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by an incident field other than a plane wave. However, the uniform
high-frequency solution (1) is valid only for broadside plane-wave
incidence.
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currents are induced by an incident TE-polarized plane wave. The case of
a circular cylinder is used to demonstrate the usefulness of the combined
methods. It is shown that a two-term expansion yields good results for the
surface currents and excellent results for the ensuing bistatic radar cross
section.

I. INTRODUCTION

Recently, Kriegsmann et al. have introduced a new method for
solving scattering problems for two-dimensional convex cylinders
[1]. By applying a radiation boundary condition on the surface of the
scatterer (OSRC) they obtained a simple analytic expression for the
surface current when the incident wave was transverse magnetic
(TM) polarized. When the incident wave was TE polarized, the
method yielded an ordinary differential equation for the surface
current. This equation contains variable coefficients which depend
upon the geometry of the cylinder and the nature of the incident wave.
In general, it cannot be solved exactly.

In this communication, we shall derive an approximate solution to
this differential equation by using the WKBJ technique [2]. The
motivation for such an approximation is twofold. First, it affords an
accurate analytical approximation to the surface current without
recourse to the numerical solution of a boundary value problem for
arbitrary convex shapes. Secondly, and perhaps more importantly, a
recent work by Jones [3] suggests that the approximate ‘‘surface
current’” for a three-dimensional convex acoustic target (hard)
satisfies a second-order partial differential equation on the target’s
surface. We believe that a similar situation will occur when the OSRC
method is extended to handle three-dimensional electromagnetic
scattering problems. It seems plausible that the method presented
herein could be extended to handle such situations.

The remainder of this work is organized in three additional
sections. In Section II the scattering problem is formulated, and the
OSRC method is used to derive an ordinary differential equation for
the surface current. An approximate solution to this equation is
deduced by the WKBJ method in Section III. Finally, in Section IV
the results for a circular cylinder are presented.

II. FORMULATION

We shall consider a transverse electric plane wave illuminating a
two-dimensional perfectly conducting convex cylinder. The incident
wave, propagating at an angle « with respect to the —x axis, is given
by

Hye=Unce /2 Upe=eltxeosecysin )
where the unit vector £ is parallel to the axis of the cylinder. The
parameter w is the frequency of the incident wave, k = wa/c, c is the
speed of light in free space, and a is a characteristic dimension of the
cylinder’s cross section. The variables x and y are the corresponding
dimensionless Cartesian coordinates in the plane orthogonal to Z.
They are scaled with respect to the length a.

The scattered magnetic field H, is given by

Hy(Z)=U(R)e '3 (2a)
- -~ 9G _
URX)= § J(®) ™ (F,X')ds’ (2b)

where C represents the boundary of the cylinder’s cross section,
3/9v’ denotes an outward normal derivative on C, and G is the free-
space Green'’s function given by

G(i’|)‘f")=£ H®(kR) 20)
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R=|X-3%|=V(x=x")*+(y-y’)*.

The vectors X and X' appearing above are just normalized (x, y) and
(x’, y'), respectively. The tangential surface current J appearing in
(2b) is related to Uy, and U by

@d)

J(X)= = [Un(X)+ U(X)). 3

The tangential current is unknown, because U is not prescribed for
the TE polarization. The OSRC method provides a means of
generating an approximation to U in terms of known geometric
quantities and Uj,.. The motivation for this method, and its complete
description are explained in [1]. Here, we present a single second-
order approximation which is the one most often used in practice. It is

2 f
%5 U+A(S)U=B(s)% (4a)
A(S)=2k2+3jk§‘(s)—% £2(s) (4b)
B(9) =24(k+/¢) 4)

where {(s) is the curvature of the cylinder’s surface at s and d2/ds? is
the second derivative with respect to the arclength of C. Combining
(3), (4), and the definition of Uj,. from (1), we find that J satisfies

2

d*J .
F+A (5)J= —F(s)e/*®

P PUN AL
Fls)=k {2 < ds) 2a(s)}

. §d? 3
+jk {I‘fnr(s)—z‘z(s)r(s)} -206 6

(52)

a(s)y=~A(s) - (cos o, ~sin a)

(5¢)

d(s)=X,(s) * (cos o, —sin o) (5d)

where Xy (s) is the vector representation of the curve C. In addition to
satisfying (5) J must also be periodic, i.e.,
aJ aJ

J(s+L)-J(s),£(s+L)—£(s), 0<s=<L 6)
where L is the length of C. Thus the OSRC method has reduced the
determination of the surface current to the problem of solving an
ordinary second-order linear differential equation with variable
coefficients and periodic boundary conditions.

We note here that the coefficient A(s) in (5a) has a nonzero
complex component. Thus the homogeneous solution of (5), (6), i.e.,
F = 0in (5a), has only the zero solution. From this we deduce that
(5), (6) has a unique solution [4].

1. WKBJ ANALYSIS

The actual computation of the surface current J which satisfies (5),
(6) is impossible to perform analytically for an arbitrary convex
cylinder. In general, it must be done numerically. However, it is
quite easy to obtain a WKBJ approximation of J which yields an
analytic formula.

According to this procedure we express J as

J(s)=V(s, k)e/k+® (7a)
where the amplitude V(s, k) has the asymptotic expansion
Vis, )~ Val©)k". (7b)

n=0
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Since the phase ¢(s) defined in (5d) satisfies (6), the function J will
too, as long as the amplitudes V,(s) also satisfy these conditions.
Inserting (7) into (5) and equating to zero the coefficients of the
powers of k, we deduce an infinite number of algebraic equations
which sequentially determine the V,(s). The first two amplitudes,
which suffice for our purpose here, are given by

Vols)= —1428)

DG (8a)

$+($+3r)Vo+2¢Vo—r(2a—3)} 3b)

Vi)= - { >

D=1—%4§2 8c)

where the dots denote differential with respect to the arclength s. We
note that the denominator D does not vanish because ¢ is the
projection of the unit tangent vector onto (cos o, — sin «) and is thus
less than one in modulus. We also observe that V; and V satisfy (6)
because the curvature {(s) and ¢(s) are periodic functions.

Inserting the first two terms of (7b) into (7a) we formally deduce
that

X ®

J~ I:V0+l Vi+ O(l/kz)] ek
where O(1/k?) represents the remaining terms. This is the WKBJ
approximation of the periodic solution of (5), (6).

The approximate surface current given by (9) can be inserted into
(2) to determine the scattered field. This expression simplifies in the
far field, r > 1, to

4@, b (102)
U~ , —_— a,
( ) 7
k . 1 )
A®, k)=—- ’_ e /4 S [Vo(s)+— Vl(s)] eV ® cos 6(s) ds
8 c k
(10b)
where Y(s) = —X(s)'7 + &(s), cos & = 7i+F, A is the unit normal of

Cats, and 7 = (cos O, sin O) is the unit vector in the observation
direction.

IV. EXAMPLE: THE CIRCULAR CYLINDER

In this example C is a circle of unit radius so that { = 1 in all the
preceding formulas. Without loss of generality, the angle o defined
in (1) is set to zero in the subsequent equations. The exact boundary
value problem for the Helmhotz equation can be solved exactly using
a Fourier series representation. In Fig. 1 we have graphed the results
predicted by (9) versus the Fourier series solution for the k = §
circular cylinder. Thirty terms were taken in the Fourier series to
obtain an accurate answer. As can be seen in this diagram, the results
given by (9) are quite close to the exact answer. Similarly, Fig. 2
shows our results for the k = 10 circular cylinder. Here again 30
terms were used in the partial sum to insure accuracy. The agreement
between (9) and the exact solution is even better than before: this is to
be expected since the WKBJ method is a high-frequency approxima-
tion.

Fig. 3 compares the bistatic radar cross section predicted by (10b)
for a k = 5 circular cylinder verses the exact answer computed by a
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Fig. 1. OSRC predicted surface currents using a two-term asymptotic

expansion for kK = 5 circular cylinder.
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Fig. 2. OSRC predicted surface currents using a two-term asymptotic
expansion for ¥ = 10 circular cylinder.
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Fourier series. Fig. 4 shows the bistatic radar cross section fora k =
10 circular cylinder. We can see that the agreement between the
predicted and the exact RCS is very good over the entire range of
angles, and as before, the error is even smaller for the larger
cylinder. This is to be expected since the integration process tends to
remove small errors introduced by the asymptotic expansion. The
most significant errors are in the deep shadow where the phase of our
approximate currents differs from the exact answer. This is not a
deficiency in the WKBJ method but rather the OSRC approximation.

In conclusion we see that the asymptotic expansion (9) does a good
job of estimating the surface current over a wide range of frequencies
while even better agreements can be seen in the bistatic radar cross
section results. Thus, for convex objects being illuminated by a TE
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Predicted Bistatic Radar Cross Section vs. Angle
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Fig. 3. Predicted RCS for k = 5 circular cylinder (RCS is scaled with

respect to k).
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Fig. 4. Predicted RCS for k = 10 circular cylinder (RCS is scaled with
respect to k).

polarized wave, the combination of the OSRC and WKBJ methods
provides a powerful tool for analyzing scattering problems.
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