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Abstract—A numerical method is described for the solution of the
electromagnetic fields within an arbitrary dielectric scatterer of
the order of one wavelength in diameter. The method treats the
irradiation of the scatterer as an initial value problem. At ¢ = 0,
a plane-wave source of frequency f is assumed to be turned on.
The diffraction of waves from this source is modeled by repeatedly
~ solving a finite-difference analog of the time-dependent Maxwell’s

equations. Time stepping is continued until sinusoidual steady-state
field values are observed at all points within the scatterer. The en-
 velope of the standing wave is taken as the steady-state scattered
field. As an example of this method, the computed results for a
dielectric cylinder scatterer are presented. An error of less than
+10 percent in locating and evaluating the standing-wave peaks
within the cylinder is achieved for a program execution time of 1 min.
The extension of this method to the solution of the fields W1th1n
three-dmen31onal dielectric scatterers is outlined.

I INTRODUCTION

HE accura,te determma,tlon of the electroma,gnetlc
fields within an arbitrary, inhomogeneous, dielectric
scatterer 1s both an important theoretical problem and a
practical objective of workers investigating the effects of
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microwaves upon living tissue. Exact analytical solutions
are obtalned only for simple scatterers like the sphere and
the circular cylinder, which may be solved using separa-
tion of variables. For complicated scatterers like most body
organs, we must resort to some numerical method if an
accurate model is to be examined.

The computer techniques relevant to this problem tha,t
have appeared in the literature may be called, as a class,
frequency-domain methods. These methods are based upon
the assumption of an exp (72«ft) time dependence in the

- fundamental Maxwell’s equations. In general, methods of

this type derive a set of linear equations for either field
variables or field expansion coefficients, and then solve the
linear system with a suitable matrix-inversion scheme.
Wu and Tsai [ 1] solve two-dimensional scattering by an
arbitrary dielectric cylinder. They develop a coupled in-
tegral equation pair for the electric field -and 1ts normal

- derivative at the surface of the scatterer. They then derive
‘a corresponding set of linear equations for the surface

fields using the moment method of Harrington [2 ]. Solu-
tion of this set of equations allows computation of the in-

terior fields using Huygens’ integrals. This method allows

the very accurate solution of a homogeneous dielectric
cylinder, about one free-space wavelength in circumference,

by inverting an 80-by-80 matrix.
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McDonald and Wexler [ 3 | solve a two-dimensional radi-

- finite-element solution of the Helmholtz equation within
a restricted region, and use an integral equation constraint
along the contour of this region to take into account the
unbounded exterior. Solution is obta,lned by mvertmg a, 60-
by-60 matrix.

Wilton and Mittra [4 ] solve two-dimensional scattering

by an arbitrary dielectric cylinder. They expand the fields
inside and outside of the scatterer in terms of free-space-
type wave functions, wherever valid, and in terms of the
analytic continuation of these wave functions, wherever re-
quired. The unknown set of coefficients is determined by
enforcing the field boundary conditions at a number of
- points along the surface of the scatterer. Sufficient points
- are selected to represent the shape of the scatterer.
- These three methods may be extended to more compli-
cated scattering problems. Their accuracy is excellent
when a sufficiently large set of linear equations is solved.
However, each method may have two problems when very
complicated inhomogeneous scatterers like body organs

~ are considered. First, programming a complex scatterer .

requires the (possibly lengthy) derivation of a set of linear
equations appropriate only for that scatterer. Second,
solution of such a problem with high accuracy may require
such a large, dense matrix to be inverted that the available
fast, direct access computer storage is exhausted. As a
-comparlson with the 80-by-80 matrix of ‘Wu and Tsai, the
maximum size dense matrix solvable using direct access

storage, on the Northwestern Umvers1ty CDC 6400 1s400

by 400 [5].

The numerical method discussed in this paper is a time-
‘domain approach, which treats the irradiation of the
scatterer as an 1nitial value problem. At t = 0, a plane-
wave source of frequency f is assumed to be turned on. The
propagation of waves from this source is simulated by solv-

ing a finite-difference analog of the time-dependent Max-
well’s equations on a lattice of points, including the scat-

terer. Time stepping is continued until the sinusoidal
steady state 1s achieved at each point. The field envelope,
or maximum absolute value, during the final half-wave

_ cycle of time stepping is taken as the magmtude of the =
- phasor of the steady-state field. '

This method has two advantages relative to frequency-
domain approaches. First, and most important, it is simple
to implement for complicated scatterers, because arbitrary
dielectric parameters may be assigned to each lattice
point. Second, its memory requirement is not prohibitive

for many scatterers of interest. For example, the North-

western computer can process a 125-by-250-point grid for
two-dimensional problems, or a 20-by-20-by-40-point
lattice for three-dimensional problems, without resorting
‘to noncore storage. This 1s sufficient, using symmetry, to
process a 1 2—wavelength—dlam cyhnder or a 2-wavelength-
- diam sphere. '

- This method has two disadvantages rela,tlve to f re-
quency-domain approaches. First, its accuracy is only
 about +-10 percent, which is at least one order of magnitude

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, AUGUST 1975

- worse than that of the other methods. Second, the required
ating antenna with dielectric obstacles. They employ a

program execution time may be excessive for some com-
puter budgets. Typically, a two-dimensional problem

‘solved on a 25-by-50-point grid, requires 1 min (at a rate

of about 10 s/100 time steps). A three-dimensional prob-
lem solved on a 20-by-20-by-40-point lattice, requires 30
min (at a rate of about 5 min/100 time steps). '

The important elements of the initial-value-problem

‘approach to scattering problems are discussed below.

II. THE YEE ALGORITHM [6]

Using the MKS system of units, and assuming that the
dielectric parameters u, ¢, and ¢ are independent of time,
the following system of scalar equations is equivalent to
Maxwell’s equa,tlons In the rectangular coordinate system

(x,y,z)

(1a)

(1b)

(1c)
ot (1d)

_ aaEt,, _. (1e)

* aaEt"’-: l(a;i” — (1f)

- Yee introduces a set of finite-difference equations for the
system of (1a)-(1f). Following Yee’s notatlon we denote
a space lattice pomt as

(4,5,k) = (48,79, ko)

(2)
a,nd any function of space and time as
e (%)]:k) — F(z&,ya,ka,nﬁt) (3)

~where é§ = 6z = dy = 6z 1s the space increment, and 6t is

the time increment. Yee uses finite difference expressions
for the space and time derivatives that are both simply
programmed and second—order accurate 1n é and in Bt re-
spectively,

(4)

AFnGGR) _ Fr ot hik) = PG = hik)
ox o
n o . n+1/2 —_ n-1/2
OF" (v,g,k) F (2,7,k) F (m,k) +0( 2. (5)

ot ot

To achieve the accuracy of (4), and to realize all of the

‘space derivatives of (1a)—(1f), Yee positions the compo-
" nents of E and H about a umt cell of the lattlce as shown
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in Fig_. 1. To achieve theacctracy of (5), he evaluates F
and H at alternate half-time steps. The result of these
assumptions 1s the following system of finite-difference
equations for the system of (1la)—(1f):

H,mH (3,5 4 3k + 4)

. ot
= H (55 + 3k +3) + ——
S WG § SR VF

Ej(hj+ 3k +1) — B (G + 3k) +

.l ‘ _ (6a)
E~zn (zyjak -+ %’) — ‘Ezn (7/).7 + lyk +%) y
H," 12 (3 + '%';j;k + 3) . ' ‘
. L, ot - X
= H/mR0+ nlk 1+ 3) + m ' - Fig. 1. Positions of the field components about a unit cell of the
. _ _ ' o - . ' - - Yee lattice. '
- | - ' (6b)  With the system of (6a)—(6f), the new value of a field
E.r(v+ 3,0,k) — Er(+356+1) | ‘vector component at any lattice point depends only on its
- . - I f previous value and on the previous values of the compo-
H 2 (0 + 3,5 + 3k) N ' - nents of the other field vector at adjacent points. There-
— Hp (5 415 4 1 k) 4 — 5? - fore, at any given time step, the computation of a field
_ - | u(r + 3,7 + 3,k)é - vector may proceed one point at a time. Computer storage.
‘ N ' ' must be provided for 11 quantities at each unit cell of the
B (v + 3,0 + L,k) — E.*(5 + 3,5,k) + - lattice: the 6 field vector components, the values of ¢ and o,
: - ‘ - - - (6¢c) and the maximum | E. |, | E, |, and | E, | achieved during
E/S (1) + 3,k) — BG4+ 1,7 + 4k - the final half-wave cycle of time stepping.

- The choice of 6 and ét is motivated by the reasons of

~ accuracy and stability, respectively. To ensure the accuracy

o ' St ~ of the computed results, § must be taken as a small frac-
]Ex”(i + 2,5,k) + ST tion of either the minimum wavelength expected in the
- €+ 3,5k)0 - model or the minimum scatterer dimension. Thus the field
‘cannot change significantly over one space increment, and
the cubic lattice approximation to the smooth scatterer
surtace cannot be too coarse. To ensure the stability of the
time-stepping algorithm of (6a)—(6f), 8t is chosen to satisfy

B2 (1 4 2,0,k)

- [1 - o(z + 3,7,k)ét
e(? + 3,7,k)

H 20+ 4,5 + 3,k) — HoH 24 3,5 — 3,k) +

Hy V03 + 35k — §) — H9e(+ k4 3)

. (6d) .
- _ B . 1 1 . 1 —1/2 - | :
B/ (i,5 + 3,k)  Omaxdl S (;'s};' T 52) W

— |1 — w E.n(4.7 4 1] 2 where v, ax 1S the maximum wave phaSe velocity expected
« ¢ 1 Y (?’?.7 _I- 2) ) —I_ ¢ 1 . . . | ' | . ' . o . .

* e(%,J + 3,k) . €(1,J + 3,k)0  within the model. The corresponding stability ‘criterion

. . . . _ - ‘set forth by Yee in (7) and (8) of his paper is incorrect.
H 20,5+ 3,k 4+ 3) — H 24,54+ 1k — 1)+  The derivation of (7) 1s outlined in the Appendix. ’

H+2(; — 15+ -12-5}@—— H12(y + £,7 4+ 1.k) - III. THE LATTICE TRUNCATION
S . __ - o) ' CONDITIONS -
| e ) |

(i ik + 1) . A basic problem with any finite-difference solution of
T badof 2 - . Maxwell’s equations is the treatment of the field vector
[1 (i + 1) 5t]E ik 1) b — 5t components at the lattice truncation. Because of limited

- e -—-——-—-.—-—-:——--—--.._—.__ zn .IL, , P s — : : | - . . | - o
_ e(ijk + 1) J 2 ___—_“(Z',j, k+ 1) computer storage, the lattice cannot cover a sufficiently

| €
. - - | large portion of space so that the scattered wave at the
_ . N ore 4 e lattice truncation might be closely approximated. Neces-

H n+1/2 /) ...]_-, ,k 1 — H 'n+1,2 —_— l,_ k 1 | e . | . | .
y v+ 3.5k + 3) B (L =25k +3) + sarily, the lattice must terminate close to the scatterer in
C. g ' - .. ) ' regi here the nature of the scattered wave is unknown.

Hxn+1/2; 2.7 — _l_,k 1y __ Hwn+1/2 1 1 _ a region w . - ’ : -

(L) — 3 f+ 2) Hg+ ok + 3) Proper truncation of the lattice requires that any out-

(6f) going wave disappear at the lattice boundary without re-
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flection during the continuous ‘time stepping of the al-

~ gorithm. Improper truncation results in error for all time
steps after the boundary wave reflections return to the
vicinity of the scatterer. This is exemplified by Yee’s fixing
of the field components at each truncation point at zero,
for all time steps. This “hard” truncation condition does
not take into account the values of the fields of any pos-
~ sible outgoing wave and causes boundary reflections in a
way analogous to reflection at the surface of a conductor.

One way to achieve a ‘‘soft’’ lattice truncation is to as-

sign linearly increasing values of ¢ near the lattice bound-

ary so that absorption of outgoing waves is achieved. How-
ever, for a small value of reflection, the distance over which
absorption takes place must be of the order of one wave-
length. For many problems, this is an intolerable assign-
‘ment of computer storage to points not 1n the scatterer.
- In addition, any incident wave propagating parallel to
such a lattice boundary must suffer distortion due to the
variation of phase velocity along the wavefront. Therefore,
this type of truncation 1is not suitable.

~ cation points to field component values at points one or
more & within the boundary. This 1s 1llustrated using the
one-dimensional la,ttlce of Flg 2, for the time-step relation
cot = 0 ‘

E;*(M) = Ez‘"""l(Mi —1). . %(83,)

Equation (8a) simulates the free-space propagation of the
magnitude of K, from the point M — 1 to the truncation
point M in one time step (the numerical propagation de-
lay 1implhied by the time-step relation). This 1s an exact
truncation condition for the lattice of Fig. 2, in that all
possible +y-directed waves are absorbed at M without
reflection. If we wish to simulate the truncation of this
lattice in an infinite dielectric half-space of refractive index

- m, (83,) 1s modified to

E(M) = Bom(M — 1). (8b)

Unfortunately, no simple, exact soft truncation condition

analogous to (8a), (8b) 1s apparent for either the two-
or three-dimensional space lattices. This 1s because any
particular outgoing wave cannot be assumed to be plane
‘and normally incident on one lattice boundary plane. At
any truncation point, the local angle of incidence of this

" _
Assurnpﬂons M-Y2 zl_. X
Ex=Ey =0; Hy =H, -0 M-1 '
i = .Q_ =0 S
ox. 0z M-i V2 Ez® —e Hy
Maxwell's Equations: : oo
OHy 1 OE, |
ot = B dy 1 /2 _
0E; | OHy _
ot € oy ) ] }
e ,J-o_, € = €, og=0 '/z 3

Fig. 2. One-dlmensmna,l lattice, illustrating a. soft lattice truncation

a.tM

A more desmable soft lattice truncation relates n a,k
simple way the values of the field components at the trun-

| Equatlons (9a) - (9d) allow the field value at any lattice
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~ wave, relative to the boundary, is unknown. Further,

several different waves having varying local angles of in-
cidence may arrive at the same time. No simple, single
truncation condition can account for all of these possibili-
ties. Therefore, we can arrive at only an approximate trun-
cation condition that reduces the effective lattice bound-
ary reflection coefficient to an acceptable level.

'An example of a set of simple, approximate, soft lattice
truncation conditions is illustrated using the two-dimen-

sional lattice of Fig. 3, for the time-step relation cdt = 39

(B, 2(» — 1,1) + E’ ."2(1,1)
E ”""‘2(7, + 1 1))/3 (9a)

CEr(2,0) =

B "(1, 49) = (E n2(y — 1,48) + K ”—2(1, 48)
‘ + E.72(i + 1,48)) /3 (9b)
- (H2(13, — 1) + Hy2(13 )
_ + H, (13,5 + 1)) /3 (90)
H,(503,5) = (Hy" (49} — 1) + Hy "7 (49)

‘ + Hy" (4955 + 1)) /3.

H,"(3,7) =

(9d)

truncation point to rise to approach the field value of any
outgoing wave, thus lowering the effective reflection co-
efficient at the boundary. This is done by simulating the
propagation of an outgoing wave from the lattice plane
adjacent to the truncation, to the lattice plane at the trun-
cation, in a number of time steps corresponding to the
propagation delay. The averaging process is used to take
into account all possible local angles of incidence of the
outgolng wave at the lattice boundary, and possible multi-

ple 1ncidences.
The effectiveness of (92)— (9d)

in reducing lattice

' bounda,ry reflections is illustrated in Fig. 4, which plots

the computed propagation of an outgomg cyllndrlcal wave
in the grid of Fig. 3. The outgoing wave is a Gausslian pulse
originating from an excitation at grid point 25,24. The
pulse is approximately 200 ps long, and has a maximum
| E. | = 1000. 6 is set at 0.3 cm, and 6¢ 1s set at 5 ps. In
the figure, contours of constant E, are superimposed on
the left half of the grid (the right half 1s omitted because
of symmetry) at intervals of 20 time steps. The pulse

Assumptions:

Maxwell's Equations:

OHy . b OE;
ot K Oy
OHy | OE;
ot K Ox |
OE, a‘Hy aHx

'O'Ez | V2

- 49V2 50 s0V2

Flg 3 Two-dimensional lattice, illustrating a set of approxunate
soft, la.ttlce truncation conditions.
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Fig. 4 Propagation of an outgoing cylmdrlcal wave in the grid of
Fig. 3

~ appears to propagate off the edges of the orid, a8 des1red
with only slight distortion of the nominal cylindrical
shape. The residual field magnltude in Fig. 4(e) (f) is

about one order of magmtude less than the peak outgoing
fields at the gr1d boundaries in Fig. 4(c) (d). Further, the

residual field continues to propagate off the grid. This
example shows that (9a)— (9d) reduce grid-boundary re-
flection to the point where a first-order correct solution of
“continuous 1rradiation scattering problems 1s feasible.

‘Truncation conditions (9a)—(9d) are useful for an as-

sumed y-directed incident plane wave, with field compo-

nents £, and H, for scattering problems ‘First, (9a) and
(9b) reduce to an exact truncation, similar to (8a), for
such a wave. Second, (9¢) and (9d) have no effect on the _

propagation of such a wave, which lacks an H, component.

W&VG

IV. THE PLANE-WAVE-SOURCE CONDITION

We now consider the s1mulatlon of a continuous, sinu-
soidal, incident plane wave for use in scattering problems.
The s1mplest approach is to vary the electric field at all

points along one endface of the lattice in a s1nus01dal '

manner. This lattice plane Would then radiate the desired
plane wave. However, such a spec1ﬁcat1on of field values
‘at a lattice boundary plane, without consideration of the
' Values of the fields of any poss1ble outgomg scattered

Therefore, this lattice truncatlon effectwely makes the
- lattice boundary invisible to a y-d1rected 1nc1dent plane i
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Waves, represents a hard lattice truncation cond1t1on and
would cause undesired reflections.

An example of a soft plane-wave-source condition is

llustrated using the two—d1mens1onal lattice of Flg 3
E.(7,2) « 1000 sin (27rfn6t) + E~(,2). (10)

Equatlon (10) 1s a mod1ﬁcat1on of the Maxwell’s equations

; algorithm for all points on the grid linej = 2. At each point

on this line, the computer first calculates E." in the normal

- manner of the algorithm, and stores the valuein memory.

Then the value of the sinusoid is calculated and added to
the stored value of E,". F1nally, this modified value of E.,”
1S stored in memory, In effect, (10) simulates the linear
superposition of a y-directed plane wave and the ambient
field along the grid line j = 2; (10) generates the desired
sinusoldal, incident plane wave. But most importantly,
(10) permits any scattered, outgoing wave to propagate
right through the plane-wave source at 7 = 2 without re-

- flection and reach the soft grid truncation at 7 = 0 to be

absorbed. This condition simulates a plane wave or1g1nat-
ing at infinity, and a scattered wave returning to infinity,
without permitting any 1nteract1on between the two waves
except at the scatterer -

V. THE SYMMETRY CONDITIONS

- An important savings of computer memory and program
execution time results if even symmetry of the dielectric
scatterer about one or two lattice planes can be assumed.
An example of the programming of even scatterer symme-
try is illustrated using the two-dimensional lattice of Fig.
3. The scatterer is assumed to be evenly symmetrlc about

the grld l1ne 1 = 253

I-L,E 0'(251 + I).]) — ‘[.L,E 0'(25 _" I;J) (11a)

" The incident radiation is assumed to be a +y-directed

plane wave. The incident field components E, and H, are
uniform in the z—2 plane and thus naturally have even

‘symmetry about ¢ = 251. Therefore, the E, and H, com-

ponents of the total field must also possess even symmetry

aboutz = 251 _
EnH (255 4+ 1,5) = E.r ,H""*(25l — I,y) (11b)

Using the symmetry, the grid of Fig. 3 may be truncated

at the line 7 = 26. The reQuired truncation condition
E ”(26,3) = F.,"(25,7) (12)

allows calculat1on of the complete set of field components

‘with full spec1ﬁcat1on of the assumed symmetry of the

problem

VI. RESULTS OF TWO-DIMENSIONAL
SCATTERING PROBLEMS

1In this section, we shall present the computed results for

‘the internal electr1c field of a umform, circular, dielectric

cyhnder scatterer. The cylinder is assumed to be infinite
in the 2z direction. The incident radiation is assumed to be

a —|—y—d1rected TM wave of frequency 2.5 GHz. Because
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there is no va,rlat1on of either scatterer geometry or in-
cident fields in the 2 d1rect1on this problem may be treated
as the two—d1mens1onal scattermg of the incident wave,
with only E.-, H.~, and H,fields present. Thus the two-‘
d1mens1onal gr1d of Fig. 3 1s used. _

The geometry of the scatterer relative to the grid 1s 1llus-
trated in Fig. 5. The cylmder axis is chosen as the l1ne

251 241 [, allowing symmetry condition (12) to be used to _

truncate the grid at 1 = 26. Soft grid truncation cond1t1ons
(9a), (9b), and (9¢) are used to tuncate the grid at j = 0,
j = 49 and ) = % y
condition (10) is used to generate the incident wave at
j = 2. The grid coord1nates mternal to the cylmder deter-—
mmed by o ' ' ’ '

((2 —253)" + (.7 — 24} )2)”2 < 20

are assigned the dielectric parameters e, po, and oy All
grid points outside of the cylinder are assigned the param-
eters of free space. Equation (13) leads to a stepped-edge
approx1mat1on of the circular boundary of the scatterer.
The program is started by setting all field components of
the grid equal to zero. The plane—wa,ve source 18 act1vated
at n = 1, the first time step of the a,lgor1thm, and left on
during the entire run. The program 1s time stepped to
nmax chosen large enough so that the smusmdal stea,dy
state is achieved. - .

The first cylinder scatterer program has the followmg
parameters € = 4e, 00 = 0,0 = 0.3 cm = 7\d/20 5t = 5
ps = 6/2c. The choice of 6 implies that the cylinder has a,
radius equal to As. The choice of 6t implies that one wave
cycle requires 80 time steps of the algomthm The computed

results of this program are detailed in Fig. 6(a), which

graphs the envelope of K."(25, j) , and in Fig. 6(b), Wthh
graphs the envelope of E.,"(15,7) for 460 < n < 500 =
Nimax. The exact solution, calculated using the summed—-
series technique of Jones [ 7], is plotted with each computed
solut1on for comparison. The computed solution locates the
positions of the pea,ks and nulls of the envelope of E n

49
a4
%
34 |

29

'- - Dielectric
4 Cyhnder

19

4

o . ky

4 EZL_‘Hx

o | | e
l 5 10 IS5 20 25

Mognitude of Incident E; =l000

Fig. 5. Geometry of the cylmdr1ca,l dielectric scatterer relative to
the gr1d of Fig. 3.

respectively. Soft plane-wave-source :

E(13) _
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2400

. Computed solution -/

- 2000} ————— Exact solution o ' /8
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/4 \\
/ \\
\
800 \\
/
/
‘\..,I,
o _
5 10 15 20 25 30
- (b) '

Fig. 6. Results of the first cylinder scatterer program.

with a maximum error of 48, or about =3 percent of the
diameter of the scatterer. The computed

solution gives
the magnitude of the envelope at each peak with a maxi-
mum error of 410 percent. The executlon time 18 50 S
using the CDC 6400.! o - I

The second cylmder scatterer program ha,s the followmg
pa,ra,meters eg = 47¢, o4 = 2.2 mho/m, 6 = 0.6 mm ~
Na/28, 6t = 1 ps = 6/2c. The choice of 8 implies that the
cylmder has a radius equal to 2)\s. The choice of 8t implies
that one wave cycle requires 400 time steps of the al-
gorithm. The dielectric parameters are chosen to simulate
human tissue with high water content. The radius of the

scatterer is chosen to equal that of the eyeball. The computed

results of this program are detailed in Fig. 7(a), which

‘graphs the envelope of E,"(25,7), and in Fig. 7(b), which

graphs the envelope of E.*(15,5) for 400 < n < 600. The
exact solut1on is plotted with each computed solution for
comparison. The computed solution locates the positions

of the peaks and nulls of the envelope with a maximum

error of 438, or about =8 percent of the diameter of the
scatterer. The computed solution gives the magnitude of
the central peak of the envelope W1th an error of 4=5 per-
cent. The execution t1me 1s 60 s. ' '

There are two mailn sources of e error in the results of F1gs
6 and 7. The first is the 1mperfect1on of the soft grid trun-
cation of w(9a) (90). The second 1s the stepped-edge ap-

1 The l1stmg of the 134-ca,rd Fortran IV source deck is available
from the authors _
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E, (25,))
800 —
‘Computed solution
600 ~= - == Exact solution
400 . | | \\\
- \
| o .
——— . .
' O 7 ' \.
. S e _.."', : \\ \
200 - - “\ .
_ _ N
_ X J
\\‘-’,#"
0 _
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- _ (a)
E, (15,§)
600
400
200
0 . - | T L

(b)

Fig. 7. Results of the second cylinder scatterer program.

proximation of the bounda,ry of the scatterer These error
sources decrease linearly with §, at most. Overall the solu-
tions of Figs. 6 and 7 may be descrlbed as better than first-
order accurate. Comparable accuracy should be obtained
- with arbltrary two-dimensional scatterers of the general
- size of the cylinders examined. The only program modifica-
tion required is a spemﬁca,tron of the dielectric parameters
of the arbltrary scatterer at ea,ch grld pomt

VII EXTENSION TO THREE DIMENSIONAL
SCATTERERS -

The solutlon of three-d1mens10nal dlelectrlc scatterlng
prcblems with this techmque requires the full Yee algo-
rithm of (63,) (61), 1n conjunction with the corresponding

lattice. A sufficiently accurate lattice truncation condition,

S1mllar to (9a)—(9d), is formula,ted For this case, care
must be taken in setting the truncation condition to avoid
algorlthm instability. This may be seen by cons1der1ng the
apphcatlon of (7) to a cubic lattice in two or three dlmen-
slons

ot < c—-\/—_ 0.7076/c (2 dimensions) (14a)

ot < (-JV: _ 0.5776/0 (3 dimensions). (14b)

If, for convenience in programmmg the truncation condl-
tion, the relation 8¢ = 0.58/c is used for both lattices, the

three-dimensional lattice algorithm is closer to instability.

Therefore, any perturbation of the basic algorithm with a

soft lattice truncation is more likely to lead to instability

in the three-dimensional case. This has been borne out
by preliminary efforts in the programming of this case.

APPENDIX

DERIVATION OF THE STABILITY
- CRITERION -

For convemence, we cons1der a normahzed region of
space with u =1, e =1, ¢ =0, and ¢ = 1. Letting j =
(— 1) 112 we rewrite Maxwell’s equatlons as

. - . = 0 - .=
IV X (H + JE) = Py (H + jE) (15a)

~ Or more simply as

JV XV = 6V/6t where V = H + 7E.  (15b)

The stablllty of a pa,rtlcular numerical representation of
(15b) can be examined simply by cons1der1ng the follow-

1ng pailr of eigenvalue problems

-V =AV (16a)
| 6t numencal -
.7 V Inum.erlca,] >< V ";' 7\]7 (16b)

Using the numerical time derivative of (5) (163,) ylelds
Vn+1/2 . 'Vn—1/2 _ _
B vE— = \V*. (17)

Defining a solution growth factor q = Ptz /e and
substituting into (17), we solve for ¢

g = Not/2 £ (1 + (N6t/2)2)12 - (18)

_ Algorlthm stablhty requires that | ¢ | < 1 for a,ll poss1ble
- spatial modes in the lattice. For this to occur

Rer=0 [Im)|< 2/t (19)
We now let ' _ _
V(l m n) Vo exp [y (lc l6x + kymay + km&z)] (20)

represent an arbltrary lattice spatlal mode. Using the
numerical space derivative formulation of (4), (16b)
yields

5 [ SIn (1k 6x) sin (%k 6y) s1n (lk 63)]
' Ssx oy 02
X V(lmn) = \V(Imn).  (21)

After perfcrming the cross product and writing the z, y, and

- z component equations, the resulting system 1s solved for.

\2
3_4(M+M+M)

o> Sy 022
_ ' (22)
For all possible k., k,, and k.
o ' S \12
Rex =0 IIm)\|_<_2( —I—-—-—+——) . (23)
B | ox*  &y2 6%

To satisfy stability condition (19) for the arbitrary lattice
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spatial mode, we set

11 1\ 2
)] < =, (24
(6:232 Y 0y* T 6z2) — ot , ( )

The algorlthm stablllty condltlon follows 1mmed1ately
from (24). In an inhomogeneous region of space, it is dif-
ficult to determine a spectrum of A analogous to (23) for

all possible lattice spatial modes. For absolute algorlthm _

stability, (7) sufﬁces because 1t represents a ‘‘worst case’’
ch01ce of ét. ' ‘
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