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The scattering of a plane wave from the open end of a flanged, parallel plate waveguide is approximately solved using the
On-Surface Radiation Condition method. Simple explicit formulae are given for the field within the waveguide and for the

bistatic cross-section. In addition, our theory also gives an approximate solution to the associated open cavity problem, which
is formed when the waveguide is terminated by a short circuit positioned a finite distance from the aperture. These problems
serve as prototypes for receiving antennae and open resonators respectively. Numerical results are presented which confirm

the accuracy of the OSRC method. An interesting byproduct of our analysis is the approximate prediction of the complex

eigenfrequencies of the open resonator.

1. Introduction

In this paper, we study the interaction of waves
with an infinitely flanged, parallel-plate waveguide
which 1s either infinite 1n extent or short-circuited
at a finite distance along its length. (See Fig. 1.)
The former case serves as a prototype for both
receiving antennas and simple re-entrant structures
while the second models a basic Helmholtz res-

onator. We restrict our attention here to scalar

waves so that the results obtained are applicable
to acoustics and electromagnetics 1n two dimen-
sions. '

The method we develop 1s approximate and 1s

based upon the On-Surface Radiation Condition

method (OSRC) which has been recently
developed to analytically model the scattering of

waves by convex targets {1, 2, 3]. In this method
a differential operator (radiation boundary
operator) which annihilates the scattered field as

r-> o0 is applied directly on the surface of a target.
Then, both the field and its normal derivative can
be deduced from this approximate condition and
the given boundary condition for the scatterer.
In this paper, we apply an annihilating operator
to the scattered field in the aperture of a parallel-
plate waveguide and again obtain a relationship
between the field and its normal derivative. Com-
bining this result with the continuity of the total
field and its normal derivative in the aperture, we
effectively decouple the waveguide region from the
half-space z <0. This allows us to explicitly deter-
mine the field within the waveguide without
recourse to matrix inversion [4], ray tracing {5, 6],
or hybrid method [7]. From this result, we also
obtain (with the aid of a Green’s function rep-
resentation) the scattered field in the region z <O0.
The results of our approximate OSRC theory
for penetrating and scattered fields compare

extremely well with detailed numerical computa-
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Fig. 1. Plane wave at angle a illuminates the open end of a
flanged, infinite, parallel plate waveguide. The cavity problem
is created by placing a short at the position z =d.

tions obtained using a time-dependent finite
difference scheme (FD-TD) [8, 9] applied directly
to the field equations. Excellent agreement is found
for both the infinite waveguide case and the short-
circuited waveguide. In the former case a key
OSRC result shows that the scattered field exhibits
“resonant” frequency behavior. This is again
verified by the FD-TD scheme. Moreover, we are

able to use our approximate results to obtain an

estimate of the open resonator’s ‘‘eigenfrequen-

cies”’. These are complex numbers whose

imaginary parts dictate the rate at which energy
leaks away from the open cavity.

The remainder of this paper will now be out-
lined. Section 2 contains the formulation of the
scattering problem and Section 3 includes the
extension of the OSRC method that is required to

handle the present problem. Section 4 contains the
results of several illustrative examples which

clearly indicate the accuracy of our approximate
method. And finally, Section 5 includes a deriva-
tion of the approximate “‘eigenfrequencies” of our
prototype Helmholtz resonator. '

2. Formulation

The geometry of the flanged parallel-plate
waveguide is shown in Fig. 1. Here x and z rep-

resent nondimensional variables which have been

scaled with respect to the guide’s physical width
a. The total field, U(x, z, k) satisfies the Helmholtz

equation
AU+ kU =0; z<0 with |x| <‘00, '

and z>0 with 0<x <1, (2.1a)

where k = wa/c and c 1s the wave’s speed, and the
boundary condition

U =0, (x,z)e R (2.1b)

where R represents the boundary composed of the

flange and the waveguide’s walls. A time depen-
dence of exp(iwt) has been assumed and will be

suppressed in the subsequent equations.
An incident plane wave given by

U.,..(x, z, k) =exp[—ik(z cos a —x sin «)]
(2.2)

impinges upon this target and scatters from it.

Accordingly, the total field U™ in the region z <0
1s given by

U = []inc(xa A k) o (Jinc(xa — Z, k)

+u(x,z, k), z<O0, - (2.3)

where the second term in (2.3) is the wave reflected
by the flange and u 1s the scattered field caused

by the waveguide. The latter satisfies the Helmholtz
equation (2.1a) for z <0 and the Sommerfeld radi-

‘ation condition

lim V' [-?-+iku:| = () - (2.4)
or

r-—->»00

where r=[x*+z*]"".
When the wall at z =d (the short circuit) is not
present, the total field in the waveguide, U™, is

given by
U=y T, exp(—ik,z)

xsin(nmwx); z>0. (2.5a)

When the wall at z=d 1s present, the total field
in the waveguide is given by

U* =Y T,{exp(=ik,z)— v, exp(ik,z)}

Xsin(nmx);, 0<z<d. (2.5b)
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The summation in (2.5) runs over all positive
integers n. The propagation constants k, and the
reflection coeflicients vy, are defined respectively by

k,=[k*—(nm)*]"", - (2.6a)

Y. = exp(—21k,d). (2.6b)

The transmission coefhicients 7, are to be deter-

mined.

To complete the formulation of our boundary

value problem, we demand that U and 9/9z U be

- continuous along the waveguide aperture z =0 and

0<x<1, that 1s,

U (x,0,k)=U"(x,0, k), 0<x<l1,
(2.7a)
9 R .
— U (x,0,k)=—U"(x,0,k), 0<x<1.
0Z - 02
(2.7b)

Finally, using standard Green’s function argu-

ments, we find that the scattered field i1s given in
terms of U(x, 0, k) by

1

_ , dx’
u(x, z, k) = [ U(x',0, k) Hé”(kR) —-g—-

0

(2.8a)

where H\" is the derivative of the zeroeth order
Hankel function and R i1s defined by

R=[(x-x")"+2z"]1"> (2.8b)
Here we note that U(x, 0, k) =u(x, 0, k) by (2.3).

We can physically interpret the above scattering
problem 1n terms of electromagnetics or acoustics.
In the electromagnetic case, U would be the ampli-
tude of the electric field vector which 1s polarized
along the y-axis, and the waveguide and flange
would be perfectly conducting. In the acoustics
case, U would be proportional to the pressure,

and the waveguide and flange would be acousti-
cally “soft”.

3. Extension of the OSRC method

The scattered field u satisfies the radiation boun-
dary condition [10, 11} '

J -2 Lu

—u+[-+iklu—————=0(r"
or . r tk Ju 2ri(ik+1/r) (r)
(3.1a)
as r-> 00 where L 1s defined by
| @ u :
Lu=|—u+-|. 3.1b
gy [a92"4] (3.10)

In our previous work [1] we applied (3.1) directly
on the surface of a two-dimensional convex target
by setting the O(r~>) term equal to zero and
replacing r~! by «, r °9°u/96° by 9°u/ds’, and
du/dr by ou/ov. Here, k is the curvature of the
target’s boundary curve, s is the arclength, and
d/0v is the outgoing normal derivative.

We now apply the same operator to the
scattered field u in the aperture of the flanged

waveguide. We set k equal to zero because the
aperture is planar, replace s by x in the second

tangential derivative, and » by —z in the normal
derivative. This yields the approximate condition

J i 9’
- Bu=—u—i1ku———u=0,
o az" e 2k8x2u
0<x<l1,z=0. - (3.2)

We note here that the operator B can also be
obtained by an approximate factoring of the Helm-
holtz equation in rectangular coordinates [12].

Next, we deduce from (2.7) and the definition
of the operator B that

BU =BU~, 0<x<1,z=0. (3.3)

Inserting (2.3) into the right-hand side of (3.3) and

~using (3.2), we find that

BU =g(x), 0<x<1,z=0 (3.4a)

where the function g(x) is defined by

~ 8(x)=—2ik cos a exp(ikx sin a),

0<x<1. - (3.4b)
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Applying the operator B to U™ given by (2.5) and
combining this result with (3.4), we obtain

(3.5a)
(3.5b)

Y G, T,sin(nwx)=g(x), 0<x<1,
Y J,T,sin(nx) =g(x), 0<x<1,

where the sums are again over integer n and

Gn=—i[kn+k—-5}k-(n7r)2], (3.6a)
Jn — nl[kn(l T Yn)—l_ k(l o Yn)
1 2
ey (3.6b)

Finally, we use the Fourier inversion formula to
- solve (3.5) for the unknown coefficients 7T,. We

find that

T,=4ik cos a g,(k sin )/ G, (3.7a)
for the flanged Waveguide and '
T,=4ik cos a g,(ksin a)/J, (3.7b)

for the short-circuited waveguide (open res-
onator), where g,({) 1s '

nmwo NS _
(nw)z_gz[l_(_l) exp(lf)],
g.({)=- { # nm, (3.8)
-;—, (= ni.

The approximate field within the waveguide 1s
obtained by combining (2.5a), (3.6a), (3.7a), and

(3.8). The analogous expression for the field within

the open resonator is given by (2.5b), (3.6b),
(3.7b), and (3.8). . ‘

The scattered field is given by (2.7) with
U(x, 0, k) replaced by either (2.5a) or (2.5b). By
using standard far-field approximations in (2.8)
we find that, as r > o0,

—ikr o
u(x, z, k) ~ A8, k) = — (3.92)

A8, k) = k sin 6(2mk) "2

X exp)(-—-i'n/4) Y T, g,(cos 0) (3.9b)

where g,(¢) is defined in (3.8) and 6 is measured

from the x-axis in a counter-clockwise direction
(see Fig. 1).

4. Illustrative examples

The accuracy of (2.5) and our approximations
(3.7) is now demonstrated in two illustrative prob-
lems. In the first example, a flanged infinite
waveguide is illuminated by a plane wave having
I’~8 and 1mpinging at an incident angle a as
shown in Fig. 1. Two values of «a are chosen: a =0°
(normal incidence) and « =30°. The second

example is the associated cavity problem created
by terminating the waveguide with a short circuit
at a distance d from the aperture. For both
examples, we compute the field distribution at z =3
using (2.5) and the bistatic cross-section of the
scattered field, in the region z <0, using (3.9).
The accuracy of the OSRC method 1s assessed
by comparing its results to those obtained using a
finite difference scheme applied directly to the
time-dependent field equations. The accuracy of
finite difference time domain (FD-TD) methods
on the problems we consider here 1s well estab-
lished [8, 9]. In the first case, the infinite waveguide
1s modeled using FD-TD by a sufficiently long,
finite waveguide which is terminated by a short.

In the FD-TD simulation, this structure is 1llumi-

nated by a sinusoidal incident plane wave and

time-stepped for a sufficient number of wave cycles
to allow the numerical solution within two

- wavelengths of the aperture to reach the time-

harmonic steady-state. The waveguide length and
number of time steps 1s caretully chosen to guaran-
tee that reflections from the terminated end are
not present in the aperture region of interest. For

the second example, the depth of the cavity d is

selected to be the same as the aperture width. The
FD-TD cavity simulation is performed on a
domain considerably smaller than that for the
infinite waveguide. Here, however, more wave
cycles are required to be time-stepped for the simu-
lation to achieve the time-harmonic steady-state
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Fig. 2. Distribution of field magnitude inside infinite waveguide at z =% for a = 0°.

due to the structure’s ability to trap energy for a
period of time.

With k=8, the dimensions of the infinite
waveguide are such that only the first two modes

propagate. The results of our OSRC and FD-TD

calculations for the infinite waveguide example are

10

8

Phase (degrees)

-10

0.0 0.1 0.2 0.3 0.4

presented in Figs. 2 through 7. Figs. 2 and 3 show
respectively the magnitude and phase of
U™ (x, 0.666, 8) for o =0°. For this case, only the
first term in the sum (2.5) need be evaluated

because T,=0, by symmetry. The corresponding
results for o =30° are presented in Figs. 4 and 5

- “Phase FDTD
-~ Phase OSRC

0.5 0.6 0.7 0.8 0.9 1.0

X

2

Fig. 3. Distribution of field phase inside infinite waveguide at z =% for a =0°.
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Fig. 4. Same as Fig. 2 except a =30°.

respectively. Both propagating modes are excited = propagating waveguide modes. We have also

for this case and thus, only the first two terms in included several evanescent modes in (2.5) and

(2.5) are needed for our approximate solution. found little change in the far field and a deleterious

These excellent results indicate that the on-surface change in the aperture field.

radiation condition operator effectively couples The bistatic cross section of the scattered field

the energy of the incident plane wave into the in the region, z <0, 1s shown 1n Figs. 6 and 7 for
20
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-20 \ -~ —* Phase OSRC
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Fig. 5. Same as Fig. 3 except a = 30°.
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Fig. 6. Bistatic cross-section for the field scattered from the aperture of the infinite waveguide in the region z <0 for a =0° The
angle 6 1s as shown 1n Fig. 1.

each value of a. Again, excellent agreement 1s

observed between the results obtained using the

on-surface radiation condition approach and those
obtained by the FD-TD simulation. It should be

noted that the amount of computer time required
to evaluate the formulae generated by the OSRC

2.0

1.8

1.6

1.4

1.2

N
< 1.0

0.8
0.6
0.4
0.2

0.0

- 60

40

' theory is negligible (less than 0.006% ) compared

80

to that of a typical FD-TD simulation for the
1dealized problems considered here.

The results of the companion calculations for
the open resonator example are presented in

Figs. 8 through 13. These results are for k=8 and

- FDTD
—— OSRC

120

100 140

theta (degrees)

Fig. 7. Same as Fig. 6 except a = 30°.
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- |U| OSRC
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X

.Fig. 8. Distribution of field magnitude inside the cavity at z =% for a = 0°.

a=d=1. Once again, good agreement between
the OSRC results and the FD-TD simulations

1s observed.

Figure 14 shows the OSRC and FD-TD com-
puted values for U7(0.5, 0.0, k) as a function of

k. The FD-TD result is obtained by simulating an

Phase (degrees)

10

8

-10

0.0

0.1

0.2

0.3

0.4

impulsive plane wave followed by an FFT. The
agreement 1s good for 3.5 < k <8 and deteriorates
outside this band, which approximates the range
of frequency components in the impulsive plane
wave. The error at very low frequencies is caused
by the OSRC method, which is consistent with our

& ‘Phase FDTD
-~ Phase OSRC

0.5 0.6 0.7 0.8 0.9 1.0

X

Fig. 9. Distribution of field phase inside the cavity at z =% for a = 0°.
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Fig. 10. Same as Fig. 8 except a = 30°.

previous observations [1], and the onset of cut-off even ones are not. The peaks (except for the first

which occurs at k = w. Additional errors can occur one) and sharp nulls in the response occur roughly
with the OSRC solution at other cut-off frequencies at the eigenfrequencies of the *“‘closed” cavity
k=nmw (if those modes are excited) because the '

energy 1s not out-going in the aperture. In the
present case, the odd modes are excited while the and show a resonance behavior for the open struc-

ki n=m[n’+m?/d*1"* (4.1)

60

40

-8 Phase FDTD
-~ Phase OSRC

Phase (degrees)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X

Fig. 11. Same as Fig. 9 except a =30°.
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Fig. 12. Bistatic cross-section for the field scattered from the aperture of the cavity in the region z <0 for @ =0°. The angle 0 is as
shown 1n Fig. 1.

ture. The deviation between the k3, ,, and the real S. Complex eigenfrequencies of the open cavity
part of the complex eignefrequency, as predicted

by the OSRC method, will be discussed in the next The complex eigenfrequencies for the open
section. . cavity can be approximated using our OSRC
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Fig. 13. Same as Fig. 12 except a = 30°.
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Fig. 14. Behavior of field magnitude as a function of wavenumber k at the mid-point of the cavity aperture (a = 0°).

theory by setting the denominator of T,, equal to
zero. Accordingly, setting J,, =0 in (3.6b), solving
for y,, and simplifying the resulting expression we
obtain

Yo = (k+k,)*/(nm)*. (5.1)

Inserting the change of variable

k=nmcos 6 ' (5.2)
into (2.6) and (5.1), we find that

exp(A sin ) =exp(4i16) (5.3a)
where A is defined by

A =2n7d. (5.3b)

Equating the exponents in (5.3a), modulo 2, and
setting 6 = x +1y, we deduce that x and y satisfy
the simultaneous equations

_ dx+2mm |
cos x sinh y = > (5.4a)
4
sin x cosh y = __AZ' (5.4b)

An approximate solution of the system (5.4) can

be obtained when A is large by observing that the

right-hand sides of (5.4) are formally small.
Accordingly, we replace sinh y by y, sin x by x,
cos x by 1, and cosh y by 1, and obtain a linear
system whose solution i1s

Smmr
T 16+ (5.52)
2mnarA
= . 5.5b
Y16+ 1% (3.5b)

Combining these results with the definition of 6
and (5.2), and using the small argument approxi-
mation for the cosine, we deduce the approxi-

mation

L {1 32w°m? N 2172m2/\2}
—_— n o S —————— UV —
' " (16+42)2 (16+A2)?
_ 16m*mw°A
+1n1r {m} (5.6)

We have also solved the nonlinear system (5.4)
by employing a Newton-Raphson scheme using
the approximation (5.5) as an initial guess. Once
the solution was obtained, we set 6 = x +1iy, inser-

ted this complex number into (5.2), and separated
the real and imaginary parts of k. The results of
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Table 1

n Complex eigenfrequencies for m = —1

Iterative solution Approximate solution

of (5.4) using (5.6)
1 3.773+10.9447 3.615+11.013
2 6.865+10.3758 6.865+10.4122
3 9.877+10.1923 9.883+10.2035
4 12.93+10.1148 12.93+10.1189
Table 2
n Complex eigenfrequencies for m = —2

[terative solution
of (5.4)

Approximate solution
using (5.6)

5.034+i 4.051
8.611+1i 1.649
11.26+i 0.8139
14.02+1 0.4756

1 6.135+i 2.473
2 8.524+i1.174
3 11.16+i 0.6620
4 13.96+i 0.4161

our effort are shown 1n Table 1 for m=—-1, n=
1,2,3,4, and 1n Table 2 for m=-2,n=1,2, 3, 4.
Negative values for m were chosen to ensure that
the imaginary part of k was positive. The first
column 1n each table contains the roots generated
by the iterative scheme while the second lists those
obtained from (5.6). The two columns agree well
for m=—1 but deviate, especially for n=1 and
m=-—2.

Finally, the deviation between the closed-cavity
eigenfrequencies given by (4.1) and the real parts
of k listed in Tables 1 and 2 differ by less than
2% for n=2,3,4 and by about 12% when n =1.
The 1maginary part of the eigenfrequencies,

which measures the rate at which energy leaks

out of the open cavity, decreases as m increases.
This 1ndicates that the higher modes are

trapped longer in the resonator and agrees with a
ray interpretation.
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