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Applications of the finite-difference time-domain (FD-TD)
method for numerical modeling of electromagnetic wave interac-
tions with structures are reviewed, concentrating on scattering and
“radar cross section (RCS). A number of two- and three-dimensional
examples of FD-TD modeling of scattenng and penetration are
provided. The objects modeled range in nature from simple geo-
metric shapes to extremely complex aerospace and biological sys-
tems. Rigorous analytical or experimental validations are provided
for the canonical shapes, and it is shown that FD-TD predictive
data for near fields and RCS are in excellent agreement with the

benchmark data. It is concluded that, with continuing advances in
FD-TD modeling theory for target features relevant to the RCS
problem, and with continuing advances in vector and concurrent
supercomputer technology, it is I:kely that FD-TD numerical mod-

eling will occupy an important place in RCS technology in the 7990s
and beyond.

. INTRODUCTION

Accurate numerical modeling of the radar cross section
(RCS) of complex objects is difficult. Typical structures of
interest have shapes, apertures, cavities, and material com-
positions or loadings which produce near fields that cannot
be resolved into finite sets of modes or rays. Proper numer-
ical modeling of such near fields requires sampling at sub-
wavelength resolution to avoid aliasing of magnitude and
phase information. The goal is to provide a self-consistent
model of the mutual coupling of electrically small regions
(space cells) comprising the structure.

A candidate numerical modeling approach for this pur-
pose is the finite-difference time-domain (FD-TD) solution
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of Maxwell’s curl equations. This approach is analogous to
existing finite-difference solutions of fluid-flow problems
encountered in computational aerodynamics, in that the
numerical model is based on a direct solution of the gov-
erning partial differential equation. Yet FD-TD is a nontra-
ditional approach to numerical electromagnetic modeling,
where frequency-domain approaches have dominated.

FD-TD is very simple in concept and execution. Yet it is
remarkably robust, providing highly accurate modeling
predictions for a wide variety of electromagnetic wave
interaction problems. One of the goals of this paper is to
demonstrate that recent advances in FD-TD modeling con-
cepts and software implementation, combined with

- advances in supercomputer technology, have expanded the

scope, accuracy, and speed of FD-TD modeling to the point
where it may be the preferred choice for scattering prob-
lems involving complex, electrically large, three-dimen-
sional structures. With this in mind, this paper will suc-
cinCtIy review the following FD-TD modeling validations:

1) Canonical two-dimensional targets _
‘a) Square metal cylinder, TM polanzatnon

_ b) Circular muscle-fat- layered cylinder, TE polariza-
' tion , _ '
¢) Homogeneous, anisotropic, square material cyl-
inder, TM polarization
d) Circular metal cylinder, conformally modeled TE
and TM polarization '
e) Flanged metal open cavity
2) Canonical three-dimensional targets
a) Metal cube, broadside incidence
b) Flat conducting plate multiple monostatic RCS
observations -
c) T-shaped conducting target, multiple monostatic
RCS observations

The potential of FD-TD for modeling noncanonical,
indeed very complex, three-dimensional objects will then
be illustrated by reviewing published work which inves-
tigated the penetration of VHF and UHF plane-wave energy
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into 1) the infrared seeker section of a missile and 2) the |
entire human body. Finally, the paper will conclude with
a discussion of large-scale computer software and the

~ tiple scattering, penetration through apertures, and cavity
excitation are modeled time step by time step by the action
~of the curl equations analog. Self-consistency of these mod-

potential impact of massively concurrent machines.

Il. GENERAL CHARACTERISTICS OF FD-TD

As stated, FD-TD is a direct solution of Maxwell’s time-

dependent curl equations. It employs no potentials.

Instead, itapplies simple second-order accurate central-dif-
ference approximations [1] for the space and time deriva-
tives of the electric and magnetic fields directly to the

respective differential operators of the curl equations. This

achieves a sampled-data reduction of the continuous elec-

tromagnetic field in a volume of space over a period of time.

Space and time discretizations are selected to bound errors

in the sampling process and to ensure numerical stability

of the algorithm [2]. Electric and magnetic field components
are interleaved in space to permit a natural satisfaction of
tangential field continuity conditions at media interfaces.
Overall, FD-TD is a marching-in-time procedure which sim-
ulates the continuous actual waves by sampled-datanumer-

ical analogs propagating in a data space stored in a com-
puter. At each time step, the system of equations to update
the field components is fully explicit, so that there is no need
to set up or solve a system of linear simultaneous equations.
As a consequence, the required computer storage and run-
ning time is dimensionally low, proportional only to N,
where N is the number of electromagnetlc field unknowns
“in the volume modeled. -

- Fig. 1(a) illustrates the tlme-domam wave tracklng con-
cept of the FD-TD method. A region of space (within the
dashed line)is selected for field sampling in space and time.
Attime = 0, it is assumed that all fields within the numerical

‘sampling region are identically zero. Anincident plane wave
is assumed to enter the sampling region at this time. Prop-

agation of the incident wave is modeled by the commence-

ment of time-stepping, which is simply the implementation
of the finite-difference analog of the curl equations. Time

stepping continues as the numerical analog of the incident

wave strikes the modeled target embedded within the sam-
pling region. All outgoing scattered wave analogs ideally
propagate through the lattice truncation planes with neg-

such as induction of surface currents, scattering and mul-
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Fig. 1. Basic elements of FD-TD space lattice. (a) Tume-domaln wave tracking concept
(b) Lattice unit cell in Cartesaan coordmates [1} -
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ligible reflection to exit the sampling region. Phenomena

Scottered

Cx=(1+172)8

eled phenomena is generally assured if their spatial and

- temporal variations are well resolved by the space and time

sampling process.
Time stepping is contmued until the desired late-time

' pulse response or steady-state behavior is achieved. An

lmportant example of the latter is the sinusoidal steady state,
~ wherein the incident wave is assumed to have a sinusoidal
dependence and time stepping is continued until all fields
in the sampling region exhibit sinusoidal repetition. This
Is a consequence of the limiting amplltude principle [3].
Extensive numerical experimentation with FD-TD has
shown that the number of complete cycles of the incident

- wave reqwred to be time stepped to achieve the sinusoidal

steady state is a function of two (possibly related) factors:
1) Target electrical size. Numerical wave analogs must

be permitted time to propagate in the FD-TD computa-

tional lattice to causally connect the physics of all regions

of the target. For many targets, this requires a number of
time steps sufficient to permit at least two complete front-
to-back-to-front traverses of the target by a wave analog
traveling at the speed of light. For example, assuming a tar-
getspanninga maximum of 10 wavelengths, it is reasonable
to assume that about 40 complete cycles of the incident
wave should be time-stepped (as a minimum) to achieve the
sinusoidal steady state. Using a space resolution of 10 lat-
tice cells per wavelength this corresponds to 800 time steps.
2) TargetQ factor. Targets having well-defined low-loss
cavities or low-loss dielectric compositions may require the

number of complete cycles of the incident wave to be time-

stepped to approach the Q factor of the cavity resonance.
Because the Q factor can be large even for electrically small
or moderate size cavities, this consideration can dictate how
many time steps the FD-TD code must be run to achieve
the sinusoidal steady state.

‘Table 1 summarizes the number of sinusoidal cycles
needed to achieve the steady state for awide range of struc-
tures modeled using FD-TD over the past 15 years. In the

RCS area, it has been found that target electrical size has
proven to be the dominant factor. Cavities for RCS-type

problems tend to be open, and therefore low Q; and the

use of radar-absorbing material (RAM) serves turther to
reduce Q factors of structural resonances.

(b)
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'I'able 1 Convergence of FD-TD to Smusondal Steady
State |

Number of Sinusoidal

Cycles Needed General Structure Type

<5 Convex 2-D metal targets spanning less

than 1 A,, TM case
Lossy 3-D structures, especially those

comprised of biological tissue media

5-20 - Convex 2-D metal targets spanning 1-5
Ao, TE case

Convex 2-D dielectric targets spanning

1-5 N\s, TM and TE cases

Convex 3-D metal targets spanning 1-5
xo.

3-D metal wires and rods spanning on
the order of 1 \,, excited near a
resonance

General 3-D metal targets spanning up

- to 10 Ay, including corner reflectors
and open cavities

Deeply reentrant 3-D metal targets

(such as engine inlets) spanning 10 \,

or more

=100 3-D metal targets of arbitrary electrical
size, but having aperture/cavity
resonances of moderate to high Q,

and excited very near such a
resonance

Fig. 1(b) illustrates the positions of the electric and mag-
netic field components about a unit cell of the FD-TD lattice

in Cartesian coordinates [1]. Note that each magnetic field
vector component is surrounded by four circulating elec-

tric field vector components, and vice versa. This arrange-
ment permits not only a centered-difference analog to the
space derivatives of the curl equations, but also a natural
geometry for implementing the integral form of Faraday’s

law and Ampere’s law at the space-cell level. This integral

interpretation permits a simple but effective modeling of

the physics of smoothly curved target surfaces, as will be
seen later.

Fig. 2 illustrates how an arbitrary three-dnmensnonal scat-
terer is embedded in an FD-TD space lattice comprised of

trical permittivity and conductivity are assigned to each

FD - TD
UNIT CELL

s GUD GND SN S Ay TS, gUs 24

Fig. 2. Arbitrary three-dimensional scatterer embedded |n
FD-TD space Iattlce - f
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the unit cells of Fig. 1(b). Slmply, the desired values of elec-

O, j, k)

“electric field component of the lattice. Correspondingly,
‘desired values of magnetic permeability and equivalent
- conductivity are assigned to each magnetic field compo-

nent of the lattice. The media parameters are interpreted

by the FD-TD program as local coefficients for the time-
stepping algorithm. Specification of media properties in

~ this component-by-component manner results in a stepped-

edge, or staircase, approximation of curved surfaces. Con-

- tinuity of tangential fields is assured at the interface of dis-

similar media with this procedure. There is no need for spe-

- cial field matching at media interface points. Stepped-edge

approximation of curved surfaces has been found to be

~ adequate in the FD-TD modeling problems studied in the
- 1970s and early 1980s, including wave interactions with bio-

loglcal tissues [4], penetration into cavities 151-[7], and elec-
tromagnetic pulse (EMP) interactions with complex struc-
tures [8]-[10]. However, recent interest in wide-dynamic-
range models of scattering by curved targets has prompted
the development of surface-conforming FD-TD approaches

- which eliminate stalrcasmg These are summarized | inalater
section.

- I, Review ofF FD-TD ALGORITHM DETAILS

Table 2 lists the six coupled equations for the electric and
magnetic fields which comprise Maxwell’s equations in

‘Cartesian coordinates. Table 3 lists the assumed space-time

Table 2 Maxwell’s Curl Equations in Cartesian
Coordinates

3H, _
at "1a)
2 1b
o o)
3H, )
at e
d

ok, o
| o (1e)
(1)

- where

E,, E,, E; = Cartesian components of electric field, volts/meter
H,, H,, H, = Cartesian components of magnetic field, amperes/
“meter

¢ = electric permittivity, farads/meter
o = electric conductivity, siemens/meter
u = magnetic permeability, henrys/meter

4

p’ = equivalent magnetic loss, ohms/meter

Table 3 Central-Difference Approxlmatlons to Space and
Time Partlal Derivatives - -

G,j, K = Gx, jay, kazy ()
F"™, j, k). = F(iAx, jAy, kAz, nAt) SR (2b)

Fri + 1, j, k) — F™G = 1, j, k)
0Xx Ax _

3F™G, j, k) F* VG, j, k) — F"= ", j, k)
at ' At

For a cubic space lattice, Ax = Ay = Az = §.

+ order (Ax»)  (3a) .

+ order (At?) (3b)
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Table 4 Examples of Flmte-leference Expressuons to Tlme Step Fneld Vector

' Components I

(:/+%k+1)At‘

HE* 2, j + 3 k + 1’

At
4+

" - - - -
- =
. . . .
1
"
- a4

En+ i, j, k +3) =
1+

IR f(f ], k + %)

2#(',+2,k+1)

1p(l]+  k +Hat
2p(:;+=}k+1) '

Ay

a(l /, k + 1) At
26(! ], k + 2)

oli, ;, k + 3‘)ﬁ\t
 2¢li, §, k + 3

1+

Hn+1l2(’ + 2’ /f k + %)

notatlon for the field vector components sampled at dlS—- _‘
crete lattice locations and at discrete time steps. This table

also provides the central-difference approxlmatlons to the

space and time partial derivatives of Maxwell’s equations,
using the assumed sampled-field notation. Finally, Table 4
- provides example finite-difference time-stepping expres-
sions for a magnetic and an electric field component. As

" noted earlier, all quantities on the right-hand side of each

time-stepping expression are known (stored in computer

memory), so that the expressions are fully explicit.

The choice of 5 and At is motivated by reasons of accuracy
and aigonthm stablhty, respectively. To ensure the accu-

racy of the computed spatial derivatives of the electro-

magnetic fields, 8 must be small compared to a wavelength.
5 < M10 is sufficient to realize less than +7% uncertainty
~ (£0.6 dB) of the FD- TD solution of near fields due to the
approxlmatlon of the spatlal derwatwes [5]. For 5 < N20,

this uncertainty drops to less than +2% (+0.2 dB). 6 should '
also be small enough to permit resolution of the principal

- surfaces or volumetric details of the structure modeled.
- To ensure the stability of the time-steppmg algonthm

exemplified by (4a) and (4b) At is chosen to satisfy the in-
' equallty [2] _

" (_1_+ _1_ + _+
T \Ax®  Ay?
< —= -fo,-.r a cubic lattice (5)
Cmax ‘/5 ' '
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1+ -

Hn 1!2(’ l + k+ %) -

i jrik+d

| E i+ kD BN+

. “a)

1

oll, J, k + %)At _-

2¢(i, ;, k + %)

Hn+1/2(’ — % ,' k + 1)

L - b _

where cmax is the maxnmum wave phase veloaty wuthm the
model. Note that the correspondmg stablhty criterion set
forth in [1, eqs. (7) and (8)] is incorrect, as shown in 2.
- Fig. 3(a) illustrates the division of the FD-TD lattice into
ﬁtotal field and scattered-field reg:ons This division has been

_ found to be very useful smce it permlts the effncnent sim-

- Region | :
" Totol '
Fields

| lh-te.ra'cting

Struc fure -
- Cennectm AN

Surfoce And i1
Plone-Wove |
Source | C —

Region 2 :
Scattered
| Fields

~ Lattice
Truncation

F|g 3. Zonmg of FD-TD space lattice. (a) Total-fleld and
scattered-field regions [11], {12]. (b) Near-field to far-field
integration surface Iocated in the scattered-fleld region [12].

¢



ulation of an madent plane wave in the total-field region
- with arbitrary angle of incidence, polarization, tnme—domam _
- waveform, and duration [11], [12]. Three addmonal impor-

tant benefits arise from thls Iattlce division as follows

cause the target of interest is embedded in the total-field

fering subtractlon noise (as would be the case if scattered

[5]).

ditions.

Embedding the target in the total-field region per-

mits a natural satisfaction of tangential field continuity
across media interfaces, as discussed earlier, wrthout hav-

ing to compute the incident field at possibly thousands or
tens of thousands of points along complicated media-inter-

only along the rectangular connecting surface between

computer running time arises as a result, a benefit that
increases as the complexity of the target increases.

3) Systematic computation of bistatic RCS. The provi-

sion of a well-defined scattered-field region in the FD-TD

lattice permits the near-field to far-field transformation
illustrated in Fig. 3(b). The dashed virtual surface (field

observation locus) shown in Fig. 3(b) can be located along
convenient lattice planes in the scattered-field region of Fig.

3(a). Tangential scattered Eand H flelds computed via FD-

TD at this virtual surface can then be weighted by the free-

space Green’s function and then integrated (summed) to
provide the far-field response and RCS (full bistatic response

for the assumed illumination angle) [12]-[14]. The near-field
integration surface has a fixed rectangular shape and thus

is independent of the shape or com position of theenclosed

target being modeled.

Fig. 3(a) uses the term “lattice truncation” to de5|gnate
the outermost lattice planes in the scattered-field region.
The fields at these planes cannot be computed using the
centered-differencing approach discussed earlier because
of the assumed absence of known field data at points out-
side of the lattice truncation. These data are needed to form
the central differences. Therefore, an auxiliary lattice trun-
cation condition is necessary. This condition must be con-

sistent with Maxwell’s equations in that an outgoing scat-

tered-wave numerical analog striking the lattice truncation
must exit the lattice without appreciable nonphysical
reflection, just as if the lattice truncation was invisible.

It has been shown that the required lattice truncation
condition is really a radiation condition in the near field
[15]-[17]. A very successful second-order accurate finite-dif-
ference approximation of the exact radiation condition in
Cartesian coordinates was introduced in [11]. This approx-
imation was subsequently used in a variety of two-and three-
dimensional FD-TD" scattering codes [12]-[14], yielding

excellent results for both near and far fields. (For example,
all FD-TD results in this paper, with the exception of the

686

1) Large near-f:eld computatlonal dynam:c range. Be-

region, low total-field levels in shadow regions or within
shleldlng enclosures are computed dnrectly without suf-

fields in such regions were time- stepped ‘and then added |
to a canceling incident field to obtain the low total-field lev-

“els). Avoidance of subtraction noise is the key to obtaining
near-field computatlonal dynamlc ranges exceedlng 60 dB |

2) Natural satisfaction of electromagnet:c boundary con-'

face loci that are unique to each target. The zoning arrange-
ment of Fig. 3(a) requires computation of the incident field

total-field and scattered-field regions. This surface is fixed,

that iS, independent. Of the Shae. or com pSltlon Of the
enclosed target being modeled. A substantial benefit in

~ at virtually every comparlson point, including the shadow

missile seeker model of Section VI, were obtained using
these codes.) However, recent interest in wide-dynamic-
range models of scattering has prompted research in the
construction of even more accurate near-field radiation
conditions, including fixed third-order approximations [18],
[19], adaptive conditions [20], and predictor-corrector con-

~ ditions [21]. The goal here is to reduce the numerical lattice

noise due to nonphysical reflections of wave analogs at the

lattice truncations by at least one order of magnitude (20
dB) relative to that achieved by the second-order cond ition

of [11].

V. FD-TD MODELING VALIDATIONS FOR CANONICAL TWO-
DIMENSIONAL TARGETS

Analytlcal and code—to-code validations have been
obtained relative to FD-TD modeling of a wide variety of
canonical two-dimensional targets. Both convex and reen-
trant (cavity-type) shapes have been studied. Further, target
material compositions have included perfect conductors,
homogeneous and inhomogeneous lossy dielectrics, and

anisotropic dielectric and permeable media. Selected val-
idations will be rewewed here

A. Square Metal Cylinder, TM Polarization [12]

- Here we consider the scattering of a TM-polarized plane
wave obliquely incident upon a square metal cylinder of
electrical size kos = 2, where s is the side width of the cyl-
inder. The FD-TD grid employs square unit cells of size
s/20, and the grid truncation (radiation boundary) is located
at a uniform distance of 20 cells from the cylinder surface.
Fig. 4 compares the magnitude and phase of the cylinder
surface electric current distribution computed using FD-
TD to that computed using a benchmark frequency-domain
electric-field integral equation (EFIE) method-of-moments
(MoM) code. The MoM code assumes target symmetry and
discretizes one-half of the cylinder surface with 84 divi-
sions The FD-TD computed surface current is taken as
A X Htan, where 7 is the unit normal vector at the cylinder

' surface and Hta,, is the FD-TD value of the magnetic field

vector component in free space immediately adjacent to
the cylinder surface. From Fig. 4 we see that the magnitude
of the FD-TD computed surface current agrees with the
MoM solution to better than +1% (+0.09 dB) at all com-
parison points more than 2 FD-TD space cells from the cyl-
inder corners (current singularities). The phase of the FD-
TD solution agrees with the MoM solution to within +3°

reglon

B Clrcular Muscle-Fat-Layered Cylinder, TE Polarization
[22]

Here we consider the penetration of a TE-polarized plane
wave into a 15-cm-radius muscle-fat-layered cylinder. The
inner layer (radlus 7.9 cm) is assumed to be comprised of
muscle having a relative permittivity of 72 and a conduc-
tivity of 0.9 S/m. The outer layer is assumed to be comprised

~ of fat having a relative permittivity of 7.5 and a conductivity
0of 0.048 S/m. An illumination frequency of 100 MHz is mod-

eled, with the FD-TD grid cell size set equal to 1.5 cm

(approximately 1/24 wavelength within the muscle). A

s
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MOM ( 80 - Point Solution)

soeoee FD-TD(3- Cycle Solunon)
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Position On Cylinder Surfoce
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Fig. 4. Comparison of FD-TD and EFIE-MoM results for lon- '
gitudinal surface electric current distribution induced on a

perfectly conducting square cylinder of size kes = 2.(a) Mag-
nitude. (b) Phase [12].
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fat muscle
- Fig. 5. Companson of FD-TD and exact summed-elgenfunctlon solutions for distribu-

stepped edge (stalrcase) approxlmatlon of the circularlayer

boundaries is used

- Fig. 5, taken from [22], shows the analyncal vahdatnon
results for the magmtude of the penetrating electric field
vector components along two cuts through the muscle-fat
cylinder, one parallel to the direction of propagation of the
incident wave, and one parallel to the incident electric field

- vector. The exact solution is ‘obtained by summmg su ffi-

cient terms of the elgenfunctlon expansion to assure con-

- vergence of the sum. Excellent agreement of the FD-TD and

exact solutions is noted, even at jump discontinuities of the

~ field or the slope of the field distribution that occur at the

layer boundaries. This fine agreement is observed despite

the stepped-edge approximation of the curcular layer

boundanes

C. Homogeneous Amsotrop:c Square Matenal Cylinder,
TM Polanzatlon [23]

The ability to independently specify electrical permittiv-
ity and conductivity for each E vector componentin the FD-

- TD lattice, and magnetic permeability and equivalent con-

ductivity for each H vector component, leads immediately
to the possibility of using FD-TD to model material targets

having diagonal-tensor electric and magnetic properties.

No alteration of the basic FD-TD algorithm is required. The
more complicated behavior associated with off-diagonal
tensor components can also be modeled, in principle, with
some algorithm complications [24].

Recent development of analytical and numerical treat-
ment of coupled surface combined-field integral equations
(CFIE) for modeling scattering by arbitrarily shaped two-
dimensional anisotropic targets [23] has permitted detailed
tests of the accuracy of FD-TD anisotropic models. Fig. 6
illustrates the results of one such test. Here the magnitude
of the equivalent surface electric current induced by TM
illumination of a square anisotropic cylinder is graphed as
a function of position along the cylinder surface for both

- 0.2%

0.20 |

010

0.05

0.00 005 0.10

. 0.18

0.12

004

0.00 &

000 005 010 0.5 Yy axis

~ tions of penetrating electric field vector components within a circular muscle-fat- Iayered

cylmder TE polarization case at 100 MHz [22].
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Fig. 6. Comparison of FD-TD and CFIE-MoM results for
longitudinal surface electric current distribution induced

on an anisotropic dielectric-permeable square cylinder of
size kos = 5, TM case [23].

the FD-TD and the CFIE MoM models. The incident wave
propagates in the +y direction and has a +z-directed elec-
tric field. The square cylinder has an electrical size kys =
5, permittivity ¢,, = 2, and diagonal permeability tensor p,,
= 2and u,, = 4. For the test shown, the FD-TD grid cell size

Is set equal to s/50, and the radiation boundary is located

at a uniform distance of 20 cells from the cylinder surface
From Fig. 6 we see that the FD-TD and CFIE results agree

very well almost everywhere on the cylinder surface, despite

the presence of a complicated series of peaks and nulls.
Disagreement is noted at the cylinder corners where CFIE
predicts sharp local peaks, but FD-TD predicts local nulls.

Studies are continuing to resolve this corner physics issue.

D. Circular Metal Cylinder, TE and TM Polarization

A significant flaw in previous FD-TD models of con-
ducting structures with smooth curved surfaces has been

the need to use stepped-edge (staircase) approximations of

the actual structure surface. Although not a serious prob-

lem for modeling wave penetration and scattering for

low-Q metal cavities, recent FD-TD studies have shown that
stepped approximations of curved walls and aperture sur-
faces can shift center frequencies of resonant responses by
1-2% for Q factors of 30 to 80, and can possibly introduce
spurious nulls [25]. In the area of scattering by convex
shapes, the use of stepped-surface approximations has lim-
ited application of FD-TD in modeling the important class
of targets where surface roughness, exact curvature, and
dielectric or permeable loading are important factors in
determining the radar cross section.
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Recently three different types of FD-TD conformal sur-
face models have been proposed and examined for scat-
tering problems:

1) Locally distorted grid models. These preserve the
basic Cartesian grid arrangement of field components at all
space cells except those immediately adjacent to the target
surface. Space cells adjacent to the target surface are
deformed to conform with the surface locus. Slightly mod-

ified time-stepping expressions for the field components
in these cells are obtained by applying either a modified
finite-volume technique [26] or the integral form of Fara-
day’s law and Ampere’s law about the perimeters of the
deformed space cells [27].

2) Globally distorted grid models body fitted. These
employ available numerical mesh generation schemes to
construct non-Cartesian grids which are continuously and
globally stretched to conform with smoothly shaped tar-
gets. In effect, the Cartesian grid is mapped to a numerically
generated coordinate system wherein the target surface
contour occupies a locus of constant equivalent ““radius.”
Time-stepping expressions are adapted either from the
Cartesian FD-TD case [28] or from a characteristics-based
method used in computational fluid dynamics [29].

3) Globally distorted grid models, unstructured. These
employ available mesh generation schemes to construct
non-Cartesian grids comprised of an unstructured array of
space-filling cells. Target surface features are appropriately
fitinto the unstructured grid, with local grid resolution and
cell shape selected to provide the desired geometric mod-
eling aspects. An example of this class is the control-region
approach discussed in [30]. '
‘Research is ongoing for each of these types of conformal

surface models. Key questions concerning the usefulness
of each model include the following:

- 1) Computer resources involved in mesh generation

2) Severity of numerical artifacts introduced by grid dis-
tortion, including numerical instability, dispersion,
nonphysical wave reflection, and subtraction noise
limitation of near-field computational dynamic range

3) Comparative computer resources for running the
actual RCS models, especially for three-dimensional
targets spannlng more than 10 wavelengths

The accuracy of Iocally dlstorted grid models using the 1

" integral form of Faraday’s law applied around the perim-

eters of the deformed space cells adjacent to a smoothly
curved target is illustrated in Fig. 7 for TE and TM illumi-
nation cases. Here a moderate-resolution Cartesian FD-TD
grid (having 1/20 wavelength cell size) is used to compute
the azimuthal or longitudinal current distribution on the
surface of a ka = 5 circular metal cylinder. For both polar-
izations it is seen that the conformal FD-TD model achieves
an accuracy of 1.5% or better at most surface points relative
to the exact series solution. Computer running time for the

conformal FD-TD model is essentially the same as for the
old staircase FD-TD model since only a few H components

immediately adjacent to the target surface require a sllghtly
modlfled time-stepping relation. -

E. Flanged Metal Open Cavity [20], [31]

Here we consider the interaction of a TM-polarized plane

- wave obliquely incident upon a flanged metal open cavity.
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The open cavity is formed by a flanged paral
- guide having a plate spacing a =

At the assumed illumination frequency of 382 MHz, ka =
kd =

el-plate wave-
- 1 m, short-circuited by a
metal plate located atac dlstance d = 1m from the apertu re.

- 8, and only the first two TE waveguide modes prop-

agate within the open cavity. An obhque angle of mcadence

= 30° is assumed for this case. o
~ Fig. 8 compares the magmtude and phase of the pene—
- trating electric field within the cavity

2/3 m from the aper-

ture computed using FD-TD to that obtained analytically
using a cavity modal expansion and on-surface radlatlon '

condition (OSRC)theory [31] Good agreement is seen. Frg

It should be noted that the results obtamed usmg the cavity

modal expansmn and OSRC represent a good approxrmatnon but
not a rigorous solutlon ' - .
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- 9 shows a srmlfar comparlson for the brstatnc RCS pattern
-"-due to the mduced apertu re field dlstrrbutlon Agaln good
- agreement |s noted

V FD TD MODELING VALIDATIONS FOR CANONICAL THREE-

'-DIMENSIONAL TARGETS

Analytlcal ‘code-to- code and experlmentaf vahdatlons

_ haveeentame relative to FD-TD modeling of a wide
variety of canonical three-dimensional structures, includ-
ing cubes, flat plates, corner reflectors, and aperture-per-

forated cavmes Selected valldatrons wﬂl be revrewed here.

A Metal Cube Broadsrde Incrdence [13]

' Resul‘t-‘*s::are-_fnowf shown forth‘e FD-T‘Dcomputed surface

electric current distribution on a metal cube subject to

| 639
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‘plane-wave illumination at broadside incidence. The elec—
tric current distribution is compared to that computed by
a standard frequency-domam MoM code which discretizes

target surfaces using triangular patches Itis shown thata
“very high degree of correspondence exrsts between the two

sets of predictive data.

' The detailed surface current study involves a cube of
electrical size kys = 2, where s is the side width of the cube.

Flg 8. Companson of FD TD and modal/OSRC approxumate solutlon for penetratmg
electric fleld dlStHbUtlon 2/3 m wrthm ﬂanged open cavrty (a) Magmtude (b) Phase {20],

' graphed along two straight-line loci along the cube: abcd,

which is in the plane of the incident magnetic field, and

“ab’c’d, which is in the plane of the incident electric field.

Fig. 10 compares the FD-TD and MoM results for the mag-

‘nitude and phase of the “looping’’ current along ab’c'd.

- The FD-TD values agree with the high-resolution MoM data

For the FD-TD model, each face of the cube is spanned by

20 x 20 space cells, and the radiation boundary is located

at a uniform dlstance of 15 cells from the cube surface. For

the MoM model, each face of the cube i IS Spanned by either
18 or 32 tnangular patches to test the convergence of the

MoM model. Comparative results for surface current are #

690

to better than +2.5% (+0.2 dB) at all comparison points.
Phase agreement for the same sets of data is better than

+1°. (The low-resolution MoM data have a phase anomaly |
in the shadow region.) In Fig. 11, comparably excellent
agreementis obtained for the z-dlrected currentalong abcd,
but only after incorporation of an a priori edge-correction
term in the MoM code {32} to enable it to properly model

the current singularities at the cube corners b and c.
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Fig. 10. Comparison of FD-TD and EFIE-MoM results for
surface electric current distribution induced along E-plane

locus of a perfectly conducting cube of size k,s = 2. (a) Mag-
nitude. (b) Phase [13].
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~ about +0.2 dB.

B. Flat Conducting Plate, Multiple Monostatic

Observations [14], [24]

We next consider a 30 X 10 X 0.65 cm flat conducting
plate target. At 1 GHz, where the plate spans 1 X 1/3 \;, a
comparison is made between FD-TD and MoM results for
the monostatic RCS versus observation-angle (look-angle)
azimuth, keeping the elevation angle fixed at 90° as shown
in Fig. 12(a). Here the FD-TD model uses a uniform cell size

of 0.625 cm (Ay/48), tforming the plate by 48 X 16 X 1 cells.

The radiation boundary is located at a uniform distance of
only 8 cells from the plate surface. For the MoM model, a
study of the convergence of the computed broadside RCS
indicates that the plate thickness must be accounted for by
using narrow side patches, and the space resolution of each
patch should be finer than approximately 0.2 \,. As a result,
the MoM model forms the plate by 10 X 3 X 1 divisions,
yielding a total of 172 triangular surface patches. Fig. 12(a)
shows excellent agreement between the two models wrthm

At9 GHz, the plate spans 9 X 3 \o, and the use of the MoM
model is virtually precluded because of its large compu-
tational burden. If we follow the convergence guidelines
discussed, the plate would require appproximately 50 x 15

'x 1divisions to properly converge, yielding a total of 3260

triangular surface patches and requiring the generation and
inversion of a 4890 x 4890 complex-valued system matrix.
On the other hand, FD-TD remains feasible for the plate
at 9 GHz. Choosing a uniform cell size of 0.3125 cm (\y/

10.667), the plate is formed by 96 x 32 X 2 cells. With the
radiation boundary again located only 8 cells from the plate
surface, the overall lattice size is 112 x 48 X 18, containing
580 608 unknown field components (real numbers). Fig.
12(b) shows excellent agreement between the FD-TD results
and measurements of the monostatic RCS versus look-angle
azimuth performed in the anechoic chamber facility oper-
ated by ! SRI Internatronal The observed agreementis within
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1 dB and 1° of look angle. As will be seen next, this level .

of agreement is maintained for more complicated three-
d-imensional targets hav-ingcomer-reﬂector properties. :

C. T-Shaped Target Mult:ple Monostat:c Observattons - ,
[(14], [24]

- We last consider the monostatlc RCS patternofa crossed-
plate target comprised of two flat conducting plates elec-

trically bonded together to form the shape of a T. The main

plate has the dimensions 30 x 10 x 0.33 cm and the ‘‘bisect-
ing” fin has the dimensions 10 x 10 X 0.33 cm. (Due to a

construction error, the centerline of the blsectmg fin is

actually positioned 0.37 cm to the rlght of the centerline of
the main plate. This is accounted for in the FD-TD model.)

‘The illumination is a 9.0-GHz plane wave at 90° elevation

and 180° asdefined in Fig. 13 are mfluenced by substantlal

- target’s maximum surface extensions, the overall lattice size
angle, polarized TE with respect to the main plate. Thus the |
- entire T-shaped target spans 9 X 3 X 3 \,. Note that mono-

- static RCS observations at azimuth angles ¢’ between 90°
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Fig. 12. Validation of FD-TD results for monostatic radar

cross section of flat conducting plate. (a) Versus EFIE-MoM

at 1 GHz (plate size 1 X 1/3 wavelength). (b) Versus SRl mea-

- surements at 9 GHz (plate size 9 X 3 wavelengths) [14], [24].

corner reflector physics. This is com pllcated by the fact that

the sides of the corner reflector have unequal lengths (3\,

versus 4.5)\,), and further the target is not simply a single
corner reflector, but actually two comer reflectors, back to

back.
For this target the FD- D model uses a uniform cell size

of 0.3125 cm (A\/10.667), forming the main plate by 96 x 32
X 1 cells and the bisecting fin by 32 x 32 x 1 cells. With

the radiation boundary again located only 8 cells from the

is 112 X 48 X 48 cells, containing 1 548 288 unknown field
components, and encompassing a total volume of 212.6

" cubic wavelengths. Starting with zero-field initial condi-
“tions, 661 time steps are used per monostatlc observation
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bisecting fin size 3 X 3 wavelengths) [14], [24].

to attain the sinusoidal steady state, equrvalent to 31 cycles
of the incident wave at 9.0 GHz.

Fig. 13 compares the FD-TD predicted monostatrc RCS
values at 32 key look-angle azimuths between 0° and 180°
with measurements performed by SRI International. These
azimuths are selected to define the major peaks and nulls
of the monostatic RCS pattern. Itis seen that the agreement
is again excellent: in amplitude, within about 1 dB over a
total RCS-pattern dynamic range exceeding 40 dB; and in
azimuth, within 1°inlocating the peaks and nulls of the RCS
pattern. Note especially the fine agreement for azimuths
greater than 90°, where the asymmetrical corner reflector
induces an enhancement of the monostatic RCS response
with substantial fine-grained detail in the RCS pattern. As
of the publication of [14], this case (and similar cases studied

in [24]) represented the largest detailed three-dimensional |

numerical scattering models of any type ever verified
wherein a uniformly fine spatial resolution and the ability
to treat nonmetallrc composntlon are rncorporated in the
model. '

VI. PoTENTIAL OF FD-TD FOR MODELING \/ERY COMPLEX
OBJECTS

Two characteristics of FD-TD cause it to be very prom-
ising for numerical modeling of electromagnetlc wave

“interactions with very complex objects. 1) Dielectric and
permeable media can be specified mdependently for each

electric and magnetic field vector component in the three-
dimensional volume being modeled. Since there may be

tens of mlllrons of such vector components |n large FD-TD

models, |nhomogeneous media of enormous complexity
can be specified in principle. 2) The required computer

resources for this type of detailed volumetric modeling are

dlmen5|onally low, only of order N, where N is the number

of space cells in the FD-TD lattice.

The emergence of supercomputers has recently permlt-

ted FD-TD to be serlously applled toa number of very com-
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plex electromagnetic wave interaction problems. Two of
these are reviewed briefly.

A. UHF Penetration into a Complex Missile Seeker
Section [5], [7]

Here FD-TD is applied to model the penetration of an
axially incident 300-MHz plane wave into a metal-coated
missile guidance section. The FD-TD model, shown in Fig.
14, contains the following elements: 1) magnesium fluoride
infrared dome, 2) fiberglass nose cone and its external metal

coating, 3) circular nose aperture just back of the infrared

dome, 4) head coil assembly, 5) cooled detector unit with
enclosing phenolic ring, 6) preampllﬁer can, 7) wire bundle
connecting the cooled detector unit to the preamplifier can,
8) wire bundle connecting the preamplifier can to the metal
backplane, 9) longitudinal metal support rods, and 10) cir-
cumferential sleeve-fitting aperture, loaded with fiberglass,
where the seeker section joins the thruster. The fiberglass
structure of the nose cone and its metalization are approx-
imated in a stepped-surface manner, as is the infrared dome.
For this target, the FD-TD model uses a uniform cell size
of 1/3 cm (\y/300), with an overall lattice size of 100 X 48 X
24 cells containing 690 000 unknown field components. (A
single symmetry plane is used, giving an effective lattice
size of 100 x 48 x 48.) The model, lmplemented on a Con-
trol Data STAR 100 (the avallable supercomputer at the
time), was run for 1800 time steps, equrvalent to 3. 0 cycles
of the incident wave at 300 MHz. '

Fig. 15 plots contour maps of the FD-TD computed field
vector components at the sym metry plane of the model. An
important observation is that the wire bu ndles connecting
the cooled detector unit, pream pllfler can, and metal back-
plane are paralleled by high-level magnetic field contours
[Fig. 15(b)]. This is indicative of substantial uniform current
flow along each bundle. Such cu rrent flow would generate
locally a magnetlc ﬁeld looplng around the wire bundle

693



‘aluainum backplane

phenolic cup

\

fiberglass nose cope |

sluminua coating '
of nose cone

\\\\\\\\\\\\\\\\\\\\\\\\\ h‘\ e

preamp can

4 "IIIIIIIII

14 s
/
| 1 ¢
' ' vire
. /
._
|
¥
/
/

T

Distance from Front Aperture (cm)
=

Yinc &) —e

_ _ Zinc
6 & 2

0 2 4 6

Distance from Axis (cm)

(a)

air 3893 <l __ - __

phenolic ring

77,18 head-coil

lssenbly

aluminum backplane

1l phenol ic cup
'.b air gaps
lll o

« fiberglass
- nose cone

> head-coil
assembly

nagnes jum fluoride

/ inf u-red dome

- H ,

Fig. 14. Three-dimensional FD-TD model of missile seeker section showing component

materials. (a) At vertlcal symmetry plane. (b) At horizontal observation plane [5], {71.

which, when “cut” by the symmetry plane, shows up as
~parallel field contours spaced equally on each side of the
bundle. Using a simple Ampeére’s law argument, the com-

mon-mode bundle currents can be calculated, thus obtain-
ing a key transfer function between free-field incident UHF _
plane-wave power density and coupled wire currents within
theloaded seeker section[5]. This transfer function isuseful

for studies of intersystem electromagnetlc compatlblllty
and vulnerability to high-power microwaves.

Although this missile seeker model was structured to
demonstrate the capability of FD-TD to map fields pene-
trating into a complex structure having multiple apertures
and realistic internal engineering details, it should be

understood that the full bistatic RCS pattern of the target
Is available as a ““by-product” with virtually no additional

~ effort. Further, with the 1/3-cm space resolution used, the

FD-TD penetration/RCS model dlscussed is useful up to 9
GHz.

694

B. Whole-Body Human Dosimetry at VHF and UHF

' Frequenc:es [33], [34]

Here FD-TD is applied to model the penetratlon of plane

~ waves at VHF and UHF frequencies into the entire human

- body. Directly exploiting the ability of FD-TD to model
media inhomogeneities down to the space-cell level, highly
~ realistic three-dimensional FD-TD tissue models of the

complete body have been constructed. Specific electrical
parameters are assigned to each of the electric field vector

- components at the 16 000 to 40 000 space cells comprising

the body model. Assignments are based on detailed cross-
section tissue maps of the body (as obtained via cadaver
studies available in the medical literature), and cataloged
measurements of tissue dielectric properties. Uniform FD-
TD spaceresolutions as fine as 1.3 cm throughout the entire
human body have proven feasible with the Cray-2 super-
computer.

Fig. 16, taken from [34], shows the FD-TD computed con-
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tour maps of the specific absorption rate (SAR) distribution illustrate the high level of detail of local features of the SAR

along horizontal cuts through the head and liver of the distribution that is possible via FD-TD modeling for highly

three-dimensional inhomogeneous human model. In Fig. realistic tissue models. By implication, these results also

16(a) the incident wave has a power density of 1 mW/cm? show the applicability of FD-TD modeling to ultracomplex

at 350 MHz, while in Fig. 16(b) the incident wave has the electromagnetic wave-absorbing media for RCS mitigation
“same power density but is at 100 MHz. These contourmaps  technology. "

180 -

180 mW/Kg

2

1 mW/cm plane wave power density

| 20 Kidneys

_ ,. _ - (b)
Fig. 16. FD-TD computed contour maps of specific absorption rate (SAR) due to pen-
etrating electromagnetic fields within a highly realistic three-dimensional model of the
entire human body. (a) Along horizontal cut through head at 350 MHz. (b) Along horizontal
cut through liver at 100 MHz [34]. e - .
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The FD-TD method is naturally suited for large- scale pro-
cessing by state-of-the-art vector supercomputers and con-
current processors. This is because essentially all of the
arithmetic operations involved in a typical FD-TD run can
be vectorized or cast into a highly concurrent format. Fur-
ther, the order (N)demand for computer memory and clock
cycles (where N is the number of lattice space cells) is
dimensionally low and permits three-dimensional FD-TD
models of arbitrary targets spanning 50-100 A, to be antic-

ipated in the early 1990s.

A. Cray-Based Processing

Let us now consider running times of present FD-TD
codes implemented on Cray supercomputers. Table 5 lists
running times for modeling one monostatic RCS obser-

Table 5 Runnmg Times of Present FD-TD Codes for 9 x
3 X 3 N\ T-Shaped Target _ '

| Machine Running Time
VAX 11/780 (no floating- point accelerator) 40 hours’
Cray-2 (single processor, using VAX Fortran 12 minutes
code) B ' _
Cray-2 (single processor, some code 2 minutes

optimization)
Cray Y-MP (single processor, optimized code) 72 seconds
Cray Y-MP (eight processors) 9 seconds
Cray-3 (sixteen processors) 3 seconds (est.)

1) 1 55-m|II|0n unknown field components, 661 time steps.
2) Complete time history of the near field is computed, from zero-field
initial conditions to the sinusoidal steady state.

3) Complete bistatic RCS pattern is obtained for a single illumination angle

at a single trequency.
4) Running times are increased by 50-100% if an impulsive excitation with
fast Fourier transform is used to obtain the bistatic RCS pattern at a mul-

tiplicity of trequencies within the spectrum of the impulsive illumination.

vation of the 9 X 3 X 3 A\; T-shaped target discussed in Sec- '
tion V-C. (Recall that this model involves an overall lattice

volume of 212.6 cubic wavelengths containing 1548 288

unknown field vector components time- stepped fromzero-
field initial conditions to the sinusoidal steady state over

661 time steps.) Five computing systems are listed in the
table. The first is the Digital Equipment VAX 11/780 without

floating-point accelerator. The second is a single processor
of the Cray-2, using the VAX Fortran code either directly or |

after some optimization to take advantage of the vector-

ization and memory capabilities of the Cray-2 Thethird and

fourth are, respectively, single- processor and eight- pro- '

cessor versions of the Cray Y-MP, using optimized Fortran.’

The fifth is the 16-processor Cray -3, scheduled for initial

usage in late 1989. (Running time for this case is estimated.)
Table 5 reveals an extraordlnary reduction of FD-TD run-
nrng time per monostatlc RCS observatlon that has occu rred

2Multlprocessmg on the Cray Y MP can be trrvrally accomphshed
for this (now) relatively small target by sumultaneously placing eight
individual processes, each representing one monostatic obser-

vation angle, on the eight individual processors of the machine..

For the much larger targets of current and future interest, this pro-
cedure will not work because of memory conflicts between pro-
cessors. Such targets will require only a single FD-TD process to
be run on the machine, with the computational burden for this one

can be made for the 16 processor Cray-3.
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. fixed number of time steps, the total running time would

process shared by the available processors. Analogous statements

during the past tew years. Simple extrapolation ot the Cray-
3 running time indicated in the table to 50-A, class three-
dimensional targets containing on the order of 100 000 cubic
wavelengths indicates essential feasibility with no further
improvements in Cray technology beyond the Cray-3. It is
clear that succeeding generations of such machines in the
1990s and beyond will permit routine engineering usage of

FD-TD for modeling general electromagnetic wave inter-

actions (including RCS) involving electrically large struc-
tures.

B The Connection Machine

An interesting prospect that has recently arisen is the

‘reduction of the order (N) computatlonal burden ot FD-TD
~ to order (N"). This possibility is a consequence of the

appearance of the Connection Machine (CM), which has

~ tens of thousands of simple processors and associated bit-
‘'wise memories arranged in a highly efficient manner for
processor-to-processor communication. With the CM, a

single processor could be assigned to store and time-step

~a single row of vector field components in a three-dimen-

sional FD-TD space lattice. For example, 1 500 000 proces-
sors would be sufficient to store the six Cartesian com-
ponents of £ and H for each of the 500 X 500 rows of a cubic
lattice spanning 50 Ay (assuming 10 cells/ A\ resolution). FD-
TD time stepping would be performed via row operations
mapped onto the individual CM processors. These row
operations would be performed concurrently. Thus for a

be proportional to the time needed to perform a single row
operation, which in turn would be proportional to the num-
ber of field vector components in the row, or order (N'?).
For the 50-A\ cubic lattice noted above, this would imply
adimensional reduction of the computational burden from
order (5003) toorder (500), a tremendous benefit. As a result,

“itis conceivable that a suitably scaled CM could model one
- monostatic RCS observation angle of a 50-\, three-dimen-
sional target in only afew seconds, achieving effective float-
ing-point rates on the order of 100 gigaflops (10 or more
~complete Cray—3s) For this reason, FD-TD algorithm devel-
‘opmentforthe CMisapromising areaof research for devel-

oping ultralarge numerical models of general electromag-
netic wave rnteractlons including RCS.

CVHI. CONCLUSION"

This paper ‘has presented a number of two- and three-
dtmensronal examples of FD-TD numerical modeling of

electromagnetic wave scatterlng ‘and penetration. The
objects modeled ranged in nature from simple geometric
shapes to extremely complex aerospace and biological sys-
tems. In all cases studied to date where rigorous analytical,

. code-to-code, or expenmental validations were possible,
‘FD-TD predictive data for near fields and RCS were in excel-
- lent agreement with the benchmark data. With continuing

advances in FD-TD modeling theory for target features rel-

, evantto the RCS problem, and with continuing advances
“in vector- and concurrent-processing supercomputer tech-

nology, it is likely that FD-TD numerical modeling will
occupy an important place in RCS technology in the 1990s

“and beyond as the need for detailed models of three-dimen-

sional complex material structu res spanmng 50 Ao or more
 becomes critical. -
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