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Abstract——A succmct umfred revrew is provrded of the theory of
radiation boundary operators wlnch has appeared prmcrpally in the
applled mathemaucs and computatronal physics llterature over the last
ten years. With the recent introduction of the on-surface radiation

and finite-element techniques for modeling electromagnetic wave scatter-
-ing problems, the understandmg and use of radiation boundary operators
has become increasingly important to the engineering community. In the
OSRC method, specific radiation boundary operators are applied directly
on the surface of an arbitrary convex target, substantially simplifying the
usual integral equation for the scattered field. In the finite-difference and
finite-element techniques, radiation boundary operators are used to
truncate the computational domain near the target, while accurately
simulating an infinite modeling space. Results are presented to illustrate
the application of radiation boundary operators in both of these areas.
Recent OSRC results include analysis of the scattering behavior of both
electrically small and electrically large cylinders, a reactively loaded
acoustic sphere, and a simple reentrant duct. New radiation boundary
operator results include the demonstration of the effectiveness of higher
order operators in truncating finite-difference time-domain grids.

I INTRODUCTION

ITH THE RECENT introduction of the on-surface
¥ V¥ radiation condition (OSRC) method [1] and the
- continued growth of finite-difference time-domain (FD-TD)
[2] and ﬁmte-—element 13] techmques for modeling electromag-
netic wave scattering problems the understanding and use of
radiation boundary operators has become increasingly impor-
tant to the engineering community. Radiation boundary
operators have fundamentally different uses in the OSRC and
finite-difference/finite-element methods. Finite techniques use
radiation boundary operators in either the time domain or
frequency domain to create a radiation boundary condition
(RBC) which truncates a volumetric computational domain
electrically close to a modeled target, and yet effectively

condition (OSRC) method and the continued growth of finite-difference
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srmulates the extensron of the computatlonal domain to
infinity. In contrast, the OSRC method uses the radiation
boundary Operator drrectly on the surface of the target to
reduce the usual frequency -domam integral equation for the
scattered field to either an inte gration of known quantities or a
second—order ordmary differential equatlon Each 1s simply
1mp1emented on the target surface. Although the OSRC and
finite methods use radiation boundary operators in drfferent --
manners, both techniques can be greatly enhanced by more

~ effective radiation boundary operators

The purpose of this paper is to provide a succmct umﬁed

review of key research that has been performed in the area of
radiation boundary operators. Because much of this research
has appeared in the applied mathematics and computational

physics literature over the past ten years, its results and

1mphcatrons are generally not well known by the engineering
electromagnetlcs commumty ‘This paper will also present

~ some recent results from the apphcatron of these operators to

engineering problems In particular, we will examine two
basic types of radiation boundary operators and give examples
showing their use in both the FD-TD and OSRC methods.

Specifically, in Sectlon I we will discuss the theory behind
radiation boundary operators. In Section III the radiation
boundary operators will be used to construct new radiation
boundary conditions for a two-dimensional FD-TD grid of

~higher order than those currently used; and the effectiveness of

the new radiation boundary conditions will be tested. In
Section IV, the radiation boundary operators will be used in
the OSRC method to approximately solve the problem of
scattering from a perfectly conducting cylinder. Section V
concludes with a discussion of the research activities that are
ongoing in the areas of radlatlon boundary operators and their
appllcatlons ' '

II. THEORY

There are two basic types of radiation boundary operators:

mode annihilating and one-way wave equation approxima-

tions. Each of these radiation boundary operators possesses
different characteristics and forms. In this section, the two
different types of radiation boundary operators are exammed

in detall
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A. Mode-Annihilating Operators

" The first type of radiation boundary operator to be discussed
is the mode-annihilating differential operator. This type of
operator is based on the idea of killing the terms (herein
referred to as ‘‘modes’’) of the far-field expansion of outward
propagating solutions to the wave equation. One can view the
“idea of killing modes of the scattered fields as first being
proposed by Sommerfeld in the form of the Sommerfeld
radiation condition [4] which annihilates the first mode in the
expansion. Later, researchers [5] extended the Sommerfeld
theory and created an operator that annihilates the next mode

in the expansion. Independently, other researchers created a

general operator that kills an arbitrary number of modes in the
expansion as derived and presented in [6]. It is the theory that
appeared in [6] that will be reviewed in this section.

~ For this section we will proceed as follows. In Sectlon I1-
Al) the scattered fields are written in terms of a far-field
expansion, and the effect that the Sommerfeld radiation

condition has on the expansion is presented. The operators

derived in [6], are presented in Section II-A2) for the full
three-dimensional case and are spemahzed to two dlmensmns
m Section II-A3). ' '

1) Far-Field Expansions and the Somm erfeld Radiation
Condition: We consider here solutions U (R, 9 ¢ : t) to the
scalar wave equation

V2U-U,=0 (1)

and the associated Helmholtz equation for time-harmonic
waves .

VU4 kU= o  ©
where the wave speed ¢ has been scaled to unity and the
harmonic wave is assumed to have time dependency e—/“*. The

radiating solutions of the scalar wave equation (i.e., solutions

propagating in directions Wthh are outward from the origin of
a spherlcal coordinate system) can be expanded In a conver-
gent series of the form [7]

f.(t R 0, ¢>)

UR, 6, 6, )= 2 —F BNC

This result was extended to the time-harmonic case for both
vector and scalar fields [8]. For the scalar Helmholtz equatlon
it is proved in [8] that ' '

| e ﬂ(ﬂ 6)
UCR, 6, $)=— =

G

i=0

1s a convergent expansion for scalar wave functions that satisty
the Sommerfeld radiation condition. '
The Sommerfeld radiation condition [4], given by

lim R(Uz—jkU)=0  (5a)

where Uy denotes a derivative respect to R, is satisfied by the

the Sommerfeld condition is extended to
llm R (U R + U l‘) O

R—oo0

b

which is satisfied by each term of the expansion in (3). The

each term of (4). By using the correspondence — Jk = 3/ at ~
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Sommerfeld radiation condition can be viewed as an operator
on the far-field expansion of U giving the asymptotic result,

(-—3—-— k) U=0(R?
ar ) VTR

(6)

“in the limit R = oo. In other words, the Sommerfeld condition

retains terms that are no greater than O(R ~2) in the expansion.
2) Higher Order Operators: With the goal of devising

' operators that annihilate terms up to any order in the far-field

expansion of U, a sequence of operators B, was proposed [6]
for the expansion in (3). A similar sequence of operators was
independently developed for the Helmholtz equation in two

dimensions [5]. The former were extended [9] for the

Helmholtz equation in both two and three dimensions. We
restrict our review here to operators for the time-harmonic
case [9], keeping in mind that results for waves of arbitrary
time variation can be obtained by a snnple substitution of 3/t
for the term — jk.

- The derivation of B begins by multiplying a slightly

rewritten vers1on of (4) by R" and then sphttmg the sum as
shown:

R'U(R, 6, ¢)= 2 R"-1eIF0, ¢)

+ Y Rr-ieMRE@, ¢). (T)

i=n+1
Now define the intermediate operator,

d
L = ——JjKk
Tl ,}
and observe that applying L" to both sides of (7) annihilates
the first sum and makes the leadmg order term of the second
sum be O(R~"~1). We have

L(R"U)=O(R-"- l) (8b)

which accomplishes the goal of anmhllatmg the first n terms of
the far-field expansion. A more useful way to express this
result is as a single operator acting on U only. This is achieved
by inductive arguments [9]. For n = 1,

@)

(9a)

o 3 - _
R (-———jk) U+ U=0(R?)

9b
IR (9b)

~which can be wntten as

(a k+1>U—O(R“3)
oR 7"TR)TTTT T

The first operator in the sequence 1s then

_ 1
B1=L +—
R

which, when applied to both sides of (4) annihilates the first
term of the expansion. Similarly,

(102 (e+1)

(10a)

- (10b)
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annihilates the first two terms. In general the recursion

relation, ‘
' 2n—1\ _
pue (1421 5,.,
R _

produces an operator which annihilates the first n# terms of the
expansion in (4). The sequence of operators gives

B,U= O(R"z" N

(11)

(12)

- for any functlon U satlsfymg the expansion in (4).
In the literature, B, has been ut1hzed as a boundary
condition o

B, U=0

accurate, in powers of R~', as the order of the operator 7

computational domain while accurately modeling the outward
- propagation of waves to infinity. Further application of B,,
particularly B,, is found in the OSRC method for computing
scattering from two-dlmensmnal convex, conducting and
homogenous dielectric bodies. |

3) Operators for Two-Dimensional Wave Propagation.
Extension of B, for use with wave functions U(r, 6, ?) in two

space dimensions proceeds in the time harmonic case from an
expansron presented in [10] ,

i 0 e an
- U(r, 0) Ho(kr) E ——S-—)-+H1 (kr) E " G (14)
i=0
which has the far-field result 9], -
U(r, 0).4. ___%__ e.l(kr (1/2)) ‘{_g_). (15)
_ ‘\jrkr o ico T’ --

defined [6] by the recursion relanonshlp

' ( 4n-3 o
B, = L+-;_— ' (17a)
R o
L = ——jk. (l7b) '
) or ! '

The operator B, anmhllates the ﬁrst n terms of the expansmn

(16) and ylelds ' _
N ‘ - (18)
The utility of these operators will be demonstrated in

B, U= O(,.-zn 172y

Section IV in the OSRC calculation of electromagnetic

-

(13)

for the wave functlon U This condltlon becomes more

increases. The original application of (13) was to truncate a \ ' '
B. One-Way Wave Equations

that is analogous to (4) A sequence of boundary operators 1S |
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scattering from a conducting circular cylinder illuminated by a
TE polarized plane wave. The first two operators used there
are * .

(19a)

In the derivation of (19b) the recursion relation, (16) produces
a second-order r derivative. It is conveniently eliminated by
the substitution from the Helmholtz equation,

2 1 9%
arr rroer

k2. | | (20)

A partial differential equation which permits wave propaga-
tion only in certain directions is called a ‘‘one-way wave
equation.”” Fig. 1 shows a finite two-dimensional Cartesian
domain Q on which the time-dependent wave equation is to be
simulated. In the interior of @, a numerical scheme which
models wave propagation in all directions is applied. On the

outer boundary 41, only numerical wave motion that is
- outward from Q is permitted. The boundary must permit

outward propagating numerical waves to exit { just as if the
simulation were performed on a computatlonal domain of

7 infinite extent. A scheme which enacts a one-way wave

equation on d( for this purpose is called a radiation boundary
condition (RBC).

1) Derivation by Wave Equatzon Factoring!: The deriva-
tion of an RBC whose purpose is to absorb numerical waves

‘incident upon the outer boundary of a finite-di fference or

finite-element grid can be explained in terms of operator .-
factoring. Consider the two-dlmensmnal wave equatlon in
Cartesmn coordmates

(21)

U + Uyy Un=0.
The partlal dlfferentlal Operator here 1s
o L = D2+D3- 02 (22a)

which uses the notation,

The wave equation is then compactly written as

LU=0.

(23)

The wave operator L can be factored in the following
manner. -

L*L-U=0

LU= (24a)

11t can be demonstrated that wave equation factoring can generate B, and

B, described in Section II-A. However, this has not been shown for n > 2.
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Y e S - B -~ can be numerically 1 ._lemented at the x =10 boundary
1 |~ - Ui - u,,+2 Uyy--o (26b)
0 A generalization of (26) presented in [15] showed that the
' construction of numerically useful absorbing boundary condi-
tions reduces to approximation of /1 - §% on the 1nterval
[ 1 l] by the ratlonal functlon -
N R r(S)-"p'"( ) B @D
_ o Coh P P where p and q arc polynomlals of degree m and n, and r(s) 1S
'Fig. 1. Two-dimensional Cartesian computational domain. said to be of type (m, n). By specifying r(s) as a general type

where L~ is defined as )

the opcrator L T is smnlarly deﬁned except for a “ + &
before the radical. - ' S
In [11] it is shown that at a undary, say at X

dlrectlon Thus e

appllcd at x 0 functlons as an exact analytlcal RBC Wthh

{Q *,9):0< x < h, 0<y < h} TheopcratorL+

direction that impact the other x boundary in Fig. 1 at x = A.
The presence of the radical in (24b) classifies L~ as a

pseudodifferential [11] opcrator that is nonlocal in both the :
space and time variables. This is an undesirable characteristic

in that it prohibits the dtrcct numcrlcal 1mp1ementat10n of (25)
as an RBC. '

Approximation of the radical in (24b) produce RBC 's that
can be implemented numerically and are useful in FD-TD

simulations of the wave equation. The numerical implementa-
tion of an RBC is not exact in that a small amount of reflection

does develop as numerical waves pass through the grld '

boundary. However, it is possible to design an RBC which-
minimizes the reflection as much as possible over a range of
incident angles [12]. The RBC derived in [13] and applied 1n

the simulation of electromagnetic scattering [14], uses a two-

term Taylor series approximation to the radical in (24b).

V1I-82=1 3 S?2.

This leads to the following approximate analytical RBC which

_\ ' ab)

Sign

O the
apphcatlon of L~ to the wave functlon U w1ll cxactly absorb a
- plane wave incident at any angle and travehng in the —x

absorbs wave motion from thc 1ntcr10r of the spatlal domam x

performs the same functlon for waves travclmg in the + x - ._
-: glvcs the gc neral thlrd-order approx1matc analytlcal RBC

(26a)

2, 0) approximant, the radical is apprommatcd by an
1ntcrpolat1ng polynomlal of the forrn o B

(2 8a)

resultln g in the gcneral second-order approx.lmate analytlcal

U= PoUu—ps Uyy = o (28b)

The chmce of the coe fficients pg and D> is determmed by the
method of 1ntcrpolat10n Standard techniques such as Che-
byshev, least-squares, or Padé approx1mat10n are applie '
the goal of producing an approximate RBC whose p

ance is good over a wide range of incident wave anglcs

Expressions similar to (28) can be derived and applied at the

: other three boundarles of a two—d1mens1onal FD-TD grid.

High order approximations to the radical in (24b) were
proposed in [15] as a means to derive a more accurate

apprommate RBC Use of the general type 2, 2) rational

functlon

\/1—_? rnS”

(29a)
o QO + 4252

q 0 Uxtt + q 2 nyy _pO Uttt ""p2 Utyy =0. (29b)

- Approprlatc selection of the D and q coefﬁc1ents in (29)

produces various families of RBC’s, as suggested in [12] and _,

[15]. For example, gy = pp = 1,p, = —3/4,andq, = —1/

4 gives a Pade (2, 2) approximation in (29a) with the resulting

RBC function better than (26b) for numerical waves impacting

the grid boundary at near normal incidence. This results in the
third-order RBC originally proposed in [11]. Other types of
approximating polynomials ‘‘tune’’ the RBC to absorb numer-
ical waves incident at specified angles other than normal, and
are considered to be a means to improve wide-angle perform-
ance [12]. Results from a comparatlve study [16] of the
performance of VaI‘IOl]S families of RBC’s are presented 1n

- Section III.

2) Derivation b Y Dzspers:on Relation: An alternate
procedure for obtammg one-way wave equations is presented

in the literature [12] [15] We summarize the technique here

for completeness. It is well known that if the dispersion
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relation for a linear constant-coefficient partial differential
equation is known, then the equation itself is spec1ﬁed 7.
Thus if one can obtain the dispersion relation for a one-way

wave equation, then an RBC approprtate for use on ol is

obtained.
It a plane wave solutlon
U(x v, t) ej(wt+£x+ny)
1S substltuted into (2 1), then
E‘" + n (31)

is the dispersion relation for the wave equation which permits

n (30) has Velocﬂy G s E
Uy= ——= —COS 6 o (32b)
vy,=——=—SIn o N (32c) '

and 6 is the counterclockwrse an gle measured from the thc
negattve X axrs By rewrtttng 3 1) as ] f

. s "S" =+Vl-—s§ 2 - - ,#

s=— (33b)

a dispersion relation can be identified which corresponds toan
‘equation that admits plane wave solutions propagating only in

the —x direction. This is obtained by choosing the positive

‘branch of the square root in (33a) which corresponds to waves
having velocity component v,, in the —x direction. Wave
vill be absorbed at the x = 0

motion from the interior of 2
grid boundary if an equation having the dispersion relation,

g w 1 _52 : )

1S apphed at that boundary B

- Equation (34) is a dlspersmn relatlon for a pseudodlfferen-
tial equation [11] and cannot be identified with a linear partial
differential equation which can be implemented numerically
on the x = 0 boundary. By approxrmatlng the radical in (34),
it is possible to obtain a dispersion relation which can be
identified with a partial differential equation that functions as
an approximate analytical -
approximation for the radical used in Section II-A1) can be
applied here; however, s is now defined by (33b). Once a
‘dispersion relation is obtained with approxrmates the exact
relation in (34), the same RBC’s are derived as in Sectlon 1I-
A1). We illustrate here application of the two-term Taylor

300

wave propagation in all dlrectlons of the x-y plane. The wave . . o _
‘ ' " This is the same expression as the approximate analytical RBC
given in (26b)“2 Higher order RBC’s follow directly. '

~ lar, the promise of higher order RBC’s is quantified by a
reflection coefficient analysis and by numerical experiments.

- (33a3) ‘It is demonstrated that a reduction in grid boundary reflection

‘scattered waves from a complex body can be viewed as a

‘superposition of plane waves striking the computational

~ boundaries over a wide range of incident angles. Therefore,

~ the performance of a given RBC can be assessed by deriving a
G4

~ nonphysical reflection a plane wave produces as a function of 0

gives a small value of R over a wide range of 6. Such an RBC
‘should perform well in the simulation of a realistic scattering

situation because the grid boundaries would permit most of the
.scattered energy to exit the computattonal domain.

BC. The same methods of

“existence of a reflected wave launched from the boundary, the

1801

series approx1matlon to the radical. Equatlon (34) becomes

gzw (1__________> (35a)
_ - 2 w2
- which is equivalent to '_
_ ngwz__i 772 (35b)
- which is the dispersion relation of
Uxt= Utt_"i yye ’ (350)

III APPLICATION OF ONE-WAY WAVE EQUATIONS 'FD- TD
RADIATION BOUNDARY CONDITIONS

In the snnulatlon of electromagnetic wave scattering by
finite techmques one-way wave equations are used to truncate

‘the computational domain in a manner which accurately

models the propagatlon of scattered waves to infinity [13],
[14]. ThlS section summarizes recent results in applying the
theory of one-way wave equations to the simulation of
electrornagnetlc scattering by the FD-TD method. In particu-

is realized when a third-order RBC is applled on the boundary

~ofa two-dtrnenswnal FD-TD grtd

A Reﬂe‘ctionCoefficient Analyszs -

Numerical radiation boundary conditions derived from

approximate analytical one-way wave equations are not exact |
‘in that a small amount of reflection will be realized from
" numerical wave striking the grid boundary. For a numerical

plane wave striking the x = 0 boundary in Fig. 1, the amount
of reflection is dependent upon the angle of incidence 6. Now,

reflection coefficient R, which quantlﬁes the amount of

when it interacts with the grld boundary Clearly, a good RBC

Con31der the outgolng plane wave 1n Flg 1. The wave has

the form

Ui,,c = .'éf(kt+ kxcos—kysin6), : (36)

The total ﬁeld at the boundary of the computattonal domain
must satisfy the specific RBC in effect there. Postulating the
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- TABLE 1
COEFFICIENTS FOR THIRD-ORDER RBC S

Type of Approximation Do | D>

Pade 1.00000 —0.75000
L> 0.99973 —~0.80864

Chebyshev pomts _ 0.99650 —0.91296
L> ©0.99250 —0.92233
C-P ' - 0.99030 —0.94314
Newman points 1.00000 —1.00000
L® , | 10.95651 —0.94354

qo = 1.00000 for each technique.

TABLEINl
COEFFICIENTS FOR SECOND-ORDER RBC S

' Angles of Exact

Type of - B
Approximation . Do " Da - Absorption (*)
Padé 1.00000 —0.50000 0.00
L> © 1.00023 ~0.51555 7.6, 18.7
- Chebyshev points 1.03597 -0.76537  22.5, 67.5
L? 1.03084 —0.73631 22.1, 64.4
- C-P - 1.06103 —(0.84883  25.8, 73.9
Newman points - 1.00000 -1.00000. 0.0, 90.0
L® B 1.12500 - —1.00000

31.4, 81.6

total field at the x = 0 boundary has the form,

- U= ejlkt+kxcos0—kysin) 4 Rej(ki—kxcos0—kysin6)  (37)

where R can be determined By substituting U directly into the
equation for the RBC used at the x = 0 boundary.
By substituting (37) into (28b) and (29b), reflection coeffi-

for the general second- and third-order RBC’s
respectlvely, .

cos —po—p; sin® 6

R=—- —
~ cos 0+ po+p; sin® @

and

_ 4o cos 0+q2 cos 0 sin® 6 — po D> sm2 0

qo cos 0+q2 cos 0 sin2 6+p0+p2 sin> 0

‘where the coefficients p and g correspond to the approx1mat-
ing function used in the derivation of the RBC. Seven
techniques of approximation are developed in [15] for this

purpose. The techniques are: Padé; Chebyshev on a subinter-

val (L*); interpolation in Chebyshev points; least-squares

(L?); Chebyshev-—Pade (or C-P); mterpolatlon in Newman

points; and Chebyshev (L ). Tables I and II show p and q
coefficients for approximating functions of both second and
third order. The mechanics of their derivation can be found in
[15]. A type (2, 2) approximant produces a third-order RBC.

Second-order RBC’s are obtained from type (2, 0) approxi-

mants. Also shown in Tables I and II are angles of incidence at
~which the RBC’s are designed to exactly absorb numerical
plane waves. The Padé family concentrates ab: sorption near ¢

= 0°. The others distribute absorption angles through the

angles, is presented in [18] and [19].

angle on the range [0, x/2]. In all cases studied, the behavior

the third-order L> RBCs.

cient expressions as a function of incident angle are obtained
. They are, | | o
- ‘Numerical experiments are now reported which clearly

' produces as a pulse propagates through a grid boundary. Fig.

(38) - 4(a) shows two domains on which the two-dimensional FD-TD

- magnetic (TM) case. On the boundary of the test domain Qr a
- test RBC 1s applied. Each point in Q7 has a corresponding

39) located at grid position (50, 25) in both domains. The source

differ from the solution at corresponding points within Q5. The

dz " Angles of Exact Absorption (°)
—-0.25000 0.00
—0.31657 11.7, 31.9, 43.5

—0.47258 15.0, 45.0, 75.0
~0.51084  18.4, 51.3, 76.6
~0.5556 18.4, 53.1, 81.2
—0.66976 0.0, 60.5, 90.0

—0.70385 26.9, 66.6, 87.0

range [0, n/ 2] as a means to improve wide-angle perforniance
[15]. A more general approach, which permits the design of
boundary conditions for plane waves Incident at arbitrary

Figs. 2 and 3 show the behavior of the reflection coefficient
for the two best-performing RBC’s as a function of incident

of reflection coefficient for third-order RBC'’s is better than

that of second-order RBC’s. Fig. 2(a) shows R less than one
percent for 0 < 6 < 45° for the third-order Padé RBC. Note
that the Padé RBC’s have a very low reflection coefficient for

normal incidence. The distribution of exact absorption angles

away from 0 = 0° is illustrated in Fig. 2(b) for the L> RBC.
The nulls in the behavior of R are as predicted by the analyms
presented in [15]. Fig. 3 compares the third-order Padé and
By sacrificing performance near
= 0°, the L? RBC extends the pomt at wh1ch R is less than
one percent to about 0 = 60°. . |

B. Numerical Experiments

measure the amount of nonphysical reflection a given RBC

algorithm i1s computed simultaneously for the transverse

member 1in the substantially larger domain z. A line source is

produces outward propagating, cylindrical waves which are
spatially coincident in both domains up until time steps when
the waves interact with the boundary of Q7. Any reflection
from the boundary of 2 makes the solution at points within Q7

wave solution at points within Qp represents the desired
numerical modeling of free-space propagation up until time
steps when reflections from its own boundary enter the region
of {2z corresponding to 2. By calculating the difference in the
solutions in Q5 and Q7 at each point at each time step, a

‘measure of the spurious reﬂectlon caused by the boundary of
)+ is obtained. '

‘We deﬁne at the n th time step

DG, j)=EZG, j)-E2G, j) (40a)

for all (7, j) within the test domain, where E ] is the solution
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0o 10 20 30 40 50 60 70 80
‘ Angle of Incidence ‘
(@

o 10 20 30 40 50 60 70 80 90
Angle of Incidence

Fig. 2. Reflection coefficient versus wave angle of incidence. (a) Padé RBC. (b) Chebyshev on subinterval RBC.
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within Q7 and E B is the solutlon at pomts in QB D(:, j)is the
local error in the test domam ca.used by its grld bound A,

reﬂectlons We also define a global reﬂected error measure

E= 2 2D2(z N

for all (i, j) within QT, Wthh measures the total reﬂected
error within the test grid at the nth time step. '

The source used in the numerical exp:
obtained from [20] and is deﬁned as follows

E (50 25, n)
B a(lO-—- 15 cos w1£ +6 COs wZE cos w3E), .

0,

(40b)
~ selected be

-__runents 1s the pulse

~grid bound:
 of Qraty = 0. With the speci

... boundary at y = 0. At time step 70, the peak of the pulse just
-~ starts to pass through the boundary. We choose to observe the
- reflection at the first row of grid pomts away from the y =

~ boundary (along J = 1) at time step 11 =

(41b) ~ bulk of the outgoing pulse to pass through the boundary and

- compact pulse

and Bt 1S the ttme step used in the s1mulat10n In all

ry ”expenments we maintained 8¢ = 2.5 X 10~ secand A = 2c
&t, where c is the speed of light in free-space and A is the space

“increment of the finite difference grid. The time profile of the
pulse defined in (41a) is shown in Fig. 4(b). This pulse was
-ause 1t has an extremely smooth transition to zero.
As dlscussed 1n [20] the pulse has its first five derivatives
vanishat £ = 0, 7 and 1S a g approx1mat10n to a smooth

‘This pulse has very httle htgh-—frequency content Wthh is
important because of the deleterlous effects of grid dispersion

T (dependence of numerical wave phase velocity upon spattal |

ey ,J,wavenumber) Grid dispersion and its relation to RBC’s

iscussed in [21], and [22] This problem 1S compounded in
htgher dimensions by amsotroptes of the numerical wave
phase velocity with wave vector angle in the grid [3], [23] and
is a subject of current research aimed at further reduction of
ry reflection. coefficients. o

The source point in th 4.a) is 25 cells from the boundary’
- 2¢ 8t disturbances
at the source pomt require 50 time steps to propagate to the

ification A =

0
- 100. This permits the

exmte the largest observable reflection.
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~ Fig. 5. Error measures, Padé RBC. (a) Local error at n -

third-order conditions. In ths 5(a), 6(a) and 1(a), D(, 1)
‘has been normalized with the peak value of the incident pulse
which strikes the y = 0 boundary at time step n - = 70 at grid
posrtlon (50 0). The pulse experlment results are in agreement

order RBC’s do perform better than lower order RBC’s in

actual simulations. However, comparison of the third-order
L* RBC to the third-order Padé RBC does not indicate any

partlcular performance advantag ge. The improved wide-angle

performance suggested in [15] is not evident in these expen—
ments. .

IV APPLICATION OF MODE-ANNIHILATING OPERATORS OSRC

The on-surface radiation condition method [1] is a new

analytical technique by Wthh it 1s possrble to construct
‘accurate approximation of two- and three-dimensional scatter-
ing problems involving convex and simple reentrant targets. In
this section, two areas of apphcatton will be examined. In the
ﬁrst application, the OSRC method wﬂl be applie

with the reﬂectlon coefficient analysis by showmg that hlgher

~ Section I, directly on the surface of the target. The effect of

- 100. (b) Globa]error

“Figs. 5 and 6 show the local and global reflection errors the scattering Cross secnon of two canonical convex targets: 1)
observed for the Padé and L> RBC’s. Fig. 7 compares the

a circular cylinder 1llum1nated by both a transverse electric

(TE) and transverse magnetlc polarized plane wave; and 2)
an acoustic sphere with a constant surface 1mpedance In the

second application, the OSRC method will be applied to the

scattering of a plane wave by a canonical reentrant geometry:

the ¢ open end of a semi-infinite ﬂanged parallel-—plate wave-

guide. Before either of the cases is examined, some back-
ground discussion on the OSRC method is necessary.

A Backgro und

The OSRC method is based upon the apphcatlon of a
radiation boundary operator, such as those discussed in

th1s is to relate the surface currents to known field quantities
through a simple express1on thus the problem reduces to
solving an equation along the contour of the target. Only

‘second-order operators will be considered here because they
~are the most widely used. The method used in this paper will

be the same one used in [1]. For completeness, recently
proposed varlatlons will be reviewed as well.
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Fig. 6. Error measures, Chebyshev on subinterval RBC. (a) Local error at n = 100. (b) Global error.

‘The original method developed for two-dimensional electro- second-order two-dimensional surface boundary operator [1]
magnetic targets is to apply a mode-annihilating radiation - .

‘boundary operator locally at each point on the surface of the
‘target [1]. This is conveniently done by noting that an
osculating circle can approximate the target’s surface locally at
each point. The operator then works on the fields as if they
‘were emanating from within the local osculating circle. In two
dimensions, this is accomplished by making the following
substitutions: ' N

5 2 3
2(x --jk) — U=—= U+ 2k2-—— x2+ 3ka] U. (42d)
on  9s® 4 - .

__ A three-dimensional surface boundary operator developed
for acoustic targets is presented in [24]. There, the following

substltutlons are made in the three-dlmenswnal mode-annihi-
latm g radiation bounclary operator:

e < Y s (432)

 (@2b) - FHe

~ (43b)

(42c) S ;‘;"V v @3

where 7 is the outward normal S 1S an arc len gth parameter, where V- Vis the SUrface Laplac and H 1s the mean
and K (s) is the curvature of the target at s. This produces the curvature. This produces the second-order three-dimensional
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term proportronal to the derivative of the curvature multiplied
by k2. No published evidence exists at this time to indicate
that this term has any beneficial effects. The most recent

surface boundary operator,

—2jk-5;’- U=V - VU+2(—-k?*—jkH)U.

A variation of this surface boundary condition 1s presented in

[25] in which a slightly different radiation boundary operator

1s used. It 1s

2(H — jk) ™ U=V - VU+2(H?*-
. _

The fundamental difference between (43d) and (43e) is that the
latter annihilates terms of order (kR ) > as compared to (kR) =2
for the former. ' '
Other methods have recently been presented for deriving a
general surface boundary condition for OSRC. A sequence of

‘surface boundary operators is derived in [26] by directly
~ factoring the wave equation, as in Section II-B but in a general
coordinate system based on the local properties of the target’s

(43d)

_2jkH)U. (43¢)

surface. These results differ from (42d), (43d), and (43e) bya

derivation of surface boundary conditions for OSRC was
presented in [27], which demonstrates that the surface
boundary condition can be derived directly from geometncal
acoustics/ optrcs by making the assumption that the surface
of the target is a phase front The resultmg boundary condrtlon
in three dimensions is

e . .
2jk-é-—- U=V - VU+QRk*+H?—«kg—jkH)U (44a)

where Kg 18 the ‘Gaussian curvature. The correspondlng

| surface boundary condltlon in two drmensrons is

9 - 0%
ds?

an

2(x - Jk) L Uu="uU+ [2k2 -7 x2+3jkx] U

J 0k dU

o
S 7X . (44b)

4k 0s?

K 0s 0s
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Fig,. 8. OSRC computed bistatic RCS of conducting circular cylinder, TE case. (ja) ka = 10. (b) ka = 20.

proportlonal to the denvatlve of the target S curvature (Wthh

are formally O (k ) correctlons) but, in turn, differs slightly
from the operator derived in [26] More 1mportantly , 271

shows how this method is denvmg surface boundary operators
can be applled to the vector scatterlng case of OSRC
However no valldatlons have been publrshed to date B

Now that the surface boun dary condltlons have been

derlved the application of the OSRC method to scalar
problems is straightforward. We set '

BS U scatl 0

. " - (45)

on the surface of the target where Bs is one of the surface
boundary conditions described above What results 1s an
expression that relates the ‘scattered field to its norrnal
derivative at each point on the surface of the target This is
now combined with the usual relation between the incident and
scattered field (or the normal denvatlve of the scattered field),
as dictated by the problem

'B. A pplzcatton to Scattermg from Convex T argets

_ The use of OSRC is first illustrated by modeling scattermg
by a perfectly conducting circular cylinder of radius a. The

We note that (44b) also differs from (42d) in the terms cylmder is illuminated by either a transverse electric or

apphed to the surface of the cylinder.

Thls 18 a very sunple .DE since 1t has constant coefﬁc1ents

- section patterns for a ka =
- computed via a modal solutlon of (46), are plotted in Figs. 8(a)
“and (b). The OSRC results for the B, operator are seen to

transverse magnetic polarized plane wave. For either polariza-
tion, the second-order surface boundary condmon (42d) 1s

For TE polarization, with the magnetic field tangent to the
target’s surface, the OSRC method results in an ordinary

~ differential equatlon (ODE) for the aznnuthal surface current

densny J¢ . .
Cz ¥ ¢2 ~J6=Uine1 - 01 cos §)—C; — 5 (46a)
where S
| sk2+jsk) . -4
C, = JUSIY Cy=———— . (46b)

-—3+8k2+112k —3+8k2+112

and thus may be solved analytlcally The bistatic radar cross
10 and ka = 20 cylinder,

demonstrate excellent a greement with the exact solution over a
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Fig. 9. OSRC computed bistatic RCS of conducting circular cylinder , TM case. (a) ka = 1. (b) ka =

wide (3. dl) dynatmc range. The solutton to (46) can be
accurately apprommated by using the WKBJ method for k >
5 [28]. There an approximate formula for an arbitrary convex
target is derived by the same technique. @~
For TM polarization, the electric ﬁeld 1S tan gent to the
target’s surface and thus the OSRC method gives a simple

algebraic expressmn for the lon gitudinal surface current
densrty J AR

; |
s [
k 2

+Jk (cos ¢ 1) -Jk._...!.._” -

8k

— — cos d)+—- sm

2 qs] ef" cos ¢ (47)

The OSRC predlctcd btstattc radar cross scctlon patterns for a

ka = 1and ka = 10 c-.__e.lmder are plotted in Flg 9(a) and (b).

The OSRC resu -ts for the B, operator are again seen to

demonstrate excellent agreement wrth the exact solutrcn over a
substantial dynamlc range. '

The apphcatron of OSRC to a basrc three-drmensmnal

. drr , tlon 1mp1ng_;_, ~. u na sph- rical target of radius @ having a

. mated by a 31mp1e two—term as

model scattermg by simple reentrant structures. We consider

— Exact .
4+ OSRC using B1

120 140 160 180

10.

convex targct was first ﬂlustrated by modelmg scattermg by a
soft acoustic sphere [24] It was next applied to an acoustic
sphere loaded with a constant impedance. Because this
problem 1s solved n [25] only one example is presented here |
In this example, an acoustic plane wave propagating in the — Z

ntr ized su impedance of Z = 10. Condition
(43e) 1s applled to the surface of the sphere After inserting
(43e) into (45), a second-—order part1a1 differential -equation
results for the surfacc currents, whose solution is approxi-

mptottc expansion and is then
used to determme the far ﬁelds 'Fig. 10 shows the backscat-
tered cross section versus k. Agam there is excellent
agreement w1th the exact solutton '

C. A ppllcatzon to Scattermg from Reen trant Structures _

The sccond area of apphcatron 1llustratcs usmg OSRC to

the problem of a plane wave impinging on the open end of a
semi-infinite ﬂanged parallel-plate waveguldc [29], shown in
~ Fig. 11 A plane wave, at an angle o measured counterclock—
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Fig. 10. Normalized back scattering cross section versus K for reactively
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U=0

Fig. 11.
plate waveguide. a = 1.5 m, f = 250 MHz

wise with reference to the —z axis , 1lluminates the mouth of
the waveguide. The flange and the walls of the guide are

assumed to be perfectly conducting. The incident wave U’ is
- considered to be the y component E, of the incident electric

field vector. Thus, for the boundary conditions shown, TE

modes are excited inside the guide. The operator (42d), with «

= 0, is applied to the field representations valid in the guide

aperture and yields an expression for the coefficients in the

modal representation of the waveguide fields. Knowledge of

the modal coefficients then permits the derivation of a simple
expression for the bistatic radar cross section of the field
scattered by the aperture, and the fields penetrating into the
waveguide. Results of calculations using this approach are
presented in Figs. 12 and 13. Fig. 12 shows the bistatic cross
section for a plane wave at « = 0°. Fig. 13 show the
magnitude and phase distribution of the field penetrating the
‘guide at a distance of z = 2 m from the aperture. The OSRC
results are compared to results obtained by FD-TD simula-
tions. Excellent agreement is observed. The value of the
OSRC solution is striking in its simple form and negligible
computati onal requirements.

V. FUTURE RESEARCH _
Research on radiation boundary operators is presently
dlrected at two basm goals The first is the development of

Plane wave incident on open end of ﬂanged semi-infinite parallel-

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 36, NO. 12, DECEMBER 1988

1.2

1.0
£ FFDID
- OSC

0.8

0.6

0.4

0.2 " \ '

)
'/ N\
o _— . -"‘;‘:--.-_
0 20 40 60 80 100 120 140 160 180

0 (degrees)

‘Fig. 12. Bistatic cross section for scattering from waveguide aperture due to

plane wave at « = 0° and f = 250 MHz. Angle 0 is as shown in Fig. 11.

. 2.0 .
1.8
1.6

1.4
1.2

1.0 -
0.8

| U |

0.6
0.4 -

b

0.2 - ' ' A
0.0 s '
0 2 4 6 8

.

10 12 14 16 18 20 22 24 26 28 30 32

X position
(a)

-a- Phase FDTD

Phase (degrees)

0 2 4 6 8 10 1214 1618 20 22 24 26 28 30 32

X position
(b)

'Fig. 13. Field penetration into waveguide at z = 2 m for plane wave at o =

0° and f = 250 MHz. (a) E-field magnitude. (a) E-field phase.

better truncation conditions for finite-difference and finite-

element grids. This is aimed at reducing nonphysical reflec-
tions from the outer grid boundary which contribute to the
numerical noise floor of the modeling procedure. Reducing the
numerical noise floor will allow the simulation of scatterers
with wider dynamic range. The second goal is the develop-
ment of optimal mode-annihilating radiation boundary opera-
tors for the OSRC method
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The work on operators for truncating FD-TD and FE-TD
grids fall into two basic categories. The first category is the
synthesis of widé-angle radiation boundary operators. Al-
though there are two basic types of radiation boundary
operators, the main thrust of the research is directed towards
one-way wave equation approximations. Here, work is pro-
ceeding in deriving approximations to the dispersion relation
that will absorb waves over a wide range of angles properly
taking into account anisotropy and dispersion of numerical
mode phase velocities. The second category concerns the
difference approximation for the operator. This is crucial for
the operation of the boundary condition, because a perfectly
valid operator which is not properly converted to a finite-
difference equation, may cause instabilities in the simulation.

In contrast to the work on the grid truncation operators, the
work on surface boundary conditions for the OSRC method is
based on the optimization of the mode-annihilating radiation
boundary operators. A key goal of this research is to produce a
surface boundary condition which can better predict tangential
energy propagation along the target’s surface. Presently, two
methods are being investigated for this purpose. The first
method postulates a special multiplicative operator that models

tangential propagating waves. The second method depends

upon the application of the OSRC in the time domain to obtain
" a target impulse response [30]. The idea is to adjust the

coefficients in the operator to match the exact response over a

wide frequency range. Finally, the operators are also being
examined to assess their ability to predict the correct current
singularities on targets with edges. ‘
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