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Abstract

This paper reviews recent applications of the
finite-difference time-domain {FD-TD)} numerical modeling
approach for Maxwell's equations. FD-TD is very simple
in concept and execution. However, it is remarkably
robust, providing highly accurate modeling predictions
for a wide variety of electromagnetic wave interaction
problems. The objects modeled to date range from simple
2-D geometric shapes to extremely complex 3-D aerospace
and biological systems. Rigorous analytical or experi-
mental validations are provided for the canonical
shapes, and it is shown that FD-TD predictive data for
near fields and radar cross section (RCS) are in excel-
lent agreement with the benchmark data. It is concluded
that, with continuing advances in FD-TD modeling theory
for target features relevant to the RCS problem, and
with continuing advances 1in vector- and concurrent-
processing supercomputer technology, it is likely that
FD-TD numerical modeling will occupy an important place
in RCS technology in the 1990's and beyond.

1. Introduction

Accurate numerical modeling of the radar cross
section (RCS) of complex electrically-large objects is
difficult. Typical structures have shapes, apertures,
cavities, and material compositions or coatings which
produce near fields that cannot be resolved into finite
sets of modes or rays. Proper numerical modeling of
such near fields requires sampling at sub-wavelength
resolution to avoid aliasing of magnitude and phase
information. The goal is to provide a self-consistent
model of the mutual coupling of all of the electrically
small regions (cells) comprising the structure, even if
the structure spans tens of wavelengths in three
dimensions.

A candidate numerical modeling approach for this
purpose is the finite-difference time-domain (FD-TD)
solution of Maxwell's curl equations. This approach is
analogous to existing finite-difference solutions of
fluid-flow problems encountered in computational aero-
dynamics in that the numerical model is based upon a
direct solution of the governing partial differential
equation. Yet, FD-TD is a non-traditional approach to
numerical electromagnetic modeling, where frequency-
domain approaches have dominated.

One of the goals of this paper is to demonstrate
that recent advances in FD-TD modeling concepts and
software implementation, combined with advances in
computer technology, have expanded the scope, accuracy,
and speed of FD-TD modeling to the point where it may be
the preferred choice for certain types of scattering
problems. With this in mind, this paper will succinctly
review the following FD-TD numerical modeling applica-
tions dealing with electromagnetic scattering by
canonical two- and three-dimensional targets:

a. Circular dielectric / permeable cylinder, conformally
modeled

b. Metal cube, broadside incidence
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¢. Three-dimensional T-shaped
monostatic RCS pattern

d. Trihedral
pattern

conducting target,

metal corner reflector, monostatic RCS

-- Bare metal case

-- (Coated with a commercially available three-
layer radar absorbing material (RAM)

Each of these examples compares the FD-TD modeling

results with other data obtained via analysis,
alternative numerical procedures, or actual measure-
ments. Numerous other examples, inciuding models of

non-canonical
great complexity,

aerospace and biological structures of
are available in the references.

2. General Characteristics of FD-TD

As stated, FD-TD is a direct solution of Maxwell's
time-dependent curl equations. It employs no poten-
tials. Instead, it applies simple, second-order
accurate central-difference approximations [1] for the
space and time derivatives of the electric and magnetic
fields directly to the respective differential opera-
tors of the curl equations. This achieves a sampled-
data reduction of the continuous electromagnetic field
in a volume of space, over a period of time. Space and
time discretizations are selected to bound errors in
the sampling process, and to insure numerical stability
of the algorithm [2]. Electric and magnetic field com-
ponents are interleaved in space to permit a natural
satisfaction of tangential field continuity conditions
at media interfaces. Overall, FD-TD is a marching-in-
time procedure which simulates the continuous actual
waves Dy sampled-data numerical analogs propagating in
a data space stored in a computer. At each time step,
the system of equations to update the field components
is fully explicit, so that there is no need to set up
or solve a system of linear equations, and the required
computer storage and running time is proportional to
the electrical size of the volume modeled.

Fig. la illustrates the time-domain wave tracking
concept of the FD-TD method. A region of space within
the dashed lines is selected for field sampling in
space and time. At time = 0, it is assumed that all
fields within the numerical sampiing region are identi-
cally zero. An incident ptane wave is assumed to enter
the sampling region at this point. Propagation of the
incident wave is modeled by the commencement of time-
stepping, which is simply the implementation of the
finite-difference analog of the curl equations. Time-
stepping continues as the numerical analog of the
incident wave strikes the modeled target embedded with-
in the sampling region. All outgoing scattered wave
analogs ideally propagate through the lattice trunca-
tion planes with negligible reflection to exit the
sampling region. Phenomena such as induction of sur-
face currents, scattering and multiple scattering,
penetration through apertures, and cavity excitation
are modeled time-step by time-step by the action of the
curl equations analog. Self-consistency of these
modeled phenomena is generally assured if their spatial
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Fig. 1. Basic elements of the FD-TD space lattice:
(a) time-domain wave tracking concept;

(b) lattice unit cell in Cartesian coordinates [1].

and temporal variations are well resolved by the space
and time sampling process.

Time-stepping is continued until the desired late-
time pulse response or steady-state behavior is achieved.
An important example of the latter is the sinusoidal
steady state, wherein the incident wave is assumed to
have a sinusoidal dependence, and time-stepping is con-
tinued until all fields in the sampling region exhibit
sinusoidal repetition. This is a consequence of the
limiting amplitude principle [3]. Extensive numerical
experimentation with FD-TD has shown that the number of
complete cycles of the incident wave required to be
time-stepped to achieve the sinusoidal steady state is
approximately equal to the Q factor of the structure or
phenomenon being modeled.

Fig. 1b illustrates the positions of the electric
and magnetic field components about a cubic lattice unit
cell {1]. Note that each magnetic field vector compo-
nent is surrounded by four circulating electric field
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vector components, and vice versa. This arrangement
permits not only a centered-difference analog to the
space derivatives of the curl eguations, but also a
natural geometry for implementing the integral form of
Faraday's Law and Ampere's Law at the space cell level.
This integral representation permits a simple but
effective modeling of the physics of smoothly curved
target surfaces, as will be seen later.

Fig. 2 illustrates how an arbitrary three-
dimensional scatterer is embedded in an FD-TD space
lattice comprised of the unit cells of Fig. 1b. Simply,
the desired values of electrical permittivity and con-
ductivity are assigned to each electric field component
of the lattice. Correspondingly, desired values of
magnetic permeability and equivalent loss are assigned
to each magnetic field component of the lattice. The
media parameters are interpreted by the FD-TD program
as local coefficients for the time-stepping algorithm.
Specification of media properties in this component-by-
component manner results in a stepped-edge approxima-
tion of curved surfaces. Continuity of tangential
fields is assured at the interface of dissimilar media
with this procedure. There isno need for special field
matching at media interfaces. Stepped-edge approxima-
tion of curved surfaces has been found to be adequate
in the FD-TD modeling problems studied in the 1970's
and early 1980's, including wave interactions with bio-
logical tissues [41, penetration into cavities [5-71,
and electromagnetic pulse interactions with complex
structures [8-10]. However, recent interest in wide
dynamic range models of scattering by curved targets has
prompted the development of surface-conforming FD-TD
approaches which eliminate staircasing. One such will
be summarized later in this paper.
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Fig. 2. Arbitrary 3-D scatterer embedded

in the FD-TD space lattice.

Fig. 3a illustrates the division of the FD-TD lat-
tice into total-field and scattered-field regions. This
division has been found to be very useful since it
permits the efficient simulation of an incident plane
wave in the total-field region with arbitrary angle of
incidence, polarization, time-domain waveform, and
duration [11, 12]. Three additional important benefits
arise from this lattice division, as follows:

a. A large near-field computational dynamic range is
achieved since the scatterer of interest is embedded in
the total-field region. Thus, Tow actual field levels
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Fig. 3. Zoning of the FD-TD space lattice:

(a) total-field and scattered-field regions [11, 12];
(b) near-to-far field integration surface located
in the scattered-field region [12].

in shadow regions or within shielding enclosures are
computed directly without suffering subtraction noise
(as would be the case if scattered fields in such regions
were time-stepped via FD-TD, and then added to a cancel-
ling incident field to obtain the low total-field levels.)

b. Embedding the scatterer in the total-field region
permits a natural satisfaction of tangential field con-
tinuity across media interfaces, as discussed earlier,
without having to compute the incident field at possibly
numerous points along a complex locus that is unique to
each scatterer. The zoning arrangement of Fig. 3a re-
quires computation of the incident field only along the
rectangular connecting surface between the total-field
and scattered-field regions. This surface is fixed,
i.e., independent of the shape or composition of the
enclosed scatterer being modeled.

c. The provision of a well-defined scattered-field
region in the FD-TD lattice permits the near-to-far field
transformation depicted in Fig. 3b. The dashed virtual
surface shown here can be located along convenient lat-
tice planes in the scattered-field region of Fig. 3a.
Tangential scattered E and H fields computed via FD-TD
at this virtual surface can then be weighted by the
free-space Green's function and then integrated (summed)
to provide the far-field response and RCS (full bistatic
response for the assumed illumination angle) [12-14].
The near-field integration surface has a fixed rectangu-
lar shape, and thus is independent of the shape or com-
position of the enclosed scatterer being modeled.

Fig. 3a uses the term "lattice truncation" to des-
ignate the outermost lattice planes in the scattered-
field region. The fields at these planes cannot be com-

puted using the centered-differencing approach because
of the assumed absence of known field data at points
outside of the lattice truncation. These data are needed
to form the central differences. Therefore, an auxiliary
lattice truncation condition is necessary. This condi-
tion must be consistent with Maxwell's equations in that
an outgoing scattered-wave numerical analog striking the
truncation must exit the Tlattice without appreciable
non-physical reflection, Jjust as if the 1lattice
truncation was invisible.

It has been shown that the required lattice trunca-
tion condition is really a radiation condition in the
near field [15-17]. A very successful second-order
accurate finite-difference approximation of the exact
radiation condition in Cartesian coordinates was intro-
duced in [11]. This approximation was subsequently used
in a variety of 2-D and 3-D FD-TD scattering codes [12 -
14], yielding excellent results for both near and far
fields. (For example, all FD-TD results in this paper
were obtained using this approximate radiation condition.)
However, recent interest in wide dynamic range models of
scattering has prompted research in the construction of
even more accurate near-field radiation conditions,
including fixed third-order accurate approximations
[18, 19], adaptive conditions [20], and predictor-
corrector conditions [21]. The goal here is to reduce
the numerical lattice background noise due to non-
physical reflections of wave analogs at the lattice
truncations by at least 20 dB relative to that of [11].

3. Scattering Prediction for Canonical Targets

Analytical, code-to-code, and experimental valida-
tions have been obtained relative to FD-TD modeling of a
wide variety of 2-D and 3-D structures [22]. Both con-
vex and reentrant (cavity-type) shapes have been studied;
and structure material compositions have included perfect
conductors, homogeneous and inhomogeneous lossy dielec-
trics, and anisotropic dielectric and permeable media.
Selected past and new validations will be reviewed here.

a. Circular Dielectric / Permeable
Cylinder, Conformally Modeled

The interleaving of E and H field components in the
FD-TD Tlattice permits the construction of generalized
Faraday's Law and Ampere's Law contour paths which can
be adjusted to exactly conform with a smoothly curved
target surface. An example of this is shown in Fig. 4.
In this manner, slightly modified time-stepping expres-
sions for the field components at or adjacent to the
target surface are derived from the integral form of
Maxwell's equations. All other field components in the

Faraday's Law contour paths for conformal
FD-TD modeling of a smoothly curved target, TE case

Fig. 4.
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Fig. 5. Comparison of conformal FD-TD model
and exact solution for TE illumination of a circular
dielectric/permeable cylinder: (a) surface electric
currents; (b) surface magnetic currents.

FD-TD lattice are time-stepped in the normal manner. In
effect, only the space cells immediately adjacent to the
target surface are deformed to conform with the surface.

The accuracy of the conformal FD-TD model is illus-
trated in Fig. 5. Here, a moderate-resolution Cartesian
FD-TD grid (having 1/20 dielectric-wavelength cell size)
is used to compute the surface electric and magnetic
current distributions induced on a k,a =5 circular
dielectric/permeable cylinder by a TE—po?arized incident
plane wave. Excellent agreement with the exact modal
solution is seen. Note also that the computer running
time for the conformal FD-TD model is essentially the
same as for the old staircase FD-TD model since only a
few field components immediately adjacent to the target
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surface require a slightly modified time-stepping

relation.

b. Metal Cube, Broadside Incidence [13]

Results are now shown for the FD-TD computed surface
electric current distribution on a metal cube subject to
plane-wave illumination at broadside incidence. The
current distribution is compared to that computed by a
standard frequency-domain, electric field integral equa-
tion (EFIE), triangular surface-patching, method of
moments (MoM) code. It is shown that a very high degree
of correspondence exists between the two sets of
predictive data.

The detailed surface current study involves a metal
cube of electrical size ks = 2 , where s is the side
width of the cube. For tRe FD-TD model, each cube face
is spanned by 400 square cells (20 x 20), and the radia-
tion boundary is located at a uniform distance of 15
cells from the cube surface. For the MoM model, each
cube face is spanned by either 18 or 32 triangular
patches (to test its convergence). Fig. 6 graphs com-
parative results for_the "looping" surface current along
the E-plane locus ab'c'd. The FD-TD values agree with
the high-resolution MoM data to better than +2.5% (+0.2
dB) in magnitude and +1° in phase at all comparison

points.
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Fig. 6. Comparison of FD-TD and EFIE/MOM results for

the "looping" surface electric current along the
E-plane locus of a perfectly-conducting cube:
(a) magnitude; (b) phase [13].
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c. Three-Dimensional T-Shaped Conducting Target [14, 22]
We next consider the monostatic RCS pattern of a T-
shaped conducting target consisting of a 10x30x0.33 cm
main plate and a 10x10x0.33 cm bisecting fin. The
illumination is a 9.0-GHz plane wave at 0° elevation
angle and TE polarization relative to the main plate.
Thus, the main plate spans 9.0 A_. Note that look angle
azimuths (as defined 1in Fig. between 90° and 180°
provide substantial corner reflector physics in addition
to the edge diffraction, corner diffraction, and other
effects found for an isolated flat plate.

For this target, the FD-TD model uses a uniform cell

=3x9 Ao’ bisecting fin size =

3x3 lo) {14, 22].

32x96x1 cells and the bisecting fin by 32x32x1 cells.
The radiation boundary is located only 8 cells from the
target's maximum surface extensions, so that the overall
lattice size is 48x112x48 cells, containing 1,548,288
unknown field components (212.6 cubic wavelengths).
Starting with zero-field initial conditions, 661 time
steps are used, equal to 31 cycles of the incident wave.

Fig. 7 compares the FD-TD predicted monostatic RCS
values at 32 key look angles with measurements performed
by SRI International. These look angles are selected to
define the major peaks and nulls of the monostatic RCS
pattern. The agreement is excellent: in amplitude,
within 1 dB over a 40-dB dynamic range; and in azimuth,

size of 0.3125 cm (x0/10.667), forming the main plate by within 1° 4in 7locating the pattern's peaks and nulls.
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Comparison of FD-TD and SBR results for the monostatic RCS vs. elevation angle of a trihedral
corner reflector (both uncoated and with commercial RAM coating):

(a) target geometry; (b) comparative RCS.



d. Trihedral Corner Reflector

We last consider the monostatic RCS pattern of a
conducting trihedral corner reflector, both uncoated and
with commercial radar absorbing material (RAM) coating.
The reflector consists of three, thin, 15 x 15 cm flat
plates mounted at mutual 90° angles, as shown in Fig. 8a.
The illumination is a 10.0-GHz plane wave at 45° azimuth
angle and 6-directed E field. Thus, the reflector spans
5x 5 x5 .. For the coated case, the RAM is assumed
to be EmersSn & Cuming Type AN-73 (0.9525 cm thick, con-
sisting of 3 distinct lossy layers of equal thickness).

For this target, the FD-TD model uses a uniform cell
size of 0.25 cm (A _/12), spanning each plate by 60 x 60
cells. The lattic® radiation boundary is located only
12 cells from the target, so that the overall lattice
size is 84 x 84 x 84 cells, containing 3,556,224 unknown
field components (343 cubic wavelengths). Starting with
zero-field initial conditions, 720 time steps are used,
equal to 30 cycles of the incident wave.

Fig. 8b compares the FD-TD computed monostatic RCS
pattern in the 8 plane (¢ fixed at 45°) with predictions
made by a shooting and bouncing ray (SBR) code developed
by Prof. S. W. Lee of the University of I1linois at
Urbana. Excellent agreement is seen for the uncoated
target case. For the RAM-coated case, both codes predict
substantial reduction of the RCS response. It is seen
that the predicted RCS patterns for this case are in
good qualitative agreement.

4. Potential for Modeling Ultra-Complex Targets

A graphic illustration of the potential of FD-TD for
modeling structures comprised of ultra-complex electro-
magnetic wave absorbing media is provided by the whole-
body dosimetry work reported by the University of Utah
in [23}. Directly exploiting the ability of FD-TD to
model media inhomogeneities down to the space-cell level,
and fully utilizing the speed and memory capabilities of
the Cray-2, highly realistic 3-D tissue models of the
complete human body at a uniform space resolution in the
order of 1 cm have been constructed for the first time.
With capabilities of supercomputers expanding by at
least one order of magnitude in the next decade, it is
likely that FD-TD numerical modeling will occupy an
important place in RCS technology in the 1990's and
beyond.
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