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Abstract— The numerical solution of coupled integral equations for
arbitrary shaped two-dimensional homogeneous anisotropic scatterers is
presented. The theoretical and the numerical approach utilized in the
solution of the integral equations is based on the combined field formu-
lation, and is specialized to both transverse electric (TE) and transverse
magnetic (TM) polarizations. As opposed to the currently available
methods for the anisotropic scatterers, this approach involves integra-
tion over the surface of the scatterer in order to determine the unknown
surface electric and magnetic current distributions. The solution is fa-
cilitated by developing a numerical approach employing the method of
moments. The various difficulties involved in the course of the numerical
effort are pointed out, and the ways of overcoming them are discussed
in detail. The results obtained for two canonical anisotropic structures,
pamely a circular cylinder and a square cylinder, are given along with
validations obtained via alternative methods.

I. INTRODUCTION

IN RECENT YEARS, the solution of physical problems in-
volving anisotropic media has received a great deal of atten-
tion. In particular, volumetric approaches such as the finite-
difference time-domain (FD-TD) method [1], [2] and the vol-
umetric integral equation method [3]-[5] have already been
addressed to solve scattering problems involving anisotropic
materials. Also considered was another volumetric method
based on the variational principle to solve problems involv-
ing anisotropic scatterers [6]. These methods can treat mate-
rials characterized by arbitrary permittivity and permeability
tensors, thus giving a great deal of freedom in the types of
media that can be analyzed by their use. However, the ap-
proaches and their numerical schemes [1]-[6] are completely
volume dependent, requiring volumetric models even for ho-
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mogeneous and isotropic cases. Further, their application to
electrically large objects has not yet been established. Another
approach to the solution of the scattering problem dealing with
anisotropic scatterers is based on the plane wave representation
of fields in the anisotropic medium [7]. The method discussed
in [7] consists of using a superposition type integral to include
all possible wave amplitudes and phases, and is applied to the
circular cylinder excited at a normal incidence [7], and at an
oblique incidence [8]. However, thus far this method has been
applied only to the case of a circular cylindrical geometry.

In order to consider arbitrary shapes and computationally
manageable sizes of the anisotropic scatterers, an alternative
approach to the solution is presented. The method incorporates
the surface boundary integrals instead of volume integrals,
and is applicable to any arbitrary shaped two-dimensional ho-
mogeneous anisotropic scatterers, which can have disconti-
nuities in their surface contour [9]. It involves extension to
the formulation of the scattering problem for the isotropic
bodies by utilizing the electromagnetic potential theory, and
the subsequent derivation of the combined field surface inte-
gral equations [10]. However, the derivation of a complete
set of consistent potentials for the anisotropic case is much
more complicated than the same procedure for the isotropic
medium. The detailed derivation of the combined field integral
equations is discussed in a separate paper cited earlier [9]. The
complete theoretical development is omitted here, and only the
most relevant equations are stated to form the starting point
for the numerical solution. Due to the complicated nature of
these equations, it is practically useful to have a simple nu-
merical scheme for analyzing anisotropic structures, and yet
not compromising the accuracy of the numerical results.

The numerical results based on the surface formulation for
the transverse magnetic (TM) polarized fields are presented
for two canonical anisotropic structures. In general, however,
these structures need not be restricted to any particular shape
such as a smooth contour. They can include surface disconti-
nuities in the form of sharp corner wedges. Also, in order to
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Fig. 1. Geometry of anisotropic scatterer with equivalent current sources.

demonstrate the feasibility of applying the developed method
to compute the surface currents and the far fields, a relatively
large object with its largest electrical dimension of kos = 10
will be considered. In particular, for validating the combined
field formulation, the radar cross section (RCS) computed for
a circular cylinder is compared to that available in the litera-
ture [7]. Also, the near surface current distributions and the
RCS of the anisotropic square cylinder are validated against
the results obtained based on the FD-TD algorithm [2], [10].

II. INTEGRAL EQUATIONS FOR THE SURFACE FIELDS

Consider a two-dimensional anisotropic object for which
there is no variation in its surface contour along the z axis of
the coordinate system. It is located in a free-space medium
and is excited by an externally incident, TM polarized, field
with the time dependence of e =", where w is the frequency
of the excitation (see Fig. 1). Further, if the excitation is such
that the z component of its propagation vector k. is zero,
then all scattered field quantities are independent of the z
coordinate variation. In order to analyze the complete field
distribution due to the presence of the anisotropic object, the
equivalence principle [10], [11] can be invoked to obtain a
set of coupled (combined field) integral equations for the un-
known induced currents on the surface of the object. The full
theoretical development leading to those integral equations is
presented elsewhere [9], hence, only the key steps are repeated
below. Referring to Fig. 1, the equations for the fields inter-
nal and external to the anisotropic object can be expressed
in terms of the appropriate vector and scalar potentials as is
done in [9]-[11]. If the space is separated into two regions,
with region 1 occupied by the isotropic (free-space) medium,
and the region 2 corresponding to the anisotropic scatterer,
respectively, then the total electric E%;, and the magnetic A ’1
field expressions in the region 1 are given by
z-(VxFy

€1€0

VioF, + 2w . Fy+ VXAD gy
ki K10
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(Ic)

k} = ke (1d)
where k1, e, u; are the propagation constant, the relative
permittivity, and the relative permeability of the isotropic
medium. Similarly, the total electric EY, and magnetic H,
fields in the region 2 are given by

~—1
EgzziwAzz—z~éz—-(vXF2) a)
0
H. —ioF iw U ﬁ{l -
2—WF2+PV(V'(#2'F2))+W-(V x Az) (2b)
a

k¢21 = k(z)fzz(l‘«xx#yy + ﬂ)z(y) (2¢)

where the relative permittivity and permeability tensors for
the anisotropic medium are defined by

[-Nxx pxy O

B=|pyx pyy O Ga)
L0 0 g
(exx &y O

E=|eyx €y O (3b)
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It should be obvious from (la), (1b) and (2a), (2b) that the
appropriate Lorentz-type gauge condition has been utilized
to eliminate the magnetic scalar potential, so that the field
expressions could be cast in terms of the magnetic and the
electric vector potentials only. The derivation leading to the
Helmholtz equations and the final integral representation of
the required components of the vector potentials 4 and F
for the anisotropic medium is quite intricate [9]. A detailed
account of the procedure taken to obtain them is discussed in
[9], [15] and only their final forms are repeated below:

F) — — Y =y '
mm—u%‘mmﬁhwmamma<m
= (F) — — Y N 2,0 '
2200) = ot g | MAOH Ko s’ 1)
Ey(F) = ~eoerz it | M,(F)YH  kaRpm)ds’ (4c)
4 BxxByy JC Y o atm

Y = (fxxpryy + #)Z(y) (4d)
—v\2 IETIAY
Rm:¢u X7 0 —y) .
Hxx Byy

where J;, My, M, are the unknown electric and magnetic
current distributions along the contour C, Hf)l) is the Hankel
function of order zero and of first kind, and R,, is the scaled
distance parameter [15], [16] between the integration and the
observation points with C and ds’ representing the contour
of the scatterer and its differential element. The quantities =,
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and Z, are the components of the auxiliary vector potential
function defined by

=u-F

[

&)

which permits independent differential equations for =, and
=,, so that eventually solutions for F, and F, can be deter-
mined [9]. It should be pointed out that in order to obtain
the integral solutions for A;, Ex, Z, it was necessary to de-
mand that the medium tensors possess antisymmetric proper-
ties, i.e., pyy = —pyy for TM polarization, and exy = —€yx
for transverse electric (TE) polarization. The corresponding
superposition integrals for the external isotropic medium can
readily be obtained from (4a)-(4d) and (5) by setting the diag-
onal elements of the medium tensors (those in (3a) and (3b))
equal and the off-diagonal ones to zero.

Finally, application of the boundary conditions on the tan-
gential components of the total electric and magnetic fields
along C, yields the following set of two combined field (cou-
pled) integral equations for the surface currents:

— A x E =iw x 8) Az + Azn)

— -1 _
— A x (VXF] +62 (V XF2)> (63)

€0€1 €0

- A x H, :ﬁx{iw(ﬁl‘i-ﬁz)
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-HwV(V (k%+ k% ))

N ((VXZI) LA -(VX22>>} (6b)

BHiko Ko

which are valid for the TM polarized incident field (E}, 7).
The same equations also apply to the TE polarization fol-
lowing appropriate substitutions of symbols as is dictated by
the duality principle [11]. In particular, allowing E — H,
H — — E, and interchanging the roles of the permittivity
and permeability tensors results in the desired combined field

integral equations set for the TE polarization.

III. NUMERICAL SOLUTION OF THE INTEGRAL
EQUATIONS

The first step in the numerical solution of (6a) and (6b)
based on the method of moments is the proper choice of the
testing and the expansion functions. This choice is usually
dictated by the complexity of the integrals and the scatterer
contour. For example, if the integrands contain derivatives
with respect to the observation coordinates along the tangen-
tial direction of the scatterer, then it is customary to use higher
order testing functions, such as the triangles, to replace those
derivatives by differences [12]. The use of the simpler test-
ing functions, such as pulses, simplifies the testing scheme.
On the other hand, it complicates the integrands, because the
derivative operations due to the gradient, divergence, and the
curl will now be taken inside the integrals. However, this ap-
proach has been found to speed up the convergence rate of the

1575

Yy x

Fig. 2. Segmented boundary contour.

The expansion scheme for the unknown surface electric and
magnetic currents is chosen to consist of the simplest possible
functions, such as pulses. The only remaining task is to de-
cide whether the pulses for each current expansion ought to be
staggered or not. This, in fact, depends on the contour of the
scatterer, i.e., if the contour is smooth (continuous), then there
is no need to use the staggered distribution. However, if the
contour includes surface discontinuities, such as the corners
and arbitrary bends, then it is appropriate to stagger the pulses
so as to enforce the continuity of the circumferential current,
and to avoid expanding the axial current at the bend where it
is singular [10]. For the problem at hand, i.e., for TM polar-
ization, the axial electric current J;, and the circumferential
magnetic current M, are expanded in a staggered manner as
shown in Fig. 2, because objects having both smooth and dis-
continuous contours can be considered for the solution using
the same computer algorithm. These same expansion pulses
are also employed as the testing functions for the two cou-
pled integral equations. Thus, the unknown surface currents
are expanded as

n=N

T(F) =D 0n(F) an (7a)
n=1

n=2N

M7y =Y Py My
n=N+1

(To)

where p’(7") and pM(F') are the unit pulse functions which
can also serve as the testing functions #£(F) and ¥ (F) in the
reduction procedure of the integral operators in (6a) and (6b)
to a matrix form, i.e.,

m=M

HOERY A (8a)
m=1
m=2M

e = > pn® (8b)
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where (8a) and (8b) are used in taking the inner products with
(6a) and (6b), respectively. The resulting system of the matrix
equations, following testing and expansion, turns out to be

V4 [Y';;,,]} [[Jzn]} ~ {[Eim]]
Z81 il [Ms) [Hi,]

where the various elements of the system submatrices are de-
fined below.

1) The elements of the impedance matrix of the E field
equation:

kono ) Y
[ZE 1= ——/ HO®R) + —Y
mn] 4 A, ey ( 1 ) TxxPiyy

®

(10a)

2) The elements of the admittance matrix of the E field
equation:

2 = g [ - REP CR)ds’
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4i An VHExxHyy i m
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R

3) The elements of the impedance matrix of the A field
equation:

(10b)
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4) The elements of the admittance matrix of the A field
equation:

(10c)
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5) The column excitation matrix of the E field equation:

(EL,] =2 - E' (Fm). (10¢)

6) The column excitation matrix of the A field equation:

0
ko
and where [J;,] and [Mj,] are the unknown surface electric
and magnetic current column matrices along the tangential
directions £ and § of the contour C. In (10a)-(10d), the sub-
scripts m and n refer to the observation and the integration
points on the scatterer contour C, and in the above matrix
elements,

(H.,] = “25(Fp) - H (Fm) (10f)

. oy
I—zm:(xm x)j__l_(ym y)_f’

(11a)
Hxx Hyy
_ !’ — r
Ry =&m=X)s  Om 7, (11b)
Hxx Hyy
R=@m—xY+Wm—-y")p (11c)

with R, Ry, R being their respective magnitudes, and with
A, A', §, §' being the normal and the tangential unit vectors on
the contour at either the observation or the integration points
(see Fig. 1). These unit vectors are defined in the following
manner:

(A; ') = cos (®; )X + sin (P; D)y (11d)

§; 8") = —sin(®; ®")% + cos(®; )y (11e)

where ® and @’ are the angles between the normals # and A’
and the x axis of the coordinate system.

It is evident from (10a)-(10d), that as a consequence of
letting the various differential operations to be performed on
the Green’s function inside the integrals, results in the ap-
pearance of higher order Hankel functions, in particular H. gl).
Nevertheless, the complications arising in the evaluation of
the system submatrices due to such an approach, are out-
weighted by the gain in the quicker convergence rate of the
solution [13]. Otherwise, the evaluation of those submatrices
is straightforward apart from the calculation of their singular
values, which should be obtained asymptotically. A detailed
mathematical analysis leading to the determination of the sin-
gular parts of the various integrals is presented in [15], and
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only the final results are summarized in the following. First,
for the anisotropic medium they are given by

1 —
ne [ Eraas = [ 1 (C52) as
Am 0 2
(12a)

which is a well-known integral and can be evaluated in nu-
merous ways [14]. The singular values of integrals involving
the first derivative of H;’ are given by

I, = _kapxy ' .Rm,)m ds' —0 (12b)
4i Vixxbyy JAy, Rpm
ka o HP (kR ., 1
_ Ry Waltm) = (12
L= g PR, 72 (%

where all of the vectors have been defined previously in
(11a)-(11e), and it should also be noted that the values of
these integrals are same irrespective of whether the medium
is anisotropic or isotropic. The most complicated integrals
contain the second derivatives of Hm, nevertheless they can
be evaluated asymptotically to yield the following results:
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where the the angle ®,, is defined in [15] and related to the
real angle ®,, by

Ryy

tan @, = 4 — tan ®,,. (12g)
Bxx
The remaining terms 3 and A, are given by
k
B=— (12h)
VHxxbyy
B = By fiyy Sin® B + i €08 T (120)

Secondly, the same equations (12a)-(12f) can be special-
ized for the isotropic medium by simply making appropriate

1577
substitution of variables, i.e.,
(12j)

Also, it should be pointed out that the value of I3 — —I3
when the external isotropic medium is considered. This is a
direct consequence of the observation point approaching the
contour in the limit from the opposite direction for the exter-
nal medium, as opposed to the internal medium, considered
above. The remaining integrals are independent of this fact,
thus requiring no additional sign changes.

The matrix equations derived above ((9) and (10)) have
been programmed on the IBM 370 computer using Fortran
77, and the various quantities of interest, such as the near
surface current distributions and the far scattered fields, are
calculated in order to analyze the electromagnetic behavior of
two-dimensional anisotropic material objects.

€2z — €1 fxx = MKyy 7 15 By HO;‘T’ — ®.

IV. NUMERICAL RESULTS

In this section selected numerical results are presented re-
garding the computed near and far fields, as well as the CPU
time required to obtain them based on the solution of the ma-
trix equations (9). Two canonical cylindrical anisotropic ge-
ometries are considered, namely the circular and square cylin-
ders excited by an external TM polarized plane wave. Both the
near and the far fields are computed, and validated for each
of the two geometries. The radar cross section of a circular
anisotropic cylinder with koa = 7/2, where a is the radius of
the cylinder, characterized by €;; =2, pxx = 1, and pyy, =4
is computed based on the surface integral equation formulation
and is compared to the one obtained based on the plane wave
superposition integral representation of the fields inside the
anisotropic medium [7]. The two results are displayed in Fig.
3 and appear to be in an excellent agreement. Similarly, Fig.
4 illustrates the RCS computed for a circular cylinder of the
same size, but with the following anisotropic medium param-
eters: €zz =2, pax = 1, ptyy =4, and pyy = —pyx = 2. For
both cases, the surface electric and magnetic currents were
calculated as well, but are reported elsewhere [15]. The num-
ber of unknowns for each of the surface currents was 60, such
that the total system matrix size is 120x120 for the level of
agreement shown in Fig. 3.

The next case analyzed numerically is a square anisotropic
cylinder characterized by e;; = 1.5, pxx = 1.5, pyy = 2
whose electrical size is kos = 10, where s is the side length
of the square. Once again the RCS is computed based on
the solution of the combined field equations and is shown in
Fig. 5(a). These results are compared with those computed
via the FD-TD [10]. The agreement between the RCS pat-
terns calculated by the two methods is quite good except for
a small angular range in the shadow region in the interval of
200°-220°. The magnitudes of the surface electric and mag-
netic currents for this square cylinder are displayed in Figs.
5(b) and 5(c). The level of agreement for the currents is also
seen to be good except in the vicinity of the corners of the
scatterer where the results of the two methods differ. This
discrepancy deserves additional comments. Since the exact
nature of the field behavior at the corners of the anisotropic
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Fig. 3. Bistatic RCS of the circular anisotropic cylinder with only diagonal
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-00

object is not yet known, it is difficult to say with absolute
certainty which of the two methods gives the correct result.
However, these corner regions are very small compared to the
wavelength and since the far scattered fields are not expected
to be greatly influenced by the currents over these localized
corner regions, the RCS patterns may be more appropriate
indicators of the agreement between the two methods. Also to
be noted is the fact that in the FD-TD algorithm the fields are
computed half a cell away from the actual physical boundary
of the object, which may also be responsible for the discrep-
ancies between the results. Since the fields do not vary greatly
half a cell away from the object in regions far from surface
discontinuities from their values computed directly on the ob-
Ject’s surface, the agreement in the results calculated via both
methods is expected to be good. However, in regions close to
the bends the fields are expected to vary quite a bit between
their values half a cell away from the contour and directly on
it. This could possibly explain the differences in the results
obtained via the two techniques in the vicinity of the corners
of the square. The next example considered is a square cylin-
der having higher permeability values of the medium given
by: €2z = 2, pxx = 2, pyy = 4, and kos = 5. The RCS
is computed and compared with that determined by FD-TD
(see Fig. 6(a)). The corresponding magnitudes of the surface
electric and magnetic currents for this scatterer are shown in
Figs. 6(b) and 6(c), respectively. It is worth noting that in
this case the results of both methods appear to predict similar
behavior of M; close to the bends in the contour, particu-
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Fig. 4. Bistatic RCS of the circular anisotropic cylinder with mutual per-
meability terms.

larly, both indicate the dip in the magnitude of M;, but not
to the same extent. However, the discrepancy for the axial
electric current is still present in those regions. This behavior
may be attributed to the sparse sampling of the FD-TD algo-
rithm, which in this case consisted in fifty cells per side of
the square. It is believed that even further agreement in the
results of the two methods could be achieved by increasing the
sampling rate of the FD-TD. It is also worth mentioning that
since both FD-TD and surface integral equation approach are
based on methods of numerical analysis, it is not realistic to
expect both of them to yield identical results. Additional ex-
amples for which both the surface currents and the RCS have
been computed are available in [15]. The two square cylinders
considered here are electrically large structures, especially the
first one (kos = 10) for which the number of current samples
is such that the system matrix is 592x592. Nevertheless, the
numerical solution is feasible, because most of the time is con-
sumed by the system matrix inversion (which can be reduced
for symmetric objects) and not for matrix filling. It should be
pointed out that the symmetry of the structure has not been
incorporated in the present algorithm. If the symmetry is in-
corporated into the algorithm, then substantial reduction in the
CPU time for the matrix inversion can be achieved. Further
savings in the CPU time can also be obtained if the inversion
subroutine, based on the Gaussian elimination, is to perform
partial pivoting instead of full pivoting.

In order to provide some idea of the time involved for the
computations to obtain the results for the square cylinder dis-
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played in Fig. 5, the CPU time consumed by the algorithm was
recorded. The actual time for all of the results to be calculated
was found to be 1770.10 s on the IBM-370 mainframe. This
indicates that consideration of electrically large anisotropic
scatterers is quite feasible for the numerical solution.

V. SUMMARY

In this paper, a numerical solution of the combined field
surface integral equations for the case of arbitrary shaped two-
dimensional anisotropic scatterers has been presented. The
computed results for the surface fields and the far scattered
fields are validated by the currently available alternative meth-
ods, such as the FD-TD [2] and that of plane wave represen-
tation of fields in the anisotropic medium [7]. The discussion
included a detailed account of the various aspects involved
in the numerical solution, including the results of the singu-
larity analysis for the integrals containing different orders of
the Hankel functions for both anisotropic and isotropic me-
dia. The computer algorithm developed is applicable both for
smooth contours and those with sharp edges.
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