2910

IEEE TRANSACTIONS ON MAGNETICS VOL 25 NO 4, JULY 1989

PREDICTING SCATTERING OF ELECTROMAGNETIC
FIELDS USING FD*TD ON A.CONNECTION MACHINE

-? Andrew T. Perlik *Member, IEEE o
~ MRJ, Inc. . ‘
10455 White Granite Drive

Oakton, Virginia

22124

(703) 934-9232

" Torstein Opsahl
Center for Innovative Technology
- 13873 Park Center Road

Herndon Virginia

22071

Allen Taflove, Senior Member, 1EEE

Department of Electrical Engineering and Computer Science
Technologlcal Institute, Northwestern Un1vers1ty

Evanston, I1linois

~ Abstract

The Finite Difference-=Time Domain (FD-TD) numeri-
cal technique for solving Maxwell's equations is mapped
onto a massively parallel Single Instruction'Multlple
- Data (SIMD) architecture. A.Connection Machine" was
chosen over other contemporary SIMD machines as the
~ most promising candidate. The fundamental FD-TD algo-

rithm developed by Taflove is decomposed into its
~serial and parallel segments. Connection Machine
implementation is discussed in detail including
processor assignment, processor utilization, run
time, problem size, and future directions. '

- Introduction

FD-TD is an explicit time stepping finite differ-

ence formulation of Maxwell's curl equations that was

developed in the'mld 1980's by Allen Taflove [1]. It
has broad applicability to the study of electro-
magnetic scattering by three dimensional objects
because the scatterers can be closed or open, conduct-
ing, dielectric, inhomogeneous, or anisotropic. The)
;algorithm.has been validated against eXperimental data
on objects that exhibit scattering physics at edges,
corners, and cavity penetration. Agreements to within
1 dB of “experimental data have been reported for

scatterers that physically span 9*wavelengths and have '

a bistatic scatter dynamic range of 40 dB [1]. Con-
sequently, FD-TD is certainly among the most robust

- scattering predictive algorithms that are currently
available. If a parallel computer algorithm could be
developed that could handle larger scatterers than
serial code and/or run faster than serial codes, then
this new development could have broad applicability to
the electromagnetlcs community. -

FD—TDAlgorithm

FD-TD modelsthepropagation of a plane wave in a

finite volume of space containing the electromagnetic
scatterer, Figure 1. A cubic cell spatial lattice
grids the volume under study. Although simplistic,

‘attempts to generalize the gridding procedure to a non-

uniform, scatterer surface conformal one have not been
totally satisfactory because both the computational
dynamic range and algorithm run time _degrade severely.
Alternative gridding techniques still remain an area
for continued research. An exploded view of a typical
FD-TD cell appears in Figure 2, the well known Yee '
lattice. Note that the E and H field components

are computed on a half cell staggered grid. This
formulation guarantees second order accuracy. in the
difference equations that are being solved. Two
computational regions are defined, a total field
region and a scattered field region. The total field
region completely encloses the scatterer. In it, the
total field gets updated computationally in order to

preserve a large computational dynamic range.

60201
Boundary
Rectangiles
(6 total)
I""
Typical
FDTD
cell
Y
Scatterer
. Xe - o | _
gFigure 1. FD- TD Volumetric Grid
Enclosing a Scatterer -
Y
o _ _
 Figure 2. Yee FD-TD Lattice

Scattered
fields are needed to obtain far field information. The

traveling wave incident fields get added at the inter-

face of these two computational regions respecting

causallty.

‘ A problem.solution is obtained by time stepping the
difference equations. As time evolves the incident -
wave travels through space exciting the scatterer.

- Time stepping continues until steady state is achieved
- for all field components in the grid.
- all field components are sinusoidal in time with con-

At steady state
vergedmagnitudes~and*convergedrelative phases.r

Update equations for the volumetric grid decompose
into four categories: discretized Maxwell's equations
for grid interior points,‘Mur update equations for E
components at the interior points of the boundary
rectangles, interpolation and extrapolation equations

for the edges of the boundary rectangles, and equations
for the incident fields.

Mur update equations [2] are

0018-9464,/89/0700-2910$01.00©1989 IEEE

| Waves °

N executing algorithms.

_used to computationally terminate the volumetric grid.

Basically, they are discrete versions of a one-way wave

~equation and are designed to "absorb” outgoing plane
In order to update a Mur boundary point to a
new time, all nearest neighbor spatial values are
needed. Consequently, the Mur updates do not apply

for fields along the edges of the volumetric grid.
Edges are updated heuristically using an interpolation
and extrapolation scheme on nearest neighbor data.

- The Connection Machine

The Connection Machine (CM) is a massively paral-
lel SIMD computer manufactured by Thinking Machines
'Corporation in Cambridge, Massachusetts. CMs are
hosted by serial computers that broadcast instruc-—
tions to it, and the same instruction is executed by
~each processor on data in its own memory. A commer-
"cially available CM-2 contains a maximum of 65, 536
processors, each having 65,536 bits of dedicated -

memory (63,995 bits are user addressable) Instruc—
tions are bit oriented giving the programmer the
~unusual, but extremely useful flexibility to'match
word 1ength to suit desired dynamic range or to match
interprocessor'message lengths. Floating point
coprocessors are available, but at the present time _
they support only 32 bit single precision arithmetic.
An elapsed time for a complete cycle of arithmetic
(i.e,, retrieve operands, perform the arithmetic
operation, and store the result) of 40 usec is
~ easily achievable, using non-optimized non—pipelined
code.

a lower limit on the machine capability. Typical)
performance for algorithms developed at MRJ, Inc.

is equivalent to a serial machine performance of
5 gigaflops, and peak performance rates equivalent '

to 28 gigaflops on a serial machine have been ' '

demonstrated.,

~ General processor-to-processor communication is
available, however, for the algorithm capabilities
incorporated into the present model, only nearest
neighbor processor communication is needed. All
processors can get data from their nearest neighbors
simultaneously. For a 32 bit message the elapsed time
ranges from 30 usec to 140/asec depending on algorithm
design implying that a net memory transfer rate of
70 gigabits is p0351b1e on a full machine. B

o On—line disk storage (data vault) is available
up to 80 gigabytes for a 65k CM-2, but at present it
is not compatible with all hosts. Software will be
available in the near future to remedy;the'situation.

The host computer plays an integral part in

Not only does it broadcast
instructions to the CM, but it can also read data out

- perform computations, ‘and write data back to selected
processors. This affords the user with flex1bi11ty to

~use both serial and parallel computational capabllity,__

‘as needed.

Programs can be'written on small (8k)'machines_
and can be run on larger machines without changing
the code. This is accomplished by using the good
‘coding practice of exploiting the operating software
supplied machine constants. The concept of virtual
processors is also supported. Ea
can partition its memory by factors of 2 and assign to
~ each partition a virtual processor ID. 'An 8k machine
can, therefore, act like a 65k machine prov1ded that

~each processor needs only 1/8 of a processor's physical

memory. Run time degrades*with virtualization.

principles
- that can be analyzed and minimize run time.
‘ment took place under the constraints that no on-line

" Provided that all 65k processors are product- -
ively computing, 1.6 gigaflops (65k/40/as) establlshes _

o changed,

and parallel computers.

- essor for each parallel step.

Each physical processor

2911

- Mapa 1n _ -_FD*"""TD : on‘to the CM

FD—TD was mapped onto the CMLWlth two guiding
maximize the size of the volumetric grid
Develop-

disk storage was available and that all floating point

arithmetic would be single Drecision (32 bit) S0 that

the floating point coprocessors could be used. The

 first constraint arose because both development risk
‘and time were high when the programming'was started.

Data vault software was new, unproven, and was avail-
able under an operating system that was less flexible
than the one desired. Floating point arithmetic

using the coprocessors reduced run time by a factor of

'-10—*sufficient1y attractive to warrant their use.

. Contrary to what
compromise in desired accuracy is incurred.
precision arithmetic was demonstrated to support a
~computational dynamic range of 40 dB and is believed

expected, however, no .
'Single

might Dbe

to support a range of over 60 dB. The real trade was

~against volumetric grid size because using less than

32 bits would free memory for more grid points.,

L
Step 1

~ The FD-TD algorithm is examined and broken into
its algorithmic serial and parallel computational
steps. Start by identifying the computational

N chronology at each tlme step

' update incident fields.

- update interior H fields
update interior E fields
update rectangular boundary edges
update rectangular boundary interiors

| test for steady state '

~Each computational step above depends on the result

of the previous one. Unless the basic algorithm is
these steps are sequential on both serial
_All spatial points can
theoretically be updated simultaneously in each
computational step. In the second step, for example,
all three components of H can be updated 31multa—
neously as well. ' -

- Step 2 - T

Identify the role(s) to be played by each proc-
This step 1s critical

for robust parallel code development.- Performance

~ both in run time and problem size could vary by orders

of magnitude among lmplementations. ‘Returning to the
second computational step above, minimum execution

"-time'would result if each H field component and each
E field component at a grid cell*were assigned to
individual processors.

Such an ‘assignment would greatly
sacrifice problem size since each FD-TD cell would
require six processors. Instead, the decision waS'made

~ to assign each processor the role of updating the three
- H components and the three E components 3331gned to '

. each FD-TD cell, Figure 3.

The trade here was in favor

of problem size at the expense of run time. Total

storage requirements needed to support computations for
~each FD-TD cell sums to 1,536 bits, significantly |

‘less than the 63,995 user addressable bits.
- processor can, therefore, by virtualized by a factor

of 39, the remaining storage being reserved for stack

Each

space.;s.

- provides the data needed.

2912

o E. IGE H,
0 Y
- FO-TD————= — ._Ev - Y
~ Celiindex : J/ T
L N A
8

"Figure 3. Fields Assigned to a CM Processor
Figure 4 summarizes the essential breakdown

~ between the serial and parallel processing steps.

- Some steps have been left out for clarity, i.e.,
update of incident fields, convergence testing, and
computation of peak and phase for scattered fields,
but the breakdown in Figure 4 captures the philosophy.

Y & S 8 A W AN A AW A AW,
7 7 £ 4 & & 7 L L L L. J
Al A B S A 8 A A AW AW AW & '
A S 8 SV AW A A& AV A A5 AV A '
A & B 8 Y A N B WA ‘

ENEREEENEEER
VRNV NNNN

‘Serial
Processing
“Through =
-1 Virtual
Processors

Paralle}
Processing
for each
plane

" [interior of FO-TD Cells

NI N Rectangular boundary of FD-TD Mur Celis -

N - . | .
' N - Extrapolation and Interpolation Cells

OvervieW'of Essential Parallel

' - ~and Serial Steps-”

Assessment of Parallel Im-lementation_‘

. Each FD-TD cell needs only 1, 536 bits for data
~storage.

not get used. Now consider processing for an indivi-
dual plane. Let each plane be n cells by m cells.
'Then (n-2)(m-2) cells are interior ones, all getting
updated simultaneously. Edge processors update next.

Only four processors are active independent of grid =

size. Clearly, this is poor utilization of the proc-

essors since only a small number are being used. The

true measure of its impact on overall performance is
the relative amount of time consumed compared to the
other grid update functions for each plane. Table 1
Edge updates require nearly
half as much time to compute as the interior points do.
~ Updating the edges on the CM instead of the host was a
. poor choice, one that will be remedied in the next
version of the software. Face updates are computed
using 2(n+m) -8 processors, on the order of the square
 root of the number of available processors. Again

| referring to Table 1, the conclusion is drawn that

a significant amount of time is required to update the

face processors relative to ‘the interior ones. This
does not imply that face updates should be performed

in the host, however, because the I/0 between the host

and the CM for the root of CM processors needed to
~ service. the faces may be too expensive. Algorithms

for face update run time reductions are currently
being examined(' ' o

NOrmalized Elapsed Time for'MaJor_ '
Parallel Program.Segments _

— PROGRAM SEGMEN_T T

-Table 1;

NORMALIZED RUN TIME .

;496 units
.402'units

face u_date

The three program.segments discussed above consti—

tute the core code that gets executed for each plane in

- the FD-TD grid. The execution time required to service

a total of 2,451, 608 FD-TD cells.

Creating virtual processors is clearly a good
.idea,_otherwise, the excess memory per processor would

those segments that employ only a fraction of the number

~of available processors, the edge and face updates, is
_approximately 47 percent of the total time required to
__-service a plane.
 improvement for the current algorithm is at best a

This suggests that the run time

factor of 2. Run time improvements by factors of 10 or

- more will require a fundamental algorithm redesign.

AsSessment oflAlgorithm.Performance

, Performance assessment will touch on the following
topics: problem size as a function of machine size, run
time as a function of machine size, and comparison
between serial and parallel codes. The most succinct
method for conveying results is to express them in terms

- of the number of FD-TD cells that fit into the CM's
- random access memory (RAM).

Otherwise, results would be
coupled to scatterer size and the desired solution accu-

racy, since for fixed scatterer size solution accuracy

is a function of the thickness of the scattered field
~computational region.
‘processor CM can evaluate 38 planes of 62x126 cells
- giving a total FD-TD volume of 296,856 cells.

With the present code an 8k

A 65k
processor CM can evaluate 38 planes of 254x254 cells for
The same code will
run on both machines at the same execution time of

0.045 seconds/time step/virtual plane. Total run time
per time step is 38 times larger, 1.7 seconds/time step.
Run time is flat with the increase in machine size
because the architecture is SIMD. Run time does change

- as the number of virtual planes change because the
o physical processors serially service the virtual proc-
- essors that they represent.
that reducing the number of virtual planes by a factor |
~of two also reduces the run time by a factor of two.
'The largest scatterer studied and reported in the litera-
ture as far as we are aware is the 9] cross tee plate

Benchmarks were run to show

reported by Taflove [1] using a Cray based code. It was
embedded in a 258,048 cell lattice. By comparison the
CM code can evaluate a computational lattice 9.5 times
larger in volume on a full CM-2 in RAM,
CM code as currently written is somewhat more general

- because the lattice cells can be rectangular parallel-

pipeds instead of just cubes. If the CM code is
restructured in the same way, lattice size would double.
by another factor of two in volume and execution time
per virtual level would fall by roughly 10 percent.

Summary

The advent of massively parallel processors 1is

still in its infancy; the CM, in particular, being
commercially available for only two years. and being

based on technology that is 10 years old. Already,

- we are compiling data that suggests parallel codes are
- capable of exceeding lattice sizes and executing faster
- than even Cray based codes for lattice optimally matched
~ to the CM's memory.

The applicability of parallel
processing to grid based techniques appears to have a

- bright future., -

References

~ [1] A. Taflove and K. R. Umashankar, "Analytical
~ Models for Electromagnetic Scattering,” Final
- Technical Report RADC-TR-85-87 by ITT Research
" Institute, Chicago, IL, to Rome Air Develop-
- ment Center, Hanscom AFB, MA 01731 on Procure-

ment Number Fl9628 82—C-0140 'May 1985.

2] G.‘Mur, Absorbing Boundary Conditions for the
o Finite-Difference Approximation of the Time-
Domain Electromagnetlc—Field Equations, " IEEE
- Trans. Electromag. Compat., Vol. EMC-23 '
- Nov., 1981, pp. 377-382.

A. Taflove was supported in part for this research
by NSF Grant No. ASC—8811273. “

Furthermore, the

