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This paper reviews the basis and applications of the finite-difference time-domain (FD-TD) numerical modeling approach
for Maxwell’s equations. FD-TD is very simple in concept and execution. However, it is remarkably robust, providing highly
accurate modeling predictions for a wide variety of electromagnetic wave interaction problems. The accuracy and breadth
of FD-TD applications will be illustrated by a number of two- and three-dimensional examples. The objects modeled range
In nature from simple geometric shapes to extremely complex aerospace and biological systems. In all cases where rigorous
analytical, code-to-code, or experimental validations are possible, FD-TD predictive data for penetrating and scattered near
fields as well as radar cross sections are in excellent agreement with the benchmarks. It will also be shown that opportunities
are arising 1n applying FD-TD to model rapidly time-varying systems, microwave circuits, and inverse scattering. With
continuing advances in FD-TD modeling theory as well as continuing advances in supercomputer technology, there is a
strong'possibility that FD-TD numerical modeling will occupy an important place in hlgh frequency engmeerlng electromag-

netics as we move 1nto the 1990s.

1. Introduction

- Accurate numerical modeling of full-vector elec-
tromagnetic wave interactions with arbitrary struc-
tures is difficult. Typical structures of engineering
interest have shapes, apertures, cavities, and
material compositions or surface loadings which
produce near fields that cannot be resolved into
finite sets of modes or rays. Proper numerical
modeling of such near fields requires sampling at
sub-wavele'ngth resolution to avoid aliasing of
magnitude and phase information. The goal is to

provide a self-consistent model of the mutual
~ coupling of the electrlcally small cells comprising
the structure. _

This paper reviews the formulation and applica-
tions of a candidate numerical modeling approach
for this purpose: the finite-difference time-domain
(FD-TD) solution of Maxwell’s curl equations.

"FD-TD 1s analogous to existing finite-difference

solutions of scalar wave propagation and fluid-tflow
problems in that the numerical model is based
upon a direct solution of the governing partial
differential equation. Yet, FD-TD 1s a nontradi-

“tional approach to numerical electromagnetic

wave modeling of complex structures for engineer-
ing applications, where frequency-domain integral
equation approaches such as the method of
moments have dominated for 25 years (see the
article by Umashankar in this issue).

One of the goals of this paper 1s to demonstrate
that recent advances in FD-TD modeling concepts
and software implementation, combined with
advances in computer technology, have expanded

‘the scope, accuracy, and speed of FD-TD modeling
~ to the point where it may be the preferred choice

for certain types of electromagnetic wave penetra-
tion, scattering, guiding, and inverse scattering
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problems. With this in mind, this paper will suc-
cinctly review the following FD-TD modeling vali-
dations and examples:
(1) electromagnetic  wave
dimensions:
(a) square metal cylinder, TM polarization,
(b) circular muscle-fat layered cylinder, TE
polarization,
(c) homogeneous, anisotropic, square material
cylinder, TM polarization,
(d) circular metal cylinder, conformally
modeled, TE and TM polarization, '
(e) flanged metal open cavity,
(f) relativistically vibrating mirror, oblique
incidence;
(2) electromagnetic wave
dimensions:

(a) metal cube, broadside incidence,
(b) flat conducting plate, multiple monostatic

looks,
(c) T-shaped conducting target, multiple mono-
static looks: '

scattering, two

scattering, three

(3) electromagnetic wave penetration and coup-

ling, two and three dimensions:

(a) narrow slots and lapped joints in thick
screens, '

(b) wires and wire bundles in free space and in
a metal cavity; '

(4) very complex three-dimensional structures:
(a) missile seeker section,
(b) inhomogeneous tissue model of the entire

human body; |
(5) microstrip and microwave circuit models;
(6) inverse scattering reconstructions in one and
two dimensions.

Finally, this paper will conclude with a discus-
sion of computing resources for FD-TD and the
potential impact of massively concurrent
machines.

2. General characteristics of FD-TD

As stated, FD-TD is a direct solution of Max-

well’s time-dependent curl equations. It employs

no .potential. Instead, it applies simple, second-

order accurate central-difference approximations

| 1] for the space and time derivatives of the electric
and magnetic. fields directly to the respective

differential operators of the curl equations. This
achieves a sampled-data reduction of the con-
tinuous electromagnetic field in a volume of space,
over a period of time. Space and time discretiz-
ations are selected to bound errors in the sampling
process, and to ensure numerical stability of the
algorithm [2]. Electric and magnetic field com-
ponents are interleaved in spaée to permit a natural
satisfaction of iangential field continuity condi-
tions at media interfaces. Overall, FD-TD is a
marching-in-time procedure which simulates the
continuous actual waves by sampled-data numeri-
cal analogs propagating in a data space stored in
a computer. At each time step, the system of
equations to update the field components is fully
explicit, so that there is no need to set up or solve
a set of linear equations, and the required computer
storage and running time is proportional to the
electrical size of the volume modeled. _
Figure 1(a) illustrates the time-domain wave
tracking concept of the FD-TD method. A region
of space within the dashed lines is selected for
field sampling in space and time. At time =0, it is
assumed that all fields within the numerical samp-
ling region are identically zero. An incident plane
wave 1s assumed to enter the sampling region at
this point. Propagation of the incident wave is
modeled by the commencement of time-stepping,
which is simply the implementation of the finite-
difference analog of the curl equations. Time-step-
ping continues as the numerical analog of the
Incident wave strikes the modeled target embedded
within the sampling region. All outgoing scattered
wave analogs 1deally propagate through the lattice
truncation planes with negligible reflection to exit
the sampling region. Phenomena such as induction
of surface currents, scattering and multiple scatter-
Ing, penetration through apertures, and cavity exci-
tation are modeled time-step by time-step by the
action of the curl equations analog. Self-

~ consistency of these modeled phenomena is gen-
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Fig. 1. Basic elements of the FD-TD space lattice: (a) time-
domain wave tracking concept; (b) lattice unit cell in Cartesian
coordinates.

erally assured if their spatial and temporal vari-
ations are well resolved by fhe space and time
sampling process.

Time-stepping is continued until the desired
late-time pulse response or steady-state behavior
15 observed. An important example of the latter is
the sinusoidal steady state, wherein the incident
~wave 1s assumed to have a sinusoidal dependence,
and time-stepping is continued until all fields in
the sampling region exhibit sinusoidal repetition.
This 1s a consequence of the limiting amplitude
principle [3]. Extensive numerical experimenta-
tion with FD-TD has shown that the number of

complete cycles of the incident wave required to
be time-stepped to achieve the sinusoidal steady

state is approximately equal to the Q-factor of the
structure or phenomenon being modeled.

Figure 1(b) illustrates the positions of the elec-
tric and magnetic field components about a unit
cell of the FD-TD lattice in Cartesian coordinates
[1]. Note that each magnetic field vector com-
ponent 1s surrounded by four circulating electric

field vector components, and vice versa. This

arrangement permits not only a centered-difference

~analog to the space derivatives of the curl

equations, but also a natural geometry for
implementing the integral form of Faraday’s Law
and Ampere’s Law at the space-cell level. This

“Integral interpretation permits a simple but

effective modeling of the physics of thin-slot coup-
ling, thin-wire coupling, and smoothly curved
target surfaces, as will be seen later.

Fig. 2. Arbitrary three-dimensional scatterer embedded in an
ED-TD lattice.

- Figure 2 1illustrates how an arbitrary three-
dimensional scatterer is embedded in an FD-TD
space lattice comprised of the unit cells of Fig.
1(b). Simply, the desired values of electrical per-
mittivity and conductivity are assigned to each
electric field component of the lattice. Correspond-
ingly, desired values of magnetic permeability and
equivalent conductivity are assigned to each mag-

- netic field component of the lattice. The media

parameters are interpreted by the FD-TD program
as local coeflicients for the time-stepping
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algorithm. Specification of media properties in this
component-by-component manner results in a

stepped-edge, or staircase approximation of

curved surfaces. Continuity of tangential fields is
assured at the interface of dissimilar media with
this procedure. There 1s no need for special field
matching at media interface points. Stepped-edge
approximation of curved surfaces has been found
to be adequate 1in the FD-TD modeling problems
studied in the 1970s and early 1980s, including
wave 1Interactions with biological tissues [4],
penetration into cavities [5, 6], and electromag-
netic pulse (EMP) interactions with complex struc-
tures [7-9]. However, recent interest in wide
dynamic range models of scattering by curved

targets has prompted the development of surface-
conforming FD-TD approaches which eliminate

stair-casing. These will be summarized later in this
paper.

3. Basic FD-TD algorithm details

3.1. Maxwell’s equations

Consider a region of space which is source-free
and has constitutive electrical parameters that are
independent of time. Then, using the MKS system
of units, Maxwell’s curl equations are given by

oH 1 ’
—=_——VxE-FH (1)
ar M Mmoo

ok 1

__VUxH--E (2)
ot & £

where E 1s the electric field in volts/meter; H is
the magnetic field in amperes/ meter; ¢ is the elec-
trical permittivity 1in farads/meter; o is the elec-
trical conductivity in mhos/meter (sie-
mens/meter); w 1s the magnetic permeability in
henrys/meter; and p’ is an equivalent magnetic
resistivity in ohms/meter. (The magnetic resistivity
term 1s provided to yield symmetric curl equations,
and allow for the possibility of a magnetic field

loss mechanism.) Assuming that ¢, o, u, and p’

are 1sotropic, the following system of scalar

equations is equivalent to Maxwell’s curl equations

in the rectangular coordinate system (x, y, z):

oH, 1 (0E, OE,
— (.._..._..X___ _p’Hx)a (33)

or W

(3b)
(3¢)
(4a)
(4b)

‘ (4c)

The system of six coupled partial differential
equations of (3) and (4) forms the basis of the
FD-TD algorithm for electromagnetic wave inter-
actions with general three-dimensional objects.
Betore proceeding with the details of the
algorithm, 1t 1s informative to consider one impor-
tant simplification of the full three-dimensional
case. Namely, if we assume that neither the
incident plane wave excitation nor the modeled
geometry has any variation in the z-direction (i.e.,
all partial derivatives with respect to z equal zero),

Maxwell’s curl equations reduce to two decoupled
sets of scalar equations. These decoupled sets,

termed the transverse magnetic (TM) mode and
the transverse electric (TE) mode, describe two-
dimensional wave interactions with objects. The
relevant equations for each case follow:

- TM case (E., H,, and H, field components only)

0H, 1 [OFE,
— "_( +p’Hx)a (Sa)
0t w \ oy
1 [OFE, "
?__If_yz___( __pry), (5b)
0f u \ 0X
' (oH, oH, ‘
_ aEZ:—-l-—-( L. —O'Ez); ' ~ (5¢)
ot €\ 0xX 0Y
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- TE case (H,, E,, and E, field components only)

oE, 1 /0H, - -
- T O-Ex ’ ' (63)
ot & \ Oy * _ _
3 5) 1 [oH,
-——y=—-—( +0'Ey), (6b)
ot E \ 0X

e —

3.2. The Yee algorithm

In 1966, Yee [1] introduced a set of finite-
difference equations for the system of (3) and (4).
Following Yee’s notation, we denote a space point
in a rectangular lattice as

and any function of space and time as
F'(i,j,k)=F(i Ax,j Ay, kK Az, n At) (7b)

where Ax, Ay, and Az are, respectively, the lattice
space increments in the x-, y-, and z-coordinate
directions; At is the time increment; and i, j, k,
and n are integers. Yee used centered finite-
difterence expressions for the space and time
derivatives that are both simply programmed and
second-order accurate in the space and time incre-
ments respectively: ‘

oF"(i,J, k)
0X
CF"(i+3,5, k)= F"(i—3,j, k)

+O(Ax?)
Ax (Ax~),

(8a)
oF"(i,J, k)
t

. Fn_l_l/z(iaja k) o Fn_l/z(iaja k)

+O(A).
At Q( )

(8b)

To achieve the accuracy of (8a), and to realize
all of the required space derivatives of the system

of (3) and (4), Yee positioned the components of

E and H about a unit cell of the lattice as shown

—————y—p'Hz). (6C) '

in Fig. 1(b). To achieve the accuracy of (8b), he
evaluated E and H at alternate half time steps.

The following are sample finite-difference time-

stepping expressions for a magnetic and an electric

‘field component resulting from these assumptions:

HUV(j+5,k+3)
p'(i,j+3, k+73)At
T it ke
H’(la.] 29 +2) _
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bt
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+[E;(i,j, k+3)
—EZ(i,j+1, k+3)]/Ay}, (9)
EZ7(i, j, k+5)
o (1, J, k-l-%)At "
" 2e(ij k)
=“““'——J—“T"2"“ - EZ(i,j, k+3)
O'(l,], k+§)At
l—l--—'_“‘““““i"—
2¢(i, j, k+53)

At o(i, j, k+HAr]™!
Lrevesm Tl [ e e —
e(i, j, k+3) 2e(i, j, k+3)
x{[Hy" """ 2(i+3,j, k+3)
—H}"(i—3,j, k+2)]/Ax
H[HYTA(G -3, k+3)

—H"V2(0, j+3, k+3)]/Ay}. (10)

- With the system of finite-difference equations
represented by (9) and (10), the new value of a
field vector component at any lattice point depends

- only on 1ts previous value and on the previous

values of the components of the other field vector
at adjacent points. Therefore, at any given time
step, the computation of a field vector can proceed
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either one point at a time; or, if p parallel pro-

cessors are employed concurrently, p points at a
time. '

3.3. Numerical stability

To ensure the stability of the time-stepping
algorithm exemplified by (9) and (10), At is chosen
to satisfy the inequality [2, 10]

1 1 1 )Y
cmaxAtS{--——+--—-—2+—-——} (11)

where ¢, is the maximum electromagnetic wave
phase velocity within the media being modeled.
Note that the corresponding numerical stability
criterion set forth in (7) and (8) of reference [1]
is incorrect (cf. [2]). For the TM and TE two-
dimensional modeling cases, 1t can be shown [10]
that the modified time-step limit for numerical
stability is obtained from (11) simply by setting
Az = 00. '

3.4. Numerical dispersion

The numerical algorithm for Maxwell’s curl
equations represented by (9) and (10) causes dis-
persion of the ssmulated wave modes in the compu-
tational lattice. That 1s, the phase velocity of
numerical modes in the FD-TD lattice can vary
with modal wavelength, direction of propagation,
and lattice discretization. This numerical disper-
sion can lead to nonphysical results such as pulse

distortion, artificial anisotropy, and pseudorefrac-

tion. Numerical dispersion is a factor in FD-TD
modeling that must be accounted to understand
the operation of the algorithm and its accuracy
limits. '
Following the analysis in [10], it can be shown

that the numerical dispersion relation for the three-
dimensional case represented by (9) and (10) is
- given by

1\’ 1
(;K;) Sinz(%wAt) — sz Sin2 (%kxAx)

1 1

+—sin’(zk,Ay) +—sin’(3k,Az)  (12)

Ay Az

where k., k,, and k, are, respectively, the x-, y-,
and z-components of the wavevector; w 1s the wave

- angular frequency; and c i1s the speed of light in

the homogeneous material being modeled.

In contrast to the numerical dispersion relation,
the analytical dispersion relation for a plane wave
in a continuous, lossless medium 1s just

w’/c’=ki+ki+k: (13)

for the three-dimensional case. Although, at first

glance, (12) bears little resemblance to the ideal

case of (13), we can easily show that (12) reduces
to (13) in the limit as At, Ax, Ay, and Az all go to
zero. Qualitatively, this suggests that numerical
dispersion can be reduced to any degree that is
desired if we only use a fine-enough FD-TD
gridding. ,

To quantitatively illustrate the dependence of
numerical dispersion upon FD-TD grid discretiz-
ation, we shall take as an example the two-

dimensional TM case (Az =), assuming for sim-
plicity square unit cells (Ax=Ay=A) and wave
propagation at an angle a with respect to the
positive x-axis (k, =k cos a; k, =k sin ). Then,
dispersion relation (12) simplifies to '

A\ _
(“‘X;) sin” GwAt)
cA |
= sin’(3k cos @ A)+sin’(3k sin a A).
' (14)

Equation (14) can be conveniently solved for the
wavevector magnitude, k, by applying Newton’s
method. This process is especially convenient if A
is normalized to the free-space wavelength.
Figure 3(a) provides results using this procedure
which illustrate the variation of numerical phase

~ velocity with wave propagation angle in the FD-

TD grid. Three different grid resolutions of the
propagating wave are examined: coarse (Ay/5);
normal (A,/10); and fine (A,/20). For each reso-

~ lution, the relation cAt =5A was maintained. This

relation 1s commonly used 1n two- and three-
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~ per wavelength. This would limit the spread of

numerical phase velocities of the principal spectral
components to less than 1%, regardless of the wave

dimensional FD-TD codes to satisfy the numerical
stability criterion of (11) with.ample safety margin.
From Fig. 3(a), it is seen that the numerical phase

velocity is maximum at 45° (oblique incidence),
and minimum at 0° and 90° (incidence along either
Cartesian grid axis) for all grid resolutions. This
represents a numerical anisotropy that is inherent
in the Yee algorithm. However, the velocity error
relative to the i1deal case diminishes by approxi-
mately a 4:1 factor each time that the grid cell size
1s halved, so that the worst-case velocity error for
the normal resolution case 1s only —1.3%, and only
—0.31% for the fine resolution case.

Figure 3(b) graphs the variation of numerical
phase velocity with grid resolution at the fixed
incidence angles, 45° and 0° (90°). Again, the rela-
tion cAt =3A was maintained for each resolution.
Here, it is seen that the numerical phase velocity
at each angle of incidence diminishes as the propa-
- gating wave 1s more coarsely resolved, eventually
reaching a sharp threshold where the numerical
phase velocity goes to zero and the wave can no
longer propagate in the FD-TD grid. This rep-
resents a numerical low-pass filtering effect that 1s
inherent i1n the Yee algorithm, wherein the

wavelength of propagating numerical modes has
a lower bound of 2 to 3 space cells, depending
upon the propagation direction. As a result, FD-
TD modeling of pulses having finite duration (and
thus, infinite bandwidth) can result in progressive

pulse distortion as higher spatial frequency com-
ponents propagate more slowly than lower spatial
frequency components, and very high spatial
frequency components with wavelengths less than
2 to 3 cells are rejected. This numerical dispersion
causes broadening of finite-duration pulses, and
leaves a residue of high-frequency ringing on the
trailing edges due to the relatively slowly propagat-
ing high-frequency components. From Figs. 3(a)
and 3(b), we see that pulse distortion can be

propagation angle in the grid.

In addition to numerical phase velocity
anisotropy and pulse distortion effects, numerical
dispersion can lead to pseudorefraction of propa-
gating modes if the grid cell size 1s a function of
position 1n the grid. Such variable-cell gridding
would also vary the grid resolution of propagating
numerical modes, and thereby perturb the modal
phase velocity distribution. This would lead to
nonphysical reflection and refraction of numerical
modes at interfaces of grid regions having different
cell sizes (even if these interfaces were located in
free space), just as physical waves undergo reflec-
tion and refraction at interfaces of dielectric media
having different indices of refraction. The degree
of nonphysical refraction 1s dependent upon the
magnitude and abruptness of the change of the
modal phase velocity distribution, and can be esti-
mated using conventional theory for wave refrac-
tion at dielectric interfaces.

We have stated that, 1n the limit of infinitesimal

At and A, (12) reduces to (13), the ideal dispersion

case. This reduction also occurs if At, A, and the
direction of propagation are suitably chosen. For
example, 1in a three-dimensional cubic lattice,
reduction to the 1deal dispersion case can be
demonstrated for wave propagation along a lattice
diagonal (k,=k,=k,=k/v3) and At=A/cV3
(exactly the limit set by numerical stability).
Similarly, in a two-dimensional square grid, the
1deal dispersion case can be demonstrated for wave
propagation along a grid diagonal (k, = k, = k/+/2)
and At =A/cv2 (again the limit set by numerical
stability). Finally, in one dimension, the ideal case
1s obtained for At=A/c (again the limit set by
numerical stability) for all propagating modes.

bounded by obtaining the Fourier spatial

frequency spectrum of the desired pulse, and
selecting a grid cell size so that the principal spec-

tral components are resolved with at least 10 cells

3.5. Lattice zoning and plane wave source condition

The numerical algorithm for Maxwell’s curl
equations defined by the finite-difterence system
reviewed above has a linear dependence upon the
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components of the electromagnetic field vectors.
Theretore, this system can be applied with equal

validity to either the incident-field vector com-
ponents, the scattered-field vector components, or

the total-field vector components (the sum of

incident plus scattered). Present FD-TD codes util-
1ze this property to zone the numerical space lattice
into two distinct regions, as shown in Fig. 4(a),
separated by a rectangular virtual surface which
serves to connect the fields in each region [11, 12].

Region | :
Interacting I-'-l'-ioerlgls '
Structure

Region 2 :
Connecting Scattered
Surfoce And Fields
Piane Wove
Source

Lattice

Truncation

|- e ————— - -

| OB : |

: : REGION | :

| : : |

: | | NO SOURCES |

| 4 5$—> l & :
SCATTERING - |

| A ZERO FIELDS |

| OBJECT N

. AR '

VIRTUAL SURFACE 'f

(b)

Fig. 4. Zoning of the FD-TD lattice: (a) total field and scattered
field regions; (b) near-to-far field integration surface located
In the scattered field region.

Region 1, the inner region of the FD-TD lattice,
is denoted as the total-field region. Here, it is
assumed that the finite-difference system for the
curl equations operates on total-field vector com-
ponents. The interacting structure of interest is
embedded within this region.

Region 2, the outer region of the FD-TD lattice,
1s denoted as the scattered-field region. Here, it is
assumed that the finite-difference system for the
curl equations operates only on scattered-field vec-

tor components. This implies that there is no

incident wave in Region 2. The outer lattice planes
bounding Region 2, called the lattice truncation
planes, serve to implement the free-space radiation
condition (discussed in the next section) which
simulates the field sampling space extending to
infinity. : o

The total-field/scattered-field lattice zoning
1llustrated in Fig. 4(a) provides a number of key
features which enhance the computational flexibil-
ity and dynamic range of the FD-TD method:

Arbitrary incident wave. The connecting condi-
tion provided at the interface of the inner and outer

regions, which assures consistency of the numeri-
cal space derivative operations across the interface,

simultaneously generates an arbitrary incident
plane wave in Region 1 having a user-specified
time waveform, angle of incidence, and angle of
polarization. This connecting condition, discussed
in detail in [10], almost completely confines the
incident wave to Region 1 and yet is transparent
to outgoing scattered wave modes which are free
to enter Region 2.

Simple programming of inhomogeneous struc-
tures. The required continuity of total tangential
E and H fields across the interface of dissimilar
media 1s automatically provided by the original
Yee algorithm i1f the media are located in a zone
(such as Region 1) where total fields are time-
marched. This avoids the problems inherent in a
pure scattered-field code, where enforcement of

the continuity of total tangential fields is a separate
process requiring the incident field to be computed

at all interfaces of dissimilar media, and then
added to the values of the time-marched scattered

fields at the interfaces. Clearly, computation of the

incident field at numerous points along possibly
complex, structure-specific loci is likely to be much

more involved than computation of the incident
field only along the simple connecting surface

between Regions 1 and 2 (needed to implement
the total-field/scattered-field zoning). The latter
surface has a fixed locus that is independent of
the shape or complexity of the interaction structure
that is embedded in Region 1. ‘
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Wide computational dynamic range. Low levels
of the total field in deep shadow regions or cavities
of the interaction structure are computed directly
by time-marching total fields in Region 1. In a pure
scattered-field code, however, the low levels of
total field are obtained by computing the incident
field at each desired point, and then adding to the
values of the time-marched scattered fields. Thus,
it 1s seen that a pure scattered-field code relies
upon near cancellation of the incident and scat-
tered field components of the total field to obtain
accurate results in deep shadow regions and
cavities. An undesirable hallmark of this cancella-

tion is contamination of the resultant low total-field |

levels by subtraction noise, wherein slight percen-
tage errors in calculating the scattered fields result
in possibly very large percentage errors in the
residual total fields. By time-marching total fields
~ directly, the zoned FD-TD code avoids subtraction

noise in Region 1 and and achieves a computa-

tional dynamic range more than 30 dB greater than
that for a pure scattered-field code. '
Far-field response. The provision of a well-
defined scattered-field region in the FD-TD lattice
permits the near-to-far-field transformation illus-
trated in Fig. 4(b). The dashed virtual surface
shown in Fig. 4(b) can be located along convenient
lattice planes in the scattered-field region of Fig.
4(a). Tangential scattered E and H fields com-
puted via FD-TD at this virtual surface can then
be weighted by the free-space Green’s function

and then integrated (summed) to provide the far-

field response and radar cross section (full bistatic
response for the assumed illumination angle) [12-

14]. The near-field integration surface has a fixed

rectangular shape, and thus 1s independent of the

shape or composition of the enclosed structure

being modeled.

3.6. Radiation condition

A basic consideration with the FD-TD approach
to solve electromagnetic wave interaction prob-
lems 1s that most computational domains of inter-
est are ideally unbounded or “open”. Clearly, no

- computer can store an unlimited amount of data,

and therefore, the field computation zone must be
limited in size. A suitable boundary condition on
the outer perimeter of the computation zone must
be used to simulate the extension of the computa-
tion zone to infinity. This boundary condition must
be consistent with Maxwell’s equations in that an
outgoing vector scattered-wave numerical analog
striking ‘the lattice truncation must exit the lattice
without appreciable nonphysical reflection, just as
if the lattice truncation was invisible.

Now, the vector field components at the lattice
truncation planes cannot be computed using the
centered-differencing approach discussed earlier
because of the assumed absence of known field
data at points outside of the lattice truncation
(which are needed to form the central differences).
It has been shown that a suitable lattice truncation
1s provided by implementing a near-field radiation
condition separately for each of the Cartesian
tangential electric (or magnetic) vector com-
ponents present in the truncation planes [11-13].
In FD-TD codes to date, the radiation condition
used 1s a Pade (2,0) interpolant of the factored
(one-way) wave equation [15, 16] as differenced
in [11]. Higher-order Pade (2, 2) and Chebyshev
(2,2) interpolants are currently under study for
numerical implementation in the FD-TD computer
programs [17].

4. FD-TD modeling validations for electromagnetic
wave scattering, two dimensions

Analytical and code-to-code validations have
been obtained relative to FD-TD modeling of elec-
tromagnetic wave scattering for a wide variety of
canonical two-dimensional structures. Both con-
vex and re-entrant (cavity-type) shapes have been
studied; and structure material compositions have
included perfect conductors, homogeneous and
inhoﬁlogeneous lossy dielectrics, and anisotropic
dielectric and permeable media. Selected valida-
tions will be reviewed here. '



A. Taflove / Finite-difference time-domain method 557

4.1. Square metal cylinder, TM polarization [12]

Here, we consider the scattering of a TM-polar-

ized plane wave obliquely incident upon a square

metal cylinder of electrical size k,s =2, where s is
the side width of the cylinder. The square FD-TD

grid cell size is set equal to s/20, and the gnd
truncation (radiation boundary) is located at a
uniform distance of 20 cells from the cylinder
surface.

Figure 5 compares the magnitude and phase of

the cylinder surface electric current distribution
computed using FD-TD to that computed using a
benchmark code which solves the frequency-
domain surface electric field integral equation
(EFIE) via the method of moments (MOM). The
MOM code assumes target symmetry and discret-
1zes one-half of the cylinder surface with 84
divisions. The FD-TD computed surface current

A

is taken as nx H,,,, where n is the unit normal

vector at the cylinder surface, and H,,, is the
FD-TD value of the magnetic field vector com-
- ponent 1n free space immediately adjacent to the
cylinder surtace. From Fig. 5, we see that the
magnitude of the FD-TD computed surface current

4.0

MOM ( 80 - Point Solution)

coeee FD-TD (3-Cycle Solution)

i
|J,| 7 H

1.0

0.0 _
a . b ' C

(a)

I~kos=2—-1
1 C

agrees with the MOM solution to better than £1%
(£0.09 dB) at all comparison points more than
2 FD-TD cells from the cylinder corners (current
singularities). The phase of the FD-TD solution
agrees with the MOM solution to within +3° at

virtually every comparison point, including the

shadow region.

4.2. Circular muscle-fat layered cylinder, TE
polarization [18] '

Here, we consider the penetration of a TE-polar-
1zed plane wave into a simulated biological tissue
structure represented by a 15 cm radius muscle-fat
layered cylinder. The inner layer (radius =7.9 cm)

is assumed to be comprised of muscle having a
relative permittivity of 72 and conductivity of

0.9 S/m. The outer layer 1s assumed to be com-
prised of fat having a relative permittivity of 7.5

and conductivity of 0.48 S/m. An illumination
frequency of 100 MHz 1s modeled, with the FD-TD

~ grid cell size set equal to 1.5 cm (approximately

1/24 wavelength within the muscle). A stepped-

edge (staircase) approximation of the circular layer
- boundaries 1s used.

-60°
© -90°
HN
O -120°
N 150°
~J
- 180°
-2 10°
240° MOM (80-Point Solution)
-270°+ ¢9¢¢¢¢ FD-TD (6-Cycle Solution) ‘ ++
- 300° ,_
0 b - c

Position On Cylinder Surface

(b)

Fig. 5. Comparison of FD-TD and frequency-domain surface electric field integral equation results for longitudinal surface electric
current distribution on a kys =2 square metal cylinder, TM case: (a) magnitude; (b) phase [12].
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Fig. 6. Comparison of FD-TD and exact solutions for penetrating electric field vector components within a 15 cm radius, circular,
muscle-fat layered cylinder, TE polarization, 100 MHz [18]. '

Figure 6, taken from [18], shows the analytical
validation results for the magnitude of the
penetrating electric field vector components along

two cuts through the muscle-fat cylinder, one

parallel to the direction of propagation of the
incident wave, and one parallel to the incident
electric field vector. The exact solution is obtained
by summing sufficient terms of the eigenfunction
expansion to assure convergence of the sum. Excel-
lent agreement of the FD-TD and exact solutions
1s noted, even at jump discontinuities of the field

(and at jump discontinuities of the slope of the

field distribution) that occur at the layer boun-
daries. This fine agreement is observed despite the
stepped-edge approximation of the circular layer
boundaries.

4.3. Homogeneous, anisotropic, square material
cylinder, TM polarization [19]

The ability to independently specify electrical
permittivity and conductivity for each E vector
component 1n the FD-TD lattice, and magnetic
permeability and equivalent loss for each H vector

component, leads immediately to the possibility of
using FD-TD to model material structures having

diagonalizable tensor electric and magnetic
properties. No alteration of the basic FD-TD

~algorithm i1s required. The more complicated
~behavior associated with off-diagonal tensor com-

ponents can also be modeled, in principle, with
some algorithm complications [20].

Recent development of coupled, surface, com-
bined-field intégral equation (CFIE) theory for
modeling electromagnetic wave scattering by
arbitrary-shaped, two-dimensional, anisotropic
material structures [19] has permitted detailed
code-to-code validation studies of FD-TD
anisotropic models. Figure 7 illustrates one such
study. Here, the magnitude of the equivalent sur-
face electric current induced by TM illumination
of a square anisotropic cylinder is graphed as a
function of position along the cylinder surface for
both the FD-TD and CFIE models. The incident
wave propagates in the +y-direction and has a
+z-directed electric field. The cylinder has an elec-

- trical size kos = 5, permittivity ¢,, =2, and diagonal

permeability tensor u,,=2 and u,, =4. For the
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Fig. 7. Comparison of FD-TD and frequency-domain surface
‘combined-field integral equation results for longitudinal sur-

face electric current distribution on a kys = 5 square anisotropic

cylinder, TM case [19].

case shown, the FD-TD grid cell size is set equal
to s/50, and the radiation boundary is located at
a uniform distance of 20 cells from the cylinder
“surface. i

From Fig. 7, we see that the FD-TD and CFIE
results agree very well almost everywhere on the
cylinder surface, despite the presence of a compli-
cated series of peaks and nulls. Disagreement is
noted at the cylinder corners where CFIE predicts
sharp local peaks, but FD-TD predicts local nulls.
Studies are continuing to resolve this corner phys-
ics issue. -

4.4. Circular metal cylinder, conformally modeled,
TE and TM polarization

A key flaw 1n previous FD-TD models of con-
ducting structures with smooth curved surfaces has

been the need to use stepped-edge (staircase)
approximations of the actual structure surface.
Although not a serious problem for modeling wave
penetration and scattering for low-Q metal
cavities, recent FD-TD studies have shown that
stepped approximations of curved walls and aper-
ture surfaces can shift center frequencies of res-
onant responses by 1% to 2% for Q factors of 30
to 80, and can possibly introduce spurious nulls
[21]. In the area of scattering, the use of stepped
surfaces has limited application of FD-TD for
modeling the important class of targets where sur-
face roughness, exact curvature, and dielectric or
permeable loading 1s important in determining the
radar cross section.

Recently, two different types of FD-TD confor-
mal surface models have been proposed and
examined for two-dimensional problems:

(1) Faraday’s Law contour path models
|22]. These preserve the basic Cartesian grid
arrangement of field components at all space cells-

except those adjacent to the structure surface.
Space cells adjacent to the surface are deformed

to conform with the surface locus. Slightly
modified time-stepping expressions for the mag-
netic field components adjacent to the surface are
derived from the integral form of Faraday’s Law

implemented around the perimeters of the de-
formed cells. _

(2) Stretched, conforming mesh models [23, 24].
These employ available numerical mesh generation
schemes to construct non-Cartesian grids which

-are continuously and globally stretched to conform

with smoothly shaped structures. Time-stepping
expressions are either adapted from the Cartesian
FD-TD case [23] or obtained via analogy to the
computational fluid dynamics formalism [24].

Research is ongoing for each of these types of
conformal surface models. Key questions<nclude:
ease of mesh generation; suppression of numerical
artifacts such as instability, dispersion, pseudore-
fraction, and subtraction noise limitation of com-
putational dynamic range; coding complexity; and
computer execution time. (See also the paper by
Madsen and Ziolkowski in this issue.)
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The accuracy of the Faraday’s Law contour path
models for smoothly curved structures subjected
to TE and TM illumination 1s illustrated in Figs.
8(a) and 8(b) respectively. Here, a moderate-resol-

ution Cartesian FD-TD grid (having 1/20

wavelength cell size) i1s used to compute the

azimuthal or longitudinal electric current distribu-
tion on the surface of a koa=35 circular metal

cylinder. For both polarizations, the contour path

FD-TD model achieves an accuracy of 1.5% or

better at most surface points relative to the exact

series solution. Running time for the conformal
FD-TD model is essentially the same as for the

old staircase FD-TD model since only a few H

components immediately adjacent to the target
surface require a slightly modified time-stepping
relation.

4.5. Flanged metal open cavity [25]

Here, we consider the interaction of a TM-polar-
1zed plane wave obliquely incident upon a flanged
metal open cavity. The open cavity i1s formed by
a flanged parallel-plate waveguide having a plate

spacing, a, of 1 m, short-circuited by a terminating

plate located at a distance, d, of 1 m from the
aperture. At the assumed illumination frequency
of 382 MHz, k,a = ky,d =8, and only the first two
TE waveguide modes propagate within the open
cavity. An oblique angle of incidence, a =30°, i1s
assumed for this case. '

Figure 9 compares the magnitude and phase of

“the penetrating electric field within the cavity 5 m
from the aperture computed using FD-TD to that
computed using a cavity modal expansion and
OSRC [25]. Good agreement is seen. Figure 10

shows a similar comparison for the bistatic

radar cross section due to the induced aperture
field distribution. Again, good agreement. 1is
noted.’
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4.6. Relativistically vibrating mirror, oblique

incidence [26]

Analytical validations have been recently
obtained for FD-TD models of reflection of a
monochromatic plane wave by a perfectly conduct-
ing surface either moving at a uniform relativistic

velocity or vibrating at a frequency and amplitude

large enough so that the surface attains relativistic
speeds [26]. The FD-TD approach of [ 26] 1s novel

in that it does not require a system transformation
where the conducting surface is at rest. Instead,
the FD-TD grid is at rest in the laboratory frame,
and the computed field solution 1s given directly
in the laboratory frame. This 1s accomplished by
implementing the proper relativistic boundary con-
ditions for the fields at the surface of the moving
conductor.

Figure 11 shows results for one of the more
interesting problems of this type modeled so far,
that of oblique plane wave incidence on an infinite
vibrating mirror. This case is much more compli-
cated than the normal incidence case, 1n that it has
no closed-form solution. An analysis presented in
the literature [27] writes the solution in an infinite-
series form using plane-wave expansions, where
the unknown coefficients in the series are solved
numerically. This analysis serves as the basis of
comparison for the FD-TD model results for the
time variation of the scattered field envelope at
points near the mirror.

Since it is difficult to model exactly an infinite

plane mirror in a finite two-dimensional grid, a

long, thin, rectangular perfectly-conducting slab is
used as the mirror model, as shown in Fig. 11(a).
Relativistic boundary conditions for the fields are

implemented on the front and back sides of the

slab. The other two sides, parallel to the velocity

vector, are insensitive to the motion of the slab,

and therefore no relativistic boundary conditions
are required there. To minimize the effect of edge
diffraction, the slab length is carefully selected so
that the slab appears to be infinite in extent at

' It should be noted that the results obtained using the cavity
modal expansion and OSRC represent a good approximation,
but not a rigorous solution.

observation point, P, during a well-defined early-
time response when the edge eftect has not yet
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circular metal cylinder: (a) TE case, azimuthal current; (b) TM case, longitudinal current [22]. '

pmpagated to P. Since the TM case does not pro-
vide appreciably different results than the TE case
[27], only the TE case is considered. From Fig.
11(b), we see good agreement between the FD-TD

and analytical results obtained from [27 ] for the
envelope of the scattered E field vs. time for an
incident angle of 30°, peak mirror speed 20% that

of light, and observation points z/d =-5 and
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matic plane wave illuminating a relativistically vibrating mirror

at a 30° oblique angle: (a) problem geometry; (b) comparative
solutions at two distances from the mirror surface [26].

z/d =—50, where kd =1. Similar agreement 1s
found for an even more oblique angle, 60° [26].
This agreement 1s satisfying since the action of the
relativistically vibrating mirror is so complicated,
generating a reflected wave having a spread both
in frequency and spatial reflection angle, as well
as evanescent modes.

5. FD-TD modeling validations for electromagnetic
wave scattering, three dimensions

Analytical, code-to-code, and experlmental vali-

dations have been obtained relative to FD-TD

modeling of electromagnetic wave scattering for a
wide variety of canonical three-dimensional struc-
tures, including cubes, flat plates, and .crossed
plates. Selected validations will be reviewed here.

5.1. Metal cube, broadside incidence [13]

Results are now shown for the FD-TD computed
surface electric current distribution on a metal cube
subject to plane-wave illumination at broadside
incidence. The electric current distribution is com-
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pared to that computed by solving a frequency- 2.0
domain surface EFIE using a standard triangular
surface-patching MOM code [13]. It is shown that
a very high degree of correspondence exists
between the two sets of predictive data.

" o
&

FD-TD (400 Square Cells
Per Cube Face) e

IJLoop| / Hinc

1.0
The detailed surface current study involves a © MOM - (18 Triangular Patches Per
F Cube Face, 162x162 Matrix)
cube of electrical size kys =2, where s is the side & MOM- (32 Triangular Potches Per
width of the cube. For the FD-TD model, each cube Face, 288x 288 Matrix).
face of the cube 1s spanned by 400 square cells
(20 x 20), and the radiation boundary 1s located at ©-0 . . ) )

a uniform distance of 15 cells from the cube sur- - (a)
face. For the MOM model, each face of the cube
1s spanned by either 18 triangular patches or 32
triangular patches (to test the convergence of the
MOM model). Comparative results for surface

current are graphed along two straight-line loci
along the cube: abced, which 1s in the plane of the

incident magnetic field; and ab’c’d, which i1s in
the plane of the incident electric field.

Figure 12 compares the FD-TD and MOM
results for the magnitude and phase of the surface 2000 g
current along ab’c'd. The FD-TD values agree with L
the high-resolution MOM data to better than —~ K
+2.5% (£0.2 dB) at all comparison points. Phase

agreement for the same sets of data is better than
+1°. (The low-resolution MOM data have a phase - 300°
anomaly in the shadow region.) In Fig. 13, compar- '
ably excellent agreement 1s obtained along abcd,
but only after incorporation of an edge-correction
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Fig. 12. Comparison of FD-TD and frequency-domain surface
electric field integral equation results for surface electric current

term 1n the MOM code | 28| to enable 1t to properly distribution along the E-plane locus, ab’c’'d, of the ks =2
model the current singularities at the cube corners, metal cube: (a) magnitude; (b) phase [13].
b and c. ’ ' '

uniform distance of only 8 cells from the plate
surtace. For the MOM model, study of the conver-
gence of the computed broadside RCS indicates
that the plate thickness must be accounted by

5.2. Flat conducting plate, multiple monostatic
looks [14, 20] '

We next consider a 30 cm X 10 cm-X 0.65 cm flat using narrow side patches, and the space resolution
conducting plate target. At 1 GHz, where the plate ~ of each surface patch should be finer than approxi-
spans 1 wavelength, a comparison is made between mately 0.2 wavelength. As a result, the MOM
FD-TD and MOM results for the monostatic radar model forms the plate by 10 X 3 X 1 divisions, yield-
cross section (RCS) vs. look-angle azimuth (keep- ing a total of 172 triangular surface patches. Figure
ing a fixed elevation angle), as shown in Fig. 14(a). 14(a) shows excellent agreement between the two
Here, the FD-TD model uses a uniform cell size = models (within about +0.2 dB).
of 0.625 cm (A,/48), forming the plate by 48 x 16 X At 9 GHz, the plate spans 9 wavelengths, and

1 cells. The radiation boundary is located at a the use of the MOM model_is virtually precluded.
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Fig. 13. Comparison of FD-TD and frequency-domain surface

electric held integral equation results for surface electric current

distribution along the H-plane locus, abcd, of the kys = 2 metal
| cube: (a) magnitude; (b) phase [13].

If we follow the convergence guidelines discussed

above, the plate would require approximately 50 %
151 divisions to properly converge, yielding a
total of 3260 triangular surface patches, and requir-
ing the generation and inversion of a 4890 x 4890
~complex-valued system matrix. On the other hand,
FD-TD remains feasible for the plate at 9 GHz.

Choosing a uniform cell size of 0.3125cm

(Ao/10.667), the plate is formed by 96 x 32 x 2 cells.
With the radiation boundary again located only 8
cells from the plate surface, the overall lattice size

1s 112 X 48 X 18, containing 580,608 unknown-_.ﬁdd
components (real numbers). Figure 14(b) shows
excellent agreement between the FD-TD results

and measurements of the monostatic RCS vs. look
angle performed in the anechoic chamber facility

operated by SRI International. The observed
agreement is within about 1dB and 1° of look
angle. As will be seen next, this level of agreement
1s maintained for more complicated targets having
corner reflector properties.

5.3. T-shaped conducting target, multiple

monostatic looks [14, 20]

We last consider the monostatic RCS pattern of
a T-shaped target comprised of two flat conducting

~ plates electrically bonded together. The main plate

has the dimensions 30 cm X 10 cm X 0.33 cm, and

the bisecting fin has the dimensions 10 cm X
10 cm x 0.33 cm.” The illumination is a 9.0 GHz

plane wave at 0° elevation angle and TE polariz-
ation relative to the main plate. Thus, the main
plate spans 9.0 wavelengths. Note that look-angle
azimuths between 90° and 180° provide substantial
corner reflector physics, in addition to the edge
diffraction, corner diffraction, and other effects
found for an isolated flat plate.

For this target, the FD-TD model uses a uniform
cell size of 0.3125cm (A,/10.667), forming the
main plate by 32 x96 x 1 cells and the bisecting fin
by 32x32x1 cells. With the radiation boundary
again located only 8 cells from the target’s
maximum surface extensions, the overall lattice
size 1s 48 X 112 X 48, containing 1,548,288 unknown
field components (212.6 cubic wavelengths). Start-
ing with zero-field initial conditions, 661 time steps
are used, equivalent to 31 cycles of the incident
wave at 9.0 GHz.

Figure 15 compares the FD-TD predicted
monostatic RCS values at 32 key look angles
between 0° and 180° with measurements performed
by SRI International. These look angles are selec-

* The center line of the “bisecting’ fin 1s actually positioned

0.37 cm to the right of the center line of the main plate. This

1s accounted for in the FD-TD model.



566 ' _ - A. Taflove / Finite-difference time-domain method

10
-9 - @® FD-TD Modeling Results 6 , "\ @ FD-TD Modeling Results
~ -0 | A MOM Modeling Results = ' 'SRl Measurements
= - ° e @ 3 (range of data at each look angle)
o . <
-~ | | - 2
~ L
5 , 7
»w -13 w -2
| O
v . N | ®
S .14 ° 4
S 5
| ©
- -
g - I3 o x -6
> A ©
, - 16 \\]/ 1 o -8
L . H »
G - 17 ' ' c -10
w - | -
O .
c s
O
s -18 -12
- 19 -14
-20 - - S S — - -16 _ - _
0° 20° 40°  60° 80° 90° L L 8° 12° 16° 20°
-ﬁ' (Look Angle , Degrees From Broadside ) o ¢ (Look Angle, Degrees From Broadside)
. o (a) - - - , (b)

Fig. 14. Validation of FD-TD results for the monostatic radar cross section of a rectangular flat conductlng plate: (a) versus
frequency-domaln surface electric field 1ntegral equation results at 1 GHz (plate size =1Xx3} wavelengths); (b) versus anechoic
chamber measurements at 9 Ghz (plate size =9 X 3 wavelengths) [14, 20].

.
12 - Z
8 ®
e 41 1 N
N | i
® 07 —< ®
_ - 30 cm .
S -4 ’ ' \L’ O
; |
g ol I
2 9
o
s o-12 .
g O
O - ) | |
= | 6 _ _ ®
o @® FD-TD Modeling Results
v -24 (3 min single-processor Cray-2 time / point)
S | SRI Measurements (Range of data
= -28 at eoch look angle)
-32
-36 _ — . — - S .
~0° 20°  40°  60° 80°  100°  120°  140°  160° = 180°

b ( Look Angle , Degrees From Broadsme)

Fig. 15. Comparlson of FD-TD modeling predictions with anechoic chamber measurements of monostatlc radar cross section for
a T-shaped conductlng target at 9 GHz (target span = 9%x3x%x3 wavelengths) [14, 20].



A. Taﬂobe / Finite-difference time-domain method ' _ 567

ted to define the major peaks and nulls of the
monostatic RCS pattern. It is seen that the agree-
ment is again excellent: in amplitude, within about

1 dB over a total RCS-pattern dynamic range of
40 dB; and in azimuth, within 1° in locating the

peaks and nulls of the RCS pattern. Note especially
the fine agreement for look-angle azimuths greater
than 90°, where there is a pronounced corner reflec-
tor effect. '

6. FD-TD modeling validations for

electromagnetic wave penetration and couplmg,
two and three dimensions -

6.1. Penetration models for narrow slots and
lapped joints in thick screens

The physics of electromagnetlc wave trans-
mission through narrow slots and lapped joints in

shielded enclosures must be accurately understood

to permit good engineering design of equipment
to meet specifications for performance concerning

electromagnetic pulse,
microwaves, electromagnetic interference and
compatibility, undesired radiated signals, and
RCS. In many cases, slots and joints can have very
narrow gaps filled by air, oxidation films, or layers
of anodization. Joints can be simple (say, two metal

sheets butted together); more complex (a lapped

r “furniture” joint); or even more complex (a
threaded screw-type connection with random
points of metal-to-metal contact, depending upon
the tightening). Extra complications arise from the

possibility of electromagnetic resonances within
the joint, either in the transverse or longltudmal

(depth) direction.
Clearly, to make any headway w1th this compli-

cated group of problems using the FD-TD

approach, it 1s necessary to develop and validate

FD-TD models which can simulate the geometric

teatures of generic slots and joints. Since a key
geometric feature is likely to be the narrow gap of
the slot or joint relative to one FD-TD space cell,

lightning, high-power

it 1s important to understand how subcell gaps can

be efficiently modeled.

Three different types of FD-TD subcell models
have been proposed and examined for modeling

- narrow slots and joints:

(1) Equwalent slot loadmg [29]. Here rules are
set to define an equivalent permittivity and permea-
bility in a slot formed by a single-cell gap to
effectively narrow the gap to the desired degree.

(2) Subgridding [30]. Here, the region within
the slot or joint is provided with a sufficiently fine
grid. This grid is properly connected to the coarser
grid outside of the slot.

(3) Faraday’s Law  contour path model

[31]. Here, space cells adjacent to and within the

slot or joint are deformed to conform with the
surface locus (in a manner similar to the conformal
curved surface model). Slightly modified.time-

- stepping expressions for the magnetic field com-

ponents in these cells are derived from the integral
form of Faraday’s Law implemented about the
perimeters of the deformed cells.

The accuracy of the Faraday’s Law contour path

‘model for narrow slots and joints 1s 1llustrated in

Figs. 16 and 17 by direct comparison of the com-
puted gap electric field distribution against high-
resolution numerical benchmarks. Figure 16
models a 0.1 wavelength thick conducting screen
which extends 0:5 wavelength to each side of a
straight slot which has a gap of 0.025 wavelength.
Broadside TE illumination is assumed. Three types
of predictive data are compared: (1) the low-resol-
ution (0.1 A,) FD-TD model using the contour
path approach to treat the slot as a ;-cell gap; (2)

“a high-resolution (0.025 A,) FD-TD model treating

the slot as a 1-cell gap; and (3) a very-high-resol-
ution frequency-domain EFIE model, solved via
MOM (having 0.0025 A, sampling in the slot)
which treats the slotted screen as a pure scattering
geometry. From Fig. 16, we see that there is excel-

lent agreement between all three sets of predictive

data in both magnitude and phase. Of particular

interest is the ability of the low-resolution FD-TD

model, using the contour path approach, to accur-
ately compute the peak electric field in the slot.
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Fig. 16. Comparison of FD-TD and frequency-domain surface

electric field integral equation results for the gap electric field

distribution 1n a slotted conducting screen, straight slot case,
TE illumination: (a) magnitude; (b) phase [31].

Figure 17 shows the geometry of a U-shaped

lapped joint which was selected for detailed study

of path-length (depth) power transmission reso-
ances. The U shape of the joint permits adjustment

of the overall joint path length without disturbing

the positions of the input and output ports at A
and F. A uniform gap of 0.025 wavelength is
assumed, as 1s a screen thickness of 0.3 wavelength

b———— I 5\ ————— - — | F\ —————)]

Ei"c —0 Hizn‘c

Fig. 17. Geometry of U-shaped lapped joint in a conducting _

- screen, TE illumination (shown to scale) [31].

and width of 3 wavelengths. Figure 18 compares
the gap electric field distribution within the joint
as computed by: (1) a low-resolution (0.09 A,)
contour path FD-TD model treating the gap as

- 0.28 cell; and (2) a high-resolution (0.025 A,) FD-

TD model treating the gap as 1 cell. The total path
length ABCDEF within the lapped joint is
adjusted to equal 0.45 wavelength, which provides

‘a sharp power transmission peak to the shadow

side of the screen. From Fig. 18, we see a very
good agreement between the low- and high-resol-
ution FD-TD models, even though this is a numeri-
cally stressful resonant penetration case.

An implication of these results is that coarse
(0.1 Ay) FD-TD gridding can be effectively used to
model the fine-grained physics of wave penetration
through subcell slots and joints if simple algorithm

- modifications are made in accordance with the

contour path approach. This can substantially
reduce computer resource requirements and cod-
ing complexity for FD-TD models of complex

- structures, without sacrificing appreciable
accuracy in the results.
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“Fig. 18. FD-TD computed gap electric field distribution within
the lapped joint at the first transmission resonance: (a)

lfgap/Eincl; (b) L Egép/Hr(A) [31]
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6.2. Coupling models for wires and wire bundles

In equipment design for threats represented by
electromagnetic pulse, high-power microwaves,
and electromagnetic interference, understanding
electromagnetic wave coupling to wires and cable
bundles located within shielding enclosures is a
problem' that 1s complementary to that of wave
penetration through apertures of the shield (such
as narrow slots and joints). Similar to the narrow

slot problem, a key dimension of the interacting

structure, in this case the wire or bundle diameter,
may be small relative to one FD-TD space cell.
Thus, 1t 1s important to understand how thin, sub-
cell, wires and bundles can be efficiently modeled

if FD-TD is to have much application to coupling

problems.
Two dlﬁerent types of FD-TD subcell models
have been proposed and examlned for modeling
thin wires: ,
(1) Egquivalent inductance |32]. Here, an
equivalent inductance is defined for a wire within
a space cell, permitting a lumped-circuit model of
the wire to be set up and computed in parallel with
the field solution. N

(2) Faraday’s Law contour path model [21].

Here, space cells adjacent to the wire are deformed
to conform with the surface locus (in a manner
similar to the conformal curved surface model).
1/r singularities of the azimuthal magnetic field
and radial electric field are assumed to exist within
the deformed cells. Slightly modified time-stepping
expressions for the azimuthal magnetic field com-

ponents in these cells are derived from the integral

form of Faraday’s Law implemented around the
perimeter of the deformed cells.

 The accuracy of the Faraday’s Law contour path
model for thin wires in free space is illustrated in
Figs. 19(a) and 19(b). Figure 19(a) graphs the
scattered azimuthal magnetic field at a fixed dist-
ance of 1/20 wavelength from the center of an
infinitely long wire having a radius ranging

between 1/30,000 and 1/30 wavelength. TM illumi-

nation is assumed. We see that there is excéllent

agreement between the exact series solution and

|.4 _ -
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0O FD-TD (\, /10 resolution, contour
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€S« 08
~
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Fig. 19. Validation studies for the Faraday’s Law contour path
FD-TD model for thin wires in free space: (a) comparison of
FD-TD and exact solutions for the scattered azimuthal mag-
netic field at a fixed distance of 1/20 wavelength from the center
of an infinitely long wire (as a function of wire radius); (b)
comparison of FD-TD and MOM results for the scattered
azimuthal magnetic field distribution along a 2.0 wavelength
(antiresonant) wire of radius 1/300 wavelength [21].

the low-resolution (0.1 Ao) FD-TD contour path

model over the entire 3-decade range of wire

‘radius. Figure 19(b) graphs the scattered azimuthal

magnetic field distribution along a 2.0 wavelength
(antiresonant) wire of radius 1/300 wavelength.

‘Broadside TM illumination is assumed, and the

field 1s observed at a fixed distance of 1/20
wavelength from the wire center. We see that there
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Fig. 20. Comparlson of hybr1d FD TD/ MOM modeling predictions W1th d1rect frequency domain electrlc field mtegral equatlon
- results for induced currents on a wire bundle [21]

1s excellent agreement between a {requency-
domain EFIE (MOM) solution sampling the wire
current at 1/60 wavelength increments, and the
low- resolutlon (0.1 )\O) FD-TD contour path

- model.
~ The FD TD contour path model can be extended

to treat thin wire bundles, as well as smgle wires.
Figure 20 shows the code-to-code vahda‘uon results
for the induced currents on a bundle comprised

of 4 wires, where 3 are of equal length. Here, a

wire of length 60 cm (2.0 wavelengths) is assumed
to be at the center of the bundle, and three parallel
wires of length 30 cm (1.0 wavelength) are assumed
to be located at 120° angular separations on a
concentric circle of radius Smm (1/60
wavelength). The radii of all wires in the bundle

are equal and set to 1 mm (1/300 wavelength). The :

assumed excitation 1s 1n free space, provided by a
1 GHz broadside TM plane wave. Following the
technique of [21], the bundle is replaced by a single

wire having varying equivalent radius correspond-
ing to the three sections along the bundle axis. The
physics of the single wire of varying equivalent
radius is incorporated in a low-resolution (0.1 A,)

FD-TD contour path model, as discussed above.

The FD-TD model is then run to obtain the tangen-
tial E and H fields at a virtual surface conveniently
located at the cell boundary containing the

equivalent wire (shown as a dashed line in Fig.

20). These fields are then utilized as excitation to
obtain the currents induced on the individual wires
of the original bundle. This last step 1s performed
by setting up an EFIE and solving via MOM.

Figure 20 shows an excellent correspondence

between the. results of the hybrid FD-TD/MOM
procedure described above and the usual direct
EFIE (MOM) solution for the induced current
distribution on each wire of the bundle.

The hybrid FD-TD/MOM procedure for model-
ing thin wire bundles is most useful when the
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Flg. 21. Geometry of the cylindrical metal shielding enclosure
and internal wire or wire-pair [21].

bundle 1s located within a shielding enclosure.
Figures 21 and 22 show the geometry and test

results for such a model involving the variation of
induced load current with illumination frequency

for a single wire and a wire-pair located at the

center of a cylindrical metal enclosure. The

enclosure is 1.0 m high, 0.2m in diameter, and
referenced to a large metal ground plane. Approxi-

mate plane wave illumination is provided by an.
electrically-large conical monopole referenced to
the same ground plane. Wave penetration into the
interior of the enclosure is through a circumferen-

tial slot aperture (12.5 cm arc length, 1.25 cm gap)
at the ground plane. For the cases studied, an

internal shorting plug is located 40 cm above the
ground plane. For the s1ngle wire test, a wire of

length 30 cm and radius 0.495 mm is centered

within the interior and connected to the ground
plane with a lumped 50-ohm load. For the wire-

pair test, parallel wires of these dimensions are

located 1 cm apart, with one wire shorted to the
ground plane and the other connected to the
ground plane with a lumped 50-ohm load. All
results are normalized to a 1 V/m incident wave
electric field. ' ‘ -

From Fig. 22 we see that there is a good corre-

spondence between the measured and numerically

following elements:

modeled wire load current for both test cases. The

- two-wire test proved to be especially challenging

since the observed Q factor of the coupling
response (center frequency divided by the half-
power bandwidth) is quite high, about 75. Indeed,
it is found that the FD-TD code has to be stepped

- through as many as 80 cycles to approximately

reach the sinusoidal steady state for illumination
frequencies near the resonant peak [21] However,
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