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Abstract—The electromagnetic wave scattering properties of a mov-
ing, perfectly conducting mirror are analyzed using a new numerical tech-
nique based on the finite-difference time domain (FD-TD) method. This
numerical technique is unique in that it does not require a system trans-
formation where the object is at rest but gives a solution to the problem di-
rectly in the laboratory frame. First, two canonical one-dimensional cases
are considered, the uniformly moving and the uniformly vibrating mirror.
Numerical results for the scattered field spectrum are compared to avail-
able analytical results, and an excellent agreement is demonstrated. The
ability of the FD-TD model to obtain the physics of the double-Doppler
effect (for the uniform translation case), and FM-like reflected spectrum
(for the uniform vibration case) is highlighted. Second, the method is
extended to two-dimensions where a plane wave at oblique incidence on
an infinite vibrating mirror is considered. A good agreement with pub-
lished results is demonstrated for this case. This new approach based on
FD-TD provides a potentially strong tool to numerically model a variety
of problems involving moving and vibrating scatterers where alternative
analytical or numerical modeling means are not available.

I. INTRODUCTION

HE ANALYTICAL THEORY of electromagnetic wave

scattering by moving bodies has been developed prin-
cipally for canonical one-, two-, and three-dimensional struc-
tures [1], [2], [3]. Canonical problems considered include pla-
nar conducting and dielectric interfaces in uniform translation
or vibration [4], uniformly moving random rough surfaces
[5], uniformly moving or vibrating cylindrical and spherical
shapes [6], [7], [8], and simple rotating shapes [9]. Motivation
for pursuing such analyses has been provided in part by re-
search in the generation of millimeter and submillimeter waves
using the interaction of microwaves with relativistically mov-

[11].
Existing analytlcal theory in thlS area models the physics
of a reflecting surface in uniform translation or vibration by

employing system transformations where the surface is- at rest.
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ing ionization (plasma) fronts or electron beam fronts [10],

Dafficulties arise when attempting such analyses for general

two- or three-dimensional scatterers, since closed-form solu-

tions cannot be obtained when the scatterer shape, compo-
sition, translation, and surface vibration are arbitrary. Yet,
such general problems arise as more detailed information is
required concerning microwave interactions with moving or
oscillating charged particle beams of finite cross section.

This paper introduces a purely numerical approach for
modeling scattering by relativistically moving perfectly con-
ducting bodies based upon the finite-difference time-domain
(FD-TD) method [12]-[24]. This approach uses no system
transformation and gives the solution directly in the labo-
ratory frame. It exploits the detailed time-domain modeling
characteristics of FD-TD, and has the potential to permit
computation of accurate solutions for moving/vibrating rigid

~ body problems of substantially more complexity than exist-

ing analytical approaches. The work presented here includes
derivation of the necessary modifications of FD-TD for the
relativistic body case, and validations for uniform translation
and vibration in one and two dimensions against existing an-
alytical theory. The ability of the FD-TD model to obtain the
physics of the double-Doppler effect (for uniform translation),
and FM-like reflected spectrum (for vibration), will be high-
lighted. A subsequent paper will address the extension of the
new approach to treat convex, conducting, two-dimensional
bodies subject to uniform relativistic translation and/or vibra-
tion.

The present paper is organized as follows. Section II briefly
summarizes the background of the basic FD-TD method, and
then describes the basis and FD-TD numerical implementa-
tion of the required relativistic electromagnetic field boundary
conditions. Section II1 discusses validation studies for the uni-
formly movmg mirror in one dimension. Section IV discusses
validation studies for the uniformly vibrating mirror also in
one dimension. Section V presents a two-dimensional case
study of the oblique incidence with comparative results. Last,
Section VI provides the summary and conclusions.

 II. DESCRIPTION OF THE NUMERICAL METHOD
A. Background of the Bas:c FD-TD Method

In the mld- 1960’s, Yee introduced a computatlonally ef-
ficient means of directly solving Maxwell’s time-dependent
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curl equations using finite differences [12], now designated
as the finite-difference time domain method. With this ap-

proach, the continuous electromagnetlc field in a finite vol-

manner by marching in time, that is, repeatedly implementing

waves and sampled-data numerical analogs propagating in a
data space stored in a computer. Space and time samplmg in-
crements, are selected to avoid aliasing of the continuous field

ume of space is sampled at discrete points in a space lattice
and at discrete points in time. Wave propagation, scattering,
and penetration phenomena are modeled in a self-consistent ~where E;, D, ,H;, and B; are
~ electric flux density, magnetrc field, and magnetic flux density

‘in medium 1 and 2; pg and J; denote the surface-charge and

current densities; ¥ is the veloc1ty of the moving interface

the finite-difference analog of the curl ‘equations at each lat-
t1ce oint. This results in a simulation of the continuous actual

distribution, and to guarantee stability of the time-marching

algorithm [13]. Time marching is completed when the desired

steady-state field behavior 1s observed. .
The basic FD- TD method permits the modehng of electro-
magnetic wave interactions with a level of detail comparable
to that of the wrdely used method of moments [25]. Further,
its explicit nature leads to overall computer storage and run-
ning time requirements that are linearly proportional to N, the
number of field unknowns in the finite volume of space being
modeled. These two attributes permit FD- TD to provide de-
tailed numerical models of wave interactions with structures
having volumetric complexrty such as blologlcal tissues [14]
and loaded cavities [15], [16]. _

~ For the present work, it has been necessary to modlfy the
basic FD TD formulation to model moving, perfectly con-
ducting, scatterers. The most simple, ‘“‘brute-force” approach
would be to simply let the scatterer occupy slightly different
positions in the space lattice at each time step. This corre-
sponds to the quasr-steady -state method 4], Wthh has been
adopted 1n certain analytical solution approaches Although
this method gives an approximate answer when applied to
FD-TD, as will be seen in Section III, it does not completely
prov1de the proper physrcs An appropriate relativistic elec-
tromagnetic field boundary condition, discussed next, must

also be \1ncorporated into the FD-TD code at the surface of

the scatterer. Fortunately, this condition i IS easy to derive in a
form suitable for FD-TD 1mplementatlon '

B. The Relativistic Boundary Condzttons in the FD—- TD
Code

There are a number of ways to solve for the scattered ﬁeld

from a movmg object. In general, the desired analytrcal SO-
lution for the scattered field can be obtarned by a Lorentz
transformation of the incident field to the movmg system, and

solution for the scattered field in the frame of reference of

the moving system [26]. In this reference frame, the scatterer
surface is stationary and the electromagnetlc boundary con-
ditions are well defined. The Inverse Lorentz transformation
then provides the final answer in the laboratory frame. How-
ever, a direct solution that is more straightforward (and shorter
In some cases) is possible in the laboratory frame without a
Loventz transformation if one uses what is defined as the “rel-
ativistic boundary conditions’’ at a moving interface between
medium 1 and medium 2. The derivation of these condltlons

in its general form, is well presented in [3] and yields

i, X (Ey — E\) — (i, + 7)(B, —B)) = 0

J =

where, for a perfect conductor, E + 7 X B =

locity. It 1s not within the scope of this paper to discuss the

(12)

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 37, NO. 1, JANUARY 1989

(ib)

_ o ' (52 — D)) =
Uy X (HZ — Hl) + (un #)(DZ — Dl) = Js (Ic)
- (Bz - Bl) (1d)

respectrvely, the electric field,

(assumed to be umform) and u n 1S the un1t vector normal to
the 1nterface ‘

It is important to note from (1) that a scatterer motion trans-
verse to the surface plane (perpendicular to the surface nor-
mal) results in boundary conditions similar to that of a fixed
object, simply because the term u, - 7, is now equal to O.

It should further be noted that (1) implies that the tangen-
tial E-field at the surface of a perfectly conducting moving

boundary can be finite. However, this does not result in an
mﬁmte surface current density because the usual expression,

oE for current density in a material of conductivity o
1S NO loner valid. Instead, for a uniformly moving object,

the total induced current is the result of a conduction current

plus an extra term. Deﬁmng 3 as the ratio v/c, c¢ being the
velocity of hght in free space, the total current 1S given by

TeoBrrxBpes @
O from (1);
and therefore the surface current densrty J, remains finite. In
many references, only small velocities are considered and the
term 3 is neglected compared to 1.
 In the derivation of the above equations, no assumption is
made on the speed v relative to the speed of light ¢, hence the

name relativistic boundary conditions. The only assumption

made is that the speed v is uniform. However, the same rela-

tivistic boundary conditions derived for uniform v have been
widely applied to study accelerating bodies, under certain con-
‘ditions where the acceleration is sufficiently low [4], [27].

Here, a new reference frame called the ‘‘co-moving frame’
or ‘‘instantaneous frame’’ is introduced. The difference is that

now the velocity v in (1) represents the instantaneous velocity

instead of the uniform velocity. The term “Doppler approx-

mmation’ [2] 1s also used to denote analyses wherein it is

assumed that the instantaneous velocity equals a uniform ve-

details of this theory. Its validity in rotating coordinates has
been 1nvestigated by Shiozawa [27]. The reader can also refer
to the presentation given in [4] and [9].

- For a perfectly conducting moving surface, the boundary
condition (la) relates linearly the local values of the instan-
taneous total tangential £- and H-fields at the surface of the
conductor (lit side). Thls rclatlon s1m1|ar in form to that of
a surface impedance, presents a problcm for implementing in
the FD-TD code which computes £ and /1 values separated
by half-step intervals in time and space. It is nceessary o
derive an equivalent form of the relativistic boundary condi-
tion for perfectly conducting surfaces that is not contradictory

‘with this half-step nonlocalization of ficld values in the FID
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TD code. Derivation of such an equ1valent form 1s given in

the Appendix.
Using the results of the Appendix, the relativistic boundary
condition for a moving mirror (in a form appropriate for FD-
TD implementations) is given by -

__un.l-}- _ -
E=2—" _F
—i )

or
2C

B"—""‘“"—:——';
C"'"'un *V

- B' - 4)

where E and E' are, respectively, the total tangential electric

mirror surface. B and B’ are, respectively, the total tangential
magnetic field and the incident tangential magnetic field values
at the mirror surface.

Now, the value of the total tangential electric field at the
mirror surface is given in terms of the incident electric field
value at the boundary. The latter is easily obtained from a par-
allel one-dimensional grid already built into the FD-TD code
as a look up table. Implementation of the boundary condition
- for a moving mirror now becomes a simple matter. At each

half-time step when the E-field and the H-field are computed,

respectively, the position of the reflecting mirror in the grid
1s first determined. Then, the relativistic boundary conditions

(3) or (4) for the field values at the surface of the mirror are
implemented. '

C. Approxzmatzon of E and H Adjacent to a Movmg

Surface

The question arises as to the value of the incident electric

field when the position of the mirror does not coincide with

a point in the grid. For this purpose, linear interpolation 1s
used. From the geometry of Fig. 1,

6, —A) - EiG+1)+A - Ei(j)

E'at mirror = . (5)
5, .

The value of the total electric field at the mirror surface is

stored at the total electric field grid point closest to the surface.
No extra grid points are introduced. In Fig. 1 for example,

A > 06, — A.
Next a Faraday’s law contour integral i1s used to compute

contour integral subcell models has been previously used in
the FD-TD analysis of wave penetration through narrow slots
in thick conducting screens [22] and coupling to wires and
wire bundles [23].) Applying Faraday’s law, given by

3\ B - aS -
F ' -dl=——___ '
RE: G ®
along the path defined in Fig. 1, and assuming that the H-field
is almost uniform in the shaded region, we obtain

0B,
ar

(EG + 1) - EG)) - 8

field and the incident tangential electric field values at the

‘mirror is advancing toward the incident wave. The scattered
~ electric field 1s given by [2]

1o equal to 0.) A ““double-Doppler” effect is apparent from

the value of the total electric field at the boundary is stored
at the E(yj + 1) point if A < 6, — A and at the E(y) point 1f

the total H-field adjacent to the mirror surface. (The idea of

. @y —A). (D
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Fig. 1. FD-TD field component geometry for the moving mirror case in a
one-d1mens1onal FD-TD gnid.

By applying Ampere’s law, a similar contour integral can be
derived to compute the total E-field adjacent to the mirror

surface [22].

- . THE CASE OF A UNIFORMLY MOVING MIRROR
NORMAL ILLUMINATION

A. Exzstmg Analytical Formulation

An incident sinusoidal plane wave of frequency w; (illumi-
nation frequency) and unit amplitude is normally incident on
a uniformly moving mirror. Referring to Fig. 1, a positive
mirror velocity v means that the mirror is receding from the
incident wave, and a negative mirror velocity means that the

— vl
. ———-—-——% (w;it — ky) + 2Jk o l:)O (8)
1 + - - 1 - -
. ¢cJ . . C
where yo = v(t — ty) + ro is the position of the mirror

boundary with respect to a reference point, and ry and ¢,
are some initial values. (For simplicity, we set both ry and

(8) in that both the frequency and amplitude of the scattered

field are transformed by the same multlplylng factor deﬁned
as a = [1 — (v/c)]/[l + (v/0)].

B. FD- D Modifications Considered '

Three different FD-TD algorithm modifications for the
electromagnetic boundary condition at a moving surface, dis-
cussed in Section II-B, have been considered in numerical tests
of whether FD-TD can properly model the double-Doppler
effect -

1) T he Quas:-—Statlonary Method—-—- Here, the mirror i1s

- assumed stationary for a complete one-time-step 1nter-

~ val. The relativistic boundary conditions are not imple-

-~ mented. Only the position of the mirror is determined

- after each full time step. A contour integral model is

~ used when necessary to compute more exactly the H-
o and/or E —ﬁeld next to the mirror surface Such a method
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TABLE I

DOUBLE-DOPPLER SHIFTS AS OBTAINED BY FD-TD AND
ANALYTICALLY, FOR THREE DIFFERENT MODELS |
AND A GIVEN VELOCIT Y

Reﬂected Amphtude

Reﬂected Frequency '

ical | FD-TD FD-TD

Quasistatic | -1 / 3

' Serm relativistic

Oatwaé2 00427a,tw-9*

Oatw7é2 01308atw--9*

Full relatrvrstlc -1/3 |
Oatw#Z 00523atw—-9"‘

* Spunous frequency components _

wrll give the proper shrft In frequency but leaves the

amplitude unchanged as the theory predrcts 2].

2) The Semirelativistic Method— Here, the relativistic
boundary condition is implemented each time for the E-
field only. In other words, only (3) is used. The value

- of the total E-field at the mirror surface is stored at the
- closest, total E-field, grid point to the mirror surface.

- No extra grid point is introduced. A contour integral
~ model is used to compute the H-field next to the mir-
~ ror surface. This method should be enough to model

the proper physics of the problem. However, usage of

a contour integral model makes the program more dif-
ficult to generalize for arbitrary mirror velocities.

3)

boundary condition is implemented each half-time step
for both the E-field and the H-field usmg (3) and (4)
respectlvely This case does not require a contour inte-
gral model since now the H-field, next to the mirror, is
computed from (4). This method was found to be more
accurate and more general than the prevrous method

In all the above three cases the ﬁelds behrnd the mlrror.
are set to Zero. '

C. Comparatzve FD—- D and Analytzcal Results

Let us consrder the case of a mlrror 1llum1nated at normal .'

incidence by a unlt-amphtude sinusoidal plane wave havrng
a normalized frequency, w; = 1. The mirror is assumed to
be advancing toward the 1nc1dent wave at one-third the speed
of light (v = —c¢/3). Table I shows double-Doppler shifts as
obtained analytically and by FD-TD for the three relativistic

moving surface models. The spatial frequency spectrum of

the reflected wave is obtained by taking the Fourier transform
of the FD-TD computed field versus position sample after

20 cycles had been stepped. The spatial frequency is scaled

such that a value, w = 10, corresponds to the FD-TD grid
Nyquist frequency (the maximum spatial frequency that the
FD-TD grid can support as a sampled-data system)

It 1s seen that the quasi- statlonary boundary condltlons
cause the FD-TD code to generate a reﬂected-wavc spat1a1 fre-
quency component with the proper upward Dopplcr frequency
shift (to w = 2) leaving the amplitude almost unchanged as
predlcted by the analytical theory of [2] The semirelativis-

The Fully-Relativistic Method— Here, the relativistic

tic boundary condltlon provrdes the propcr Dopplcr shifts In

both the frequency and magnitude (again of a shift of 2:1)
with a small spurrous frequcncy component The fully rela-
tivistic boundary condition, causes a further damping of the
undesired frequency component For both the semi-relativistic
and fully-relat1v1st1c cases, the error in the computed ampli-
tude of the properly shtfted spectral component at w = 2 18
only 0.3 percent (0. 026 dB) The FD-TD computed spurious
frequency component near w = 9 is limited to 6.54 percent
(—-23.7 dB) in the semirelativistic case and to 2.62 percent
(—31.6 dB) in the fully relativistic case.

Table II shows double-Doppler results obtained for eight
different mirror velocities using only the fully relativistic
boundary condition. In all of these cases, FD-TD generates
a reflected wave with the proper Doppler shifts in both fre-
quency and amplitude. The error in the FD-TD computed
amplitude of the properly shifted spectral component is lim-

~ited to less than 1.5 percent (0.131 dB), and the generation

of spurious frequency components is limited to less than 5

~ percent (—26 dB). These spurious components are numerical
‘artifacts due to the interpolation process used in computing

the incident field at the mirror surface (Section II-C), and the

- storing of the surface field values at the closest grid point

(Section II-B). As observed in Table II, these artifacts disap-
pear when the mirror velocity equals c¢/2 where, at every time
step, the mirror position corresponds exactly to a gnid field
point.

IV. THE UNIFORMLY VIBRATING MIRROR

A. ExiSting Analytical Formulation

Referring to Fig. 1, ‘the exact form of the scattered field

from a linearly vrbratrng mlrror 1S glven by a set of two equa—
tions [28] 129]: . o

[ = tO + — sin(wylp) — ZC_ "

s ()

1 - 6 COS (wvto)

— t — k y
1 T ﬁ cOS (wvto) COS( 0 d sm (OJ to))

(yt) =

(9b)

where w; 1s the frequency of the incident wave; Y
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TABLE II _
DOUBLE-DOPPLER SHIFTS AS OBTAINED BY FD-TD AND
ANALYTICALLY, FOR UNIFORM VELOCITIES

Reflected Amplitude Réected Frequency

| Analytical * Analytical | FD-TD
-1/3| 0 2000 | 1.9940 2.000 | 2.000
Datw#2 | 0.0523 at w = 9" _ A EE SRR
o+ . ]0atw#1.5000(00660atw="| | .
-1/7( 0 13333 [ 1.3239 1.3333 | 1.3333
- |0atw#1.3333(0.0613at w=4~| o '
s 1 0.0465 at w = 5* B -
- 1/2 | 0.3333 - 0.3284 - 0.3333 | 0.3333
1/3 | 0.5000 0.4939 0.5000 0.5000
1/4 0.6000 0.5590 0.6000 | 0.6000
0 at w # 0.6000 | 0.0081 at w = 4* '
1/5 0.6666 0.6587 0.6000 0.6000
0 at w # 0.6000 | 0.0560 at w = 5*
- 1 0.0164 at w = 6* ,
1/7 0.7500 0.74161 0.750 0.7500
0 at w # 0.7500 | 0.0514 at w = 2*
- - 0.0153 at w = 4* '

* Spurious frequency components

d sin (w,?) describes the displacement of the mirror vibrating
with a frequency, w, and 8 = w,d/c = vmax/c. Equation
(9b) can also be written in a Fourier series expansion,

E;(y,0) = —Re 2, J_m(am)

m= —oo
|+ — | edirtma)e+(y/e

m+ 2 —

Wy
(10a)

where

oy, = MmPB + 2kd = (m + 2 ﬂ). (10b)

Wy

The scattered field spectrum thus contains the incident fre-
quency w; and an infinity of sidebands located at w; + mw,
generated by the vibration of the mirror. ,
The scattered field spectrum for the vibrating mirror is very
similar to the spectrum of an FM tone-modulated signal. In
both cases, an infinity of sidebands located at weens + Mwp 18
generated, where wcepn is a center frequency (the illuminating
frequency for the vibrating mirror case, the carrier frequency
for the FM case); and w, 1s the sideband separation (the vi-
bration frequency for the mirror case, the modulating tone
frequency for the FM case). Further, in both cases, the spec-
tral amplitude of the mth sideband is proportional to J,,; a
Bessel function of order m. For the vibrating mirror, the ar-
gument of the Bessel function depends on the amplitude and
frequency of vibration; for FM, the argument depends upon
the amplitude and frequency of the modulating tone.
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Fig. 2. - Comparison of FD-TD and analytical results for the sidebands of

the reflected spectrum. *: exact values; o: FD-TD values.

B. FD-TD Modeling Procedure

In modeling the vibration of the mirror with the FD-TD
code, we follow the same procedure as for the uniformly mov-
Ing mirror, but use only the fully relativistic boundary con-
dition, and assume that we are in a region where the theory
of the “co-moving frame”’ is still applicable [4]. Our interest
will be mainly in the variation of the scattered field amplitude
at the fundamental frequency w;, as a function of mirror vi-
bration frequency w,, and amplitude d. It is clear from (10)
that at the fundamental frequency, where m = 0, the exact
solution for the magnitude of the scattered field leads to a

Jo(2kd ) dependence, where 2kd = 2B(w;/w,).

C. Comparative FD-TD and Analytical Results

“Fig. 2 shows the magnitudes of the sideband components
of the reflected field spectrum for a vibrating mirror having

a vibration frequency w,, equal to 0.1 times the illumination

frequency w;; and a maximum mirror surface velocity equal to
0.1 times the speed of light. The plotted values are computed

- using both the exact solution of (10) and the FD-TD method

with fully relativistic boundary conditions and a spatial reso-
lution of 20 cells per wavelength of the illuminating wave. An
excellent correspondence is noted between the exact and FD-

'TD numerical data. The error in computing the magnitude of

the reflected component at the illuminating frequency is only

0.27 percent (0.02 dB).

As mentioned earlier, an important test for the FD-TD ap-

proach is to compare the variation of the scattered field am-

plitude at the i1lluminating frequency with the exact solution
as mirror vibration parameters are changed. Noting that the
exact solution states that the argument of the Bessel func-

tion weight for this spectral component is dependent upon
“the product of maximum normalized mirror velocity, 8, and

w;/w,, the FD-TD modeling procedure should trace out the
same Bessel function variation of the scattered field ampli-
tude at the illuminating frequency regardless of whether 8 is
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Fig. 3. Comparison of FD-TD and analytical results for the scattered field
magnitude at the illumination frequency. *: exact values; o: FD-TD values

for w; = Swy; A: FD-TD values for 8§ = 0.1c.

varied while keeping w;/w, fixed, or whether w;/w, is varied
while keeping 3 fixed. Fig. 3 graphs the results of numerous
trials of the FD-TD procedure wherein these parametric stud-
ies (and corresponding Fourier analyses) were conducted with
the fully-relativistic boundary conditions incorporated into the
FD-TD code. For the first case where 8 is varied from 0 to
0.5, the ratio of illumination frequency w;, to mirror vibra-
tion frequency w,, is fixed at 5; and the product of 28(w;/w,)
varies between 0 and 5. For the second case where S is fixed

ZB(w/ w,) varies between 0 and 5.
‘Fig. 3 shows that the FD-TD numerical predlctlons for the

scattered field amplitude at the illuminating frequency are very

close to the Bessel function J,, behavior given by the exact so-
lution as the mirror vibrational parameters vary. The accuracy
of the FD-TD predicted scattered field amplitude is essentially
the same, regardless of whether 8 is fixed or w;/w, is fixed
during the parametric study. These results indicate that the
FD-TD code, with fully relativistic boundary conditions at
the mirror surface, is properly modeling the physics of the
vibrating mirror problem, including the interesting scattered
field null at the first zero of the Bessel function.

V. EXTENSION OF METHOD TO TwWO-DIMENSIONS

A. Problem Descnptzon Oblique Inc:dence on a Vzbratmg
Mirror ' '

In this section we consider the case of obltque plane wave
incidence on an infinite vibrating mirror. This case, analyzed

by De Zutter [30], is much more comphcated than the normal
Incidence case In that it has no closed-form solution. The

solution is written in an 1nﬁmte-ser1es form using plane-wave

expansions, where the unknown coefficients in the series are

obtained numerically, as described in [30]. In that paper, the
field amplitude versus time is calculated at different points

along the symmetry axis of the mlrror and for varlous angles
of mmdence - o

~ proach is again based on the ‘“Doppler approxrmatton” [2],
28], [30] where it is assumed that the mirror moves with a

-a uniformly moving mirror has a reflected angle 8,, given as
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B. FD-TD Modeling Procedure

An approach analogous to the one-dimensional case is
adopted to implement the relativistic boundary conditions in a
two-dimensional FD-TD code. The two-dimensional case ap-

uniform velocity equal to the instantaneous vibrational value.
Propagation delays are accounted for by assuming that reflec-
tions are generated at the “‘precursor’ position of the mirror.
In [28], an analysis of the normal incidence case, the precur-
sor’’ positions coincide for all points of the mirror. In [30], an
analysis of the oblique incidence case, this feature is lost, and
a similar approximate solution ignores the propagation delays.
However, propagation delays are automatically accounted for
in the FD- TD code by virtue of its time-domain nature.

From the special theory of relativity, a wave reflected from

[26] .

cos 0;(1 + 82) — 28 A1)
1 -2Bcos 0; + B2

A derivation similar to the one-dimensional case leads to the

following relativistic boundary conditions suitable for FD-TD
implementation:

cos @, =

B(cos 8, + cos 0;)
1 =8 cos 6,

E = + . E’ (12)

(cos 6, + cos 0))

i = cos 6;(1 £ cos 0,)

- H' (13)

at 0.1, w;/w, 1s varied from O to 25; and agam the product of where 8 = v/c and the fields refer to total tangential field val-
ues. The numerical steps involved are now only slightly more

complicated because of the angular denendence of the incident
field values at the mirror surface. From (11) it is clearly seen
that cos 6, 1s a function of v. Therefore, the reflected wave
has a spread both in frequency and spatial reflection angle
[30].
A validation is sought for the oblique incidence case of
the infinite plane mirror modeled by De Zutter. Since it is
impossible to exactly model an infinite mirror in a finite
two-dimensional grid, we select a long, thin, rectangular,
perfectly-conducting slab as the model for the infinite mir-
ror, as shown in Fig. 4. The relativistic boundary conditions
(12) and (13) are implemented on the front and back sides of
the object. The other two sides, parallel to the velocity vector,

are insensitive to the motion of the object, and therefore no
relativistic boundary conditions are required there.

~ The use of a finite-length rectangular slab to model the infi-
nite mirror introduces edge diffraction artifacts. To minimize
the edge effect, we select a slab long enough to appear from
the observation point as infinite during a well-defined early-
time response when the edge effect has not yet reached the
observation point. Since the transverse electric (TE) case does
not provide sub stanttally different results than the transverse

‘magnetic (TM) case [30], only the TM case is considered.

Such a test should provide us with good insight as to the
ab111ty of FD- TD to handle moving boundary problems in twWo

dimensions.
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Fig. 4. Modeling of a vibrating mirror in a two-dimensional FD-TD grid.
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Fig. 5. Comparlson of FD-TD ana analytlcal results for the scattered ﬁeld
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C. Comparatzve FD-T. D and Analytzcal Results

envelope of the scattered E-field versus time for 9 =
LB = O 2,kd =

and 2/d =
9; = 30° B - 0.02, and kd = 0.1. Fig. 7 compares the

FD- TD and analytrcal results for 6; = 60°,8 = , and
kd = 1. For both z/d = -5 and z/d

numerical data. . .
In general the FD-TD method glves good results and it

is fair to claim that this technique, unique in its approach

for numertcally modehng moving boundanes 1S @ promising

Fig. 3 shows good agreement between the FD-—TD re-
sults and the analyttcal results obtained from [30] for the

1, and observation points z/ d = -5
---50 Similar agreement is shown in Fig. 6 for

.-—-50 a good '
correspondence 1S noted between the analytlcal and Fl TD _
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Fig. 6. Comparison of FD- TD and analytlcal results for the scattered field

~ time envelope at obhque 1nc1dence — analytlcal results x0: FD-TD
results - -
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) . . -
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Fig. 7. Comparison of FD-TD and analytlcal results for the scattered field

time envelope at oblique incidence. — analytrcal results; xo0: FD-TD
results

strong tool to analyze more compllcated problems 1nvolvmg
arbltrary moving shapes.

VI. SuMMARY AND CONCLUSION

A numerical approach based on the FD-TD technique, us--

ing fully relativistic electromagnetic field boundary conditions
at the surface of a conductor, has been formulated to model
scattering from perfectly conducting moving mirrors in one
and two dimensions. The numerical approach is unique in
that it requires no system transformation, contrary to other
possible numerical methods where the problem 1s first solved

In the moving frame and then transformed back to the rest

frame. For nonuniform velocities, the concept of a “Doppler-
approximation” was used. Since the stability of the FD-TD



code is assured by the proper selection of the space and time
increments, and since no new iterative equation coupled to the
orlgmal FD-TD equations is introduced, the method remains
stable. Two types of one-dimensional relativistic mirror mo-
tion have been considered: uniform translation and sinusoidal

vibration of the mirror surface. Comparison with the exact,

analytical solutions for these types of mirror motion indicates

nitude and frequency of spectral components resulting from
the scattering process. Physics that appears to be properly
modeled includes the double-Doppler effect (uniform transla-
tion case) and FM-like spectral sidebands (sinusoidal vibra-
tion case). When extended to two dimensions, the code again
shows good agreement with the available analytical results for
the case of oblique incidence upon an infinite vibrating mirror.
Here, the physics involved is much more complicated than in

evanescent modes are generated at the mirror surface.

The FD-TD code that has been constructed can be directly

adapted to model other types of moving-boundary problems
involving two- and three-dimensional, perfectly conducting
bodies of finite size and arbitrary shape. A logical extension
of the existing approach involves developing more general,
suitable relativistic boundary conditions to model scattering
by moving objects having a ﬁmte conductivity without using
a system transformation.

APPENDIX

The following is a derivation of an equivalent relativistic

boundary condition suitable for modeling moving perfect con-
ductors in the FD-TD grid. The incident wave is assumed to
be polarized in the positive z-direction and propagating in
the positive y-direction with an amplitude of unity. Thus, the
incident fields are given by

I __ jw,-(t-—y/c)
E,=c¢e o

B, = EE;

The reflected E-field will have the form

r _ Ajort+y/c)
E, = Ae

so that the reflected B-field in free space will then be given
by

The total B-field is therefore

B,

= By + B, = . (E; - E;)

but, since

E] = E} - E]

therefore

| P
- . (2E; - Ezt)- .

For a mirror receding from the incident wave, the relativistic

that the new numerical approach accurately computes the mag-

one dimension because both propagating and nonpropagating

[11]

(3]

62 - ~ IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 37, NO. 1, JANUARY 1989

boundary condition is given by
E't —v -+ B, =0.
Substltutmg for Bt in the above equatlon we get

_ 2 (2E’ E)) =

Therefore the ﬁnal form for E s

E;=2c+sz' .

Slrmlarly, for the total B-field at the boundary we have

(14)

= - (2E;' — E)).
Substituting for E; in the above equation with E ! = cB,, we
get finally for the B-field

“ pi.

15
c+v * (15)

t o
; Bx '_

Equations (14) and (15) are the ones used in our code to

implement the proper relativistic boundary conditions at the
surface of the mirror.
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