20-cm diameter, and has an internal shorting plug located 40
cm above the ground plane. Approximate plane wave illumination in the band 0.75 - 1.25
GHz is provided by an electrically-large conical monopole. Wave penetration into the
cavity is through a circumferential slot (12.5 cm arc length, 1.25 cm gap) at the ground
plane. The internal pair is formed by two parallel wires (30-cm long, 0.495-mm radius)

spaced 1 cm apart, with, respectively, 50-Q and 0-Q terminations to the ground plane.

From Fig. 9, we see that the predicted and measured wire load currents agree well.
This test is challenging since the Q factor of the coupling response is quite high, about 75.
indeed, it is found that the FD-TD code has to be stepped through 80 cycles to approximately
reach the sinusoidal steady state for illumination frequencies near the resonant peak [23].

6. FD-TD MODELING VALIDATIONS FOR SCATTERING AND RCS

~Many analytical, code-to-code, and experimental validations have been obtained for
FD-TD modeling of EM wave scattering and RCS. Selected validations will be reviewed here.

a. T-shaped Conducting Target, Multiple Monostatic Looks

We first consider the monostatic RCS pattern of a 3-D T-shaped conducting target
[15] consisting of a 30 x 10 x 0.33 c¢cm main plate and a 10 x10 x 0.33 cm bisecting fin

(Fig. 10). The illumination is a 9.0-GHz plane wave at 0° elevation angle and TE
polarization relative to the main plate. Thus, the main plate spans 9.0A and the fin 3.0A.

Note that look-angle azimuths between 90° and 180° exhibit the complicated physics of
back-to-back corner reflectors.

For this target, the FD-TD model uses a uniform cell size of 0.3125 cm
(A/10.667), forming the main plate by 96 x 32 X 1 cells and the bisecting fin by 32 x 32
x 1 cells. The radiation boundary is located only 8 cells from the target, so that the lattice
has 112 x 48 x 48 cells containing 1,548,288 unknown field components (212.6 A3).
Starting with zero fields, 661 time steps are used (31 cycles of the incident wave).
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Fig. 10 con'ipares the FD-TD predicted monostatic RCS values to measured data at 32
key look angles that define the major peaks and nulls of the pattern. The agreement js
excellent: in amplitude, within 1 dB over a 40-dB dynamic range; and in azimuth, within

1°. Computer running time is about 12 seconds per monostatic angle on the Cray Y-MP.

~b. Trihedral Corner Reflector, Both Bare Metal and RAM Coated

We next consider the monostatic RCS pattern of a 3-D conducting trihedral corner
~ reflector, both uncoated and with commercial RAM coating. The reflector consists of three,

thin, 15 x 15 cm flat plates mounted at mutual 90° angles (Fig. 11a). The illumination is
a 10-GHz plane wave at 45° azimuth angle and 6-directed E-field. Thus, the reflector

spans 5 x5 x 5 L. For the coated case, the RAM is assumed to be Emerson & Cuming Type
AN-73 (0.9525 cm thick, consisting of 3 distinct lossy layers of equal thickness).

For this target, the FD-TD cell size is 0.25 cm (A/12), with each plate spanned by
60 x 60 cells. The radiation boundary is located only 12 cells from the target, so that the
lattice has 84 x 84 x 84 cells containing 3,556,224 unknown field components (343 ?J-”).
Starting with zero fields, 720 time steps are used (30 cycles of the incident wave).

Fig. 11b compares the FD-TD computed monostatic RCS p'attern in the O plane (0

fixed at 45°) with predictions made by the shooting and bouncing ray (SBR) code developed
by S. W. Lee of the University of lllinois at Urbana. Excellent agreement is seen for the
uncoated target case. For the RAM-coated case, both codes predict substantial reduction of
the RCS response. It is seen that the predicted RCS patterns for this case are in good
qualitative agreement. Computer running time is about 30 seconds per monostatic angle on

the Cray Y-MP.
c. Wing-Like Target, Conformally Modeled

- To help evaluate the accuracy of the conformal curved surface model (Section 4c)
for monostatic RCS, we last consider a conducting wing-like target. The target, shown in
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Fig. 11. FD-TD vs. SBR data for monostatic RCS of a trihedral corner reflector.
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Fig 12, consists of a 10" by 12" metal plate, flat on one side and having steeply sloped sides
with a central 6"-radius chamfer on the other. The plane-wave illumination is at 10
GHz with the incident-wave electric field polarized vertically (parallel to the 12" edge).

Viewing the 12" edge of the plate as the z axis, 6'"c _ 90°, and the monostatic RCS pattern

is obtained as the azimuth angle is varied from -90° (broadside to the flat snde of the
target) to +90° (broads:de to the chamfer)

To permit direct co_de-_—to—code validation of FD-TD versus an existing, well-
characterized 2-D MoM program, it was decided that all numerical modeling runs should be
in 2-D (effectively letting the 12" dimension of the plate go to infinity). This allows

acceptable MoM matrix size at 10 GHz, where the 10" side of the target spans 8.47A. In

addition, both the FD-TD and MoM predictions were compared to anechoic chamber

measurements (although, of course, these data were obtained for the original 3-D target,
not the 2-D idealizations).

Fig. 12 graphs comparatwe MoM, FD- TD and measured monostatic RCS data for the
wing-like target. The FD-TD and MoM data virtually overlay each other for observation

angles between +60° and +90°, where the chamfer is being directly illuminated and
conformal target surface modeling is essential to obtain the proper RCS. Excelient

agreement is also noted for observation angles between -90° and -30°, where the flat side

is being directly illuminated. There is some disagreement of the predictive and measured
data at grazing. However, the disagreement at these relatively low RCS levels is likely a

consequence of the idealized 2-D models versus the 3-D physics actually being measured in
the anechoic chamber.

d.  Jet Engine Inlet, Conformally Modeled

To illustrate the emerging potential of FD-TD to achieve 3-D conformal models of
electrically large structures, we last consider a curved jet engine inlet illuminated by a
plane wave at 10 GHz. The inlet is assumed to be embedded within a conducting box coated
with Type AN-73 RAM (see Example 6b above) to eliminate wave reflections from the
outside of its curved sidewalls. With the box dimensions set at 30" x 10.5" x 10", the

overall inlet/box target configuration spans 25.4A x 8.89A x 8.47A. For this target, the

l | +90°
15 . : I e — . e e e e . m A e m mm e e e e = e e e e e .. - . - .
' , .!. _ 11"—'
i A W
N O — ] _90 1
8 |
0
S .
Qc
Dato Source
_30 . e e i e e i e | m— ———— e — oo —e— e s A‘ﬂvU-HT“ {Mﬂ”}
[ T e Y I NP R A1OVO-FDE (FD-TD)
.......... . A10VD-MES {Measured)
—45 ———— | b=t - | A e b b | b
-390 ~60 -30 0 30 60 90 AZIMUTH

Fig. 12. Comparison of FD-TD, MoM, and measured RCS data for the wing-like target.
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FD-TD cell size is 1/8" (A/9.43), and the overall lattice has 270 x 122 x 118 cells

containing 23,321,520 unknown field components (4,608 A3). Starting with zero-field

initial conditions, 1800 time steps are used (95.25 cycles of the incident wave).
Computer running time is about 8 minutes per monostatic angle on the Cray Y-MP.

Fig. 13 depicts the instantaneous distribution of the total electric field in a 2-D
observation plane cutting through the center of the 3-D engine inlet. (This black and white
photograph is derived from a color videotape display of the propagating electric field
penetrating the inlet, generated directly by the FD-TD time-stepping.) The display is
taken late in the time-stepping when the internal field is settled into a repetitive sinusoidal
oscillation (standing wave). Light and dark bands indicate the positive and negative values
of the field at one point in time of the standing wave. The incident wave is assumed to
propagate from right to left, and is polarized so that its electric field points across the
narrow dimension of the inlet. The aperture of the inlet is located at the right, and the inlet
IS shorted by a conducting wall representing the turbine assembly at the far left.

Clearly, in addition to simple data for the RCS pattern, FD-TD modeling provides
details of the complex standing wave pattern within the engine inlet, especially when
visualized in the time domain using color video technology. The latter visualization shows
that a general pulsing of the field pattern within the inlet occurs in the sinusoida! steady
state, emitting backscatitered energy in a regular series of bursts. It may be possible to use

this highly detailed time-domain near-field- information to better design such articles in
the future.

We note, in comparison, that if the frequency-domain MoM were applied to this
engine inlet, a linear system involving approximately 450,000 equations in 450,000
unknowns would have to be set up and solved. This assumes the standard triangular surface

patching implementation of the electric field integral equation, with the 1500 A% area of

the engine inlet discretized at 10 divisions per A. Using an optimized out-of-memory

subroutine for LU decomposition developed by Cray Research, the Cray Y-MP running time
for this matrix would be about 2.6 years, with the Y-MP running essentially at top speed
(2.1 Gflops). This compares to about 8 minutes per monostatic observation angle for FD-
TD, equivalent to 28 days for 5000 monostatic- angles. Additional problems involved in
error accumulation in the LU decomposition and reliability of the computer system over the
multi-year solution time probably would combine to render a traditional MoM solution
useless for this target and those of similar or larger electrical sizes. We note also that the
MoM solution does not directly provide details of the penetrating near-field distribution.

7. PRESENT STATUS AND FUTURE DIRECTIONS OF FD-TD

At present, 3-D FD-TD conformal models of electrically large structures spanning

more than 30A are being developed. These are apparently the largest detailed

computational EM models ever attempted. Unresolved issues at this time include: (1)
Automated FD-TD lattice generation for conformal modeling in 3-D; (2) Development of
sub-cell models for thin-layer coatings of structure surfaces; (3) Understanding the
accuracy limitations caused by numerical artifacts (such as lattice modal phase velocity
dispersion and imperfect radiation boundary conditions) at this unprecedented modeling
scale; (4) Understanding the time-domain convergence properties of electrically-large
3-D structures, especially those having reentrant or cavity-like features; (5) Efficiently
incorporating the dispersive nature of material electrical properties in the time-marching
algorithm; and (6) Developing highly efficient multi-processing software for computer
types represented by the Cray 3, Cray Y-MP, and Thinking Machines CM-2 (on the latter
two machines, especially for large "out-of-memory" problems).
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Fig. 13. FD-TD computed instantaneous distribution of the total electric field in a 2-D

observation plane cutting through the center of the 3-D engine inlet.
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By 1995, it is almost certain that 10-Gflop computers having 10 Gwords of fast
memory will be routinely available to the academic and engineering communities. These

would permit in-memory 3-D FD-TD models of structures spanning 100 - 300 A

(depending upon the precise shape) to be run. At 10 GHz, this would imply 3-D structure
sizes of 3 - 10 m (up to 30 feet in span) to be modeled with a uniform spatial resolution of
3 mm (1/8 inch). Advanced out-of-memory FD-TD software should enable even larger
structures to be modeled in their entirety with uniformly fine spatial resolution. Thus, for
microwave frequencies up to about 10 GHz, the era of the "entire airplane in the grid"
would be opened. Automated FD-TD geometry generation would permit the EM modeling to
utilize structure databases developed by non-EM engineers, leading to design cost reduction
and the possibility of innovative design optimizations.

8. CONCLUSION

This paper has reviewed the basic formulation of the FD-TD numerical modeling
approach for Maxwell's equations. A number of examples of FD-TD modeling of
electromagnetic wave interactions with structures were provided to indicate the accuracy
and breadth of FD-TD applications. In all cases studied to date where rigorous analytical,
code-to-code, or experimental validations were possible, FD-TD predictive data for
penetrating and scattered near fields as well as RCS are in excellent agreement with
benchmark data. With continuing advances in FD-TD modeling theory and continuing
advances in supercomputer technology, it is likely that FD-TD numerical modeling will
occupy an important place in high-frequency engineering electromagnetics in the 1990's.
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