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Abstract— This paper summarizes the formulation and recent applications of the finite-
difference time-domain (FD-TD) method for numerical modeling of electromagnetic scat-
tering and interaction problems. One of the goals of this paper is to demonstrate that
recent advances in FD-TD modeling concepts and software implementation, combined
with advances in computer technology, have expanded the scope, accuracy, and speed of
FD-TD modeling to the point where it may be the preferred choice for structures that

cannot be easily treated by conventional integral equation and asymptotic approaches. As
a class, such structures are electrically large, and have complex shapes, material composi-
tions, apertures, and interior cavities. The discussion is highlighted by a succinct review
of recent FD-TD modeling validations and research frontiers in radar cross section, cou-
pling to wires and wire bundles in free space and cavities, scattering from surfaces in
relativistic motion, inverse scattering, supercomputer and mini-supercomputer software,
and radiation condition theory. The paper concludes with a summary of the strong and
weak points of FD-TD, and guidelines concerning when FD-TD should (or should not)
be applied to high-frequency electromagnetic modeling problems.

INTRODUCTION

Contemporary high-frequency electromagnetic engineering problems can involve
wave interactions with complex, electrically-large three-dimensional structures.
In the context of this paper, electrically large means objects spanning a number
of wavelengths, or equivalently, total phase shifts in the near field substantially
exceeding 360°. Electrically complex is used to describe objects having shapes,
material compositions, apertures, or interior cavities which produce near fields
that cannot be usefully resolved into finite sets of modes or rays. Proper numerical
modeling of such near fields requires sampling of the fields at sub-wavelength
resolution to avoid aliasing of magnitude and phase information. The goal is to
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provide a self-consistent model of the mutual coupling of the electrically-small
patches or cells comprising the object.

A candidate numerical modeling approach for this purpose is the finite-differ-
ence time-domain (FD-TD) solution of Maxwell’s curl equations [1]-[12]. This
approach is analogous to existing finite-difference solutions of fluid flow problems
encountered in computational aerodynamics, in that the numerical model is based
upon a direct solution of the governing partial differential equation. Pursuing this
analogy, FD-TD shares the computational requirements of the fluids codes (and
other similar large-scale partial differential equation solvers) in terms of computer
floating-point arithmetic rate, primary random access memory size, and data
bandwidth to secondary memory. Yet, FD-TD is a non-traditional approach to
numerical electromagnetic modeling, where frequency-domain approaches have
dominated.

One of the goals of this paper is to demonstrate that recent advances in FD-
TD modeling concepts and software implementation, combined with advances in
computer technology, have expanded the scope, accuracy, and speed of FD-TD
modeling to the point where it may be the preferred choice for certain types of
scattering and coupling problems. With this in mind, this paper will succinctly
review the following recent FD-TD modeling validations and research frontiers:

Scattering: Radar cross section of canonical three-dimensional bodies spanning

up to 9 wavelengths [9]-[11];

Penetration and coupling: Plane wave penetration through thin slots having

complex paths through thick screens [13], and induced currents excited by an

incident plane wave on wires and wire bundles in free space and in a metal

cavity [14];

Iransient phenomena: Reflection of a plane wave by a relativistically vibrating
perfectly-conducting surface [15]; '

Inverse scattering: Reconstruction of two-dimensional conducting and homo-
geneous dielectric ta.rget sha.pes from a smgle -point scattered field pulse re-
sponse [16];

Supercomputer software: Development of efﬁcmnt memory mana.gement soft-
ware for the Cray X-MP, and initiation of coarse-grain multi-processing soft-
ware for the Cray X-MP and Cray-2; '
Mini-supercomputer software: Initiation of efficient memory management soft-
ware for the Floating Point Systems 264, and fine-grained multiprocessing soft-
ware for the Intel Hypercube; and

Radiation condition theory: Continuation of theoretical work on the theory
and application of one-way wave equations [17]-[20], which has already led to

the on-surface radiation condition (OSRC) formulation of scattering for convex
two-dimensional bodies [21], [22].

GENERAL CHARACTERISTICS OF FD-TD

As stated, FD-TD is a direct solution of Maxwell’s time-dependent curl equations.
It employs no potentials. Instead, it applies simple, second-order accurate central-
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difference approximations (1] for the space and time derivatives of the electric and
magnetic fields directly to the respective differential operators of the curl equa-
tions. This achieves a sampled-data reduction of the continuous electromagnetic
field in a volume of space, over a period of time. Space and time discretizations
are selected to bound errors in the sampling process, and to insure numerical sta-
bility of the algorithm. Electric and magnetic field components are interleaved in
space to permit a natural satisfaction of tangential field continuity conditions at
media interfaces. The resulting system of equations for the fields is fully explicit,
so that there is no need to set up or solve a set of linear equations, and the re-
quired computer storage and running time is proportional to the electrical size of
the volume modeled. Overall, the FD-TD marching-in-time procedure results in
a simulation of the continuous actual waves by sampled—data numerical analogs
propagating in a data space stored in a computer. | '
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Figure 1. Time-domain wave-tracking concept of the FD-TD
| ~ method.

Figure 1 illustrates the time-domain wave tracking concept of the FD-TD
method. A region of space within the dashed lines is selected for field sampling
in space and time. At time = 0, it is assumed that all fields within the numerical
sampling region are identically zero. An incident plane wave is assumed to enter
the sampling region at this point. Propagation of the incident wave is modeled
by the commencement of time stepping, which is simply the implementation of
the finite-difference analog of the curl equations. Time stepping continues as the
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analog of the incident wave strikes the arbitrary structure embedded in the sam-
pling region. All outgoing scattered-wave analogs ideally propagate through the
lattice truncation planes with negligible reflection to exit the sampling region.
Phenomena such as induction of surface cnrrents, scattering and multiple scatter-
ing, penetration through apertures, and cavity excitation are modeled time-step
by time-step by the action of the curl equations analog. Self-consistency of these
modeled phenomena is generally a.ssured if their spatial and tempora.l variations
are well resolved by the space and time sampling process.

Time stepping is continued until the desired late-time pulse response or steady-
state behavior is achieved. An important example of the latter is the sinusoidal
steady state, wherein the incident wave is assumed to have a sinusoidal depen-

dence, and time stepping is continued until all fields in the sampling region exhibit
sinusoidal repetition.*

Figure 2. Positions of the field components about a unit cell of the FD-TD
lattice.

Figure 2 illustrates the positions of the electnc and magnetic field components
about a unit cell of the FD-TD lattice in Cartesian coordinates. Note that each

magnetic field vector component is surrounded by four circulating electric field
vector components, and vice versa. This arrangement permits not only a centered-

* Extensive numerical exPeriment-a.ﬁﬁi; mth FD-TD has shown that the number
of complete cycles of the incident wave required to be time-stepped to achieve the

sinusoidal steady state is approximately equal to the Q factor of the structure or

phenomenon being modeled. A good recent example is the wire/cavity work of
[14], reviewed later in this paper.
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difference analog to the space derivatives of the curl equations, but also a natural
geometry for implementing the integral form of Faraday’s Law and Ampere’s Law
at the space-cell level. This integral interpretation permits a simple but effective

modeling of the physics of thin-slot coupling [13], thin-wire coupling [14], and
smoothly curved target surfaces [27].
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Figure 3. Arbitrary three-dimensional scatterer embedded in a FD-TD
space lattice.

Figure 3 illustrates how an arbitrary three-dimensional scatterer is embedded
in an FD-TD space lattice comprised of the unit cells of Fig. 2. Simply, desired
values of electrical permittivity and conductivity are assigned to each electric field
component of the lattice. Correspondingly, desired values of magnetic permeabil-
1ty and equivalent conductivity are assigned to each magnetic field component of
the lattice. The media parameters are interpreted by the FD-TD program as lo-
cal coeflicients for the time-stepping algorithm. Specification of media properties
1in this component-by-component manner results in a stepped-edge, or staircase,
approximation of curved surfaces. Continuity of tangential fields is assured at the
interface of dissimilar media with this procedure. There is no need for special
field matching at media interface points. Stepped-edge approximation of curved
surfaces has been found to be adequate in the FD-TD modeling problems stud-

ied to date (2], [5], [7], [12], [14]. However, a conformal curved surface approach
1s being developed to accomodate those problems where surface roughness can
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appreciably affect scattering behavior [27].

REVIEW OF FD-TD ALGORITHM DETAILS

Table 1 lists the six coupled equations for the electric and magnetic fields which
comprise Maxwell’s equations in Cartesian coordinates. Table 2 lists the assumed
space/time notation for the field vector components sampled at discrete lattice
locations and at discrete time steps. This table also provides the central-difference
approximations to the space and time partial derivatives of Maxwell’s equations,
using the assumed sampled-field notation. Finally, Table 3 provides sample finite-
difference time-stepping expressions for a magnetic and an electric field compo-
nent. As noted earlier, all quantities on the right-hand side of each time-stepping

expression are known (stored in computer memory), so that the expressions are
fully explicit.

o i (5 ) e
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TR - R as
Table 1.  Maxwell’s curl equations in Cartesian coordinates.
(i,7,k) = (36, j6, k6) (2a)
F™(i,j,k) = F(i6, 76, k6, nét) (2b)
O 6ik) PG 25K PG U20) | o) (5
x. 3Fn’(i,j,k) _ Fn+1/2(i,j,k') _ F““lfz(i,j,k) N O(gtz) (3b)
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Table 2.  Central-difference approximations to space and time partial
derivatives.
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Table 3. Examples of finite-diflerence expressions for field components
derivatives.

The choice of 6 and ét is motivated by reasons of accuracy and algorithm
stability, respectively. To insure the accuracy of the computed spatial derivatives
of the electromagnetic fields, § must be small compared to a wavelength. § <
A/10 is sufficient to realize less than +7% uncertainty (40.6 dB) of the FD-TD
solution of near fields due to the approximation of the spatial derivatives [11]. For
6 < A/20, this uncertainty drops to less than +2% (£0.2 dB). § should also be

small enough to permit resolution of principal surfaces and/or volumetric details
of the structure modeled.

To insure the stability of the time-stepping algorithm exemplified by (4a)
and (4b), 6t is chosen to satisfy the inequality [2]

1 1 1 .72 _,4
0t < (5;1‘:2 . + %] Crmax
5 |
< (for a cubic lattice) (5)
| ’l’-'?:rn.*sl.ziz\/§

where cmax 1s the maximum wave phase velocity within the model. Note that
the corresponding stability criterion set forth in Eqs. (7) and (8) of Reference (1]
1s incorrect |2].

Figure 4 illustrates the division of the FD-TD lattice into total-field and
scattered-field regions. This division has been found to be very useful since it
permits the simulation of an incident plane wave in the total-field region with
arbitrary angle of incidence and polarization (8], [20]. Three additional important
benefits arise from this lattice division. First, a large near-field computational
dynamic range i1s achieved, since the scatterer of interest is embedded in the
total-field region. Thus, low field levels in shadow regions or within cavities are
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computed directly without suffering subtraction noise (as would be the case if scat-
tered fields in such regions were time-stepped via FD-TD, and then added to the
incident field to obtain the low total-field levels). Second, embedding the scatterer
in the total-field region permits a natural satisfaction of tangential field continu-
ity across media interfaces, as discussed earlier, without having to compute the
incident field at possibly numerous points along complex, scatterer-specific loci.
The arrangement of Fig. 4 requires computation of the incident field only along
the fixed, regular connecting surface between the total-field and scattered-field
regions to permit generation of the incident wave in the total-field region [8], [20].
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Figure 4. Division of FD-TD lattice into total-field and scattered-field
regions: (a) Lattice division; (b) Fields at connecting plane
Yy = Jod.

Third, the provision of a well-defined scattered-field region in the FD-TD lattice
permits the near-to-far field transformation illustrated in Fig. 5. The dashed
virtual surface shown in Fig. 5 can be located along convenient lattice planes in
the scattered field region of Fig. 4. Tangential scattered fields computed via FD-
TD at this virtual surface can then be weighted by the free-space Green’s function
and then summed to provide the far-field response and radar cross section [8]-[11].
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Figure 4 uses the term “lattice truncation” to designate the outermost lattice
planes in the scattered field region. The fields at these planes cannot be com-
puted using the centered-differencing approach discussed earlier because of the
assumed absence of known field data at points outside of the lattice truncation.
These data are needed to form the central differences. Therefore, an auxiliary
lattice truncation condition is necessary. This condition must be consistent with
Maxwell’s equations in that an outgoing scattered-wave analog striking the lat-
tice truncation must exit the lattice without appreciable non-physical reflection,
just as if the lattice truncation was invisible. It has been shown that the re-
quired lattice truncation condition is really a radiation condition in the near field
[17]-{20]. Further, it has been shown that convenient local approximations of the
exact radiation condition can be generated and applied with good results [8]-[11],
(17]-[20]. The procedure for constructing more precise local approximations of
the exact radiation condition is now understood [17]-[19]. These approximations

are currently under study for numerical implementation in the FD-TD computer
programs.
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Figure 8. Near-to-far field transformation geometry: (a) original problem;
(b) equivalent problem external to the virtual surface S .

EXAMPLES OF RECENT FD-TD MODELING VALIDATIONS

Scattering and Radar Cross Section

Analytical and experimental validations have been obtained relative to FD-
TD modeling of canonical three-dimensional conducting bodies spanning 1/3 to 9
wavelengths [9]-[11]. For brevity, only one such validation will be reviewed here.

Figure 6 depicts the geometry of a crossed-plate scatterer comprised of two
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~ flat plates electrically bonded together to form the shape of a “T”. The main
plate has the dimensions 30 cm X 10 cm x 0.33 ¢cm, and the bisecting fin has
the dimensions 10 cm X 10 ¢cm X 0.33 cm. The illumination is a plane wave at
0° elevation angle and TE polarization relative to the main plate, and at the
frequency 9.0 GHz. (Thus, the main plate spans 9.0 wavelengths in this model.)

Fin

/ L\ Corner Reflector Looks
""" S-S roX- oo -Tg 0 7 90°%«< ¢>'< | 80°

' Main Plate Fin Center
Center Line Line

LATTICE EDGE

Figure 6. Geometry of crossed-plate (T) scatterer and illumination.

Note that look angle azimuths between 90° and 180° provide substantial corner
reflector physics, in addition to the edge diffraction, corner diffraction, and other
eflects found for an isolated flat plate. For the 9-GHz FD-TD model, the lattice
cell size is 0.3125 cm, approximately 1/11 wavelength. The main plate is formed
by 32x96 x 1 cells; the bisecting fin is formed by 32 x 32X 1 cells; and the overall
lattice is comprised of 48 x 112 x 48 cells (1,548,288 unknown field components).
Note that the lattice truncations are located only 8 cells from the scatterer’s
main plate and fin edges. The slightly eccentric positioning of the bisecting fin
1s accounted for in the FD-TD model. 661 time steps are used, equivalent to 31
cycles of the incident wave at 9 GHz.
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Measurements of the radar cross section (RCS) versus look angle azimuth were
performed in the anechoic chamber facility operated by SRI International, Menlo
Park, CA. Figure 7 compares the FD-TD predictions with the SRI measurements.
It 1s seen that the agreement is within about 1 dB over a total RCS-pattern
dynamic range of 40 dB. Locations of peaks and nulls of the pattern are accurately
predicted to within 1°. Note especially the excellent agreement for look angle
azimuths greater than 90°, where there is a pronounced corner-reflector effect. As
stated in [10], it appears that this case (and similar 9-wavelength cases studied)
represents the largest detailled three-dimensional numerical scattering models of

any type ever verified wherein a uniformly fine spatial resolution and the ability
to treat nonmetallic composition 1s incorporated in the model.
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Figure 7. Comparison of FD-TD modeling predictions with SRI measure-

ments for the crossed-plate scatterer at 9 GHz (maximum scat-
terer size = 9)¢ ).

Wave Penetration and Coupling

Analytical and/or experimental validations have been obtained relative to FD-
TD modeling of plane wave penetration through thin slots having complex paths
through thick screens [13|, and induced currents excited by an incident plane wave
on wires and wire bundles in free space and in a metal cavity [14]. For brevity,
selected validations are reviewed here only for the wire coupling problem.

Figure 8 shows the analytical validation results for the induced currents on a
bundle comprised of four wires, where three are of equal length. Here, a wire
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of length 0.6 m is assumed at the center of the bundle, and three parallel wires
of length 0.3m are assumed to be located at 120° separations on a concentric
circle of diameter 0.01m. The radii of all wires in the bundle are equal, and
set to 0.001m. The assumed excitation is in free space, provided by a 1-GHz,
TM-polarized, plane wave at normal incidence to the bundle.

T T T T TS L =0-6m T T I"
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E 241
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Figure 8. Comparison of hybrid FD-TD/MOM modeling predictions
with direct EFIE for induced currents on a wire bundle illu-
minated by a plane wave in free space.

For purposes of FD-TD modeling, the bundle is embedded within a 16 % 16 x 36
cell space lattice, which allows 8 cells between the bundle and the lattice trunca-
tion planes. A uniform cell size of 0.03m (1/10 wavelength) is employed. Note
that the cross section of the bundle fits into a single FD-TD cell. Following the
technique of [14], the bundle is replaced by a single wire having varying equiva-
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lent radius corresponding to the three sections along the bundle axis. (Here, the
two outer sections are of length 0.15m and have a radius of 0.001 m; while the
middle section is of length 0.3m and has an equivalent radius of 0.003347 m.)
The physics of the single wire of varying equivalent radius is incorporated in the
FD-TD model by using a Faraday’s Law contour integral model for the looping
magnetic field components adjacent to the wire [14]. The FD-TD model is time-
stepped to 30 cycles to obtain convergence of the tangential fields at a virtual
surface conveniently located at the cell boundary containing the equivalent wire
(shown as a dashed line in Fig. 8). These fields are then utilized as excitation to
obtain the currents induced on the individual wires of the original bundle. This
last step is performed by setting up an electric field integral equation (EFIE), and
solving via the method of moments (MOM). Figure 8 shows an excellent corre-
spondence between the results of the hybrid FD-TD/MOM procedure described
above and the usual direct EFIE solution for the induced current distribution on
each wire of the bundle. In this figure, note that the horizontal axis represents
normalized position along each wire, so that each current distribution extends
between 0.0 and 1.0, despite the differing actual wire lengths.
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Figure 9. Pluto experimental geometry.

We next consider the experimental validation of the hybrid FD-TD/MOM
model summarized above for the case of one and two wires within a metal cavity.
Specifically, the experimental setup employed is the PLUTO (Preliminary Liver-
more Universal Test Object), shown in Fig. 9 [23,24]. PLUTO is a 1.0m high,
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0.20 m diameter, cylindrical metal can above a ground plane. Approximate plane
wave excitation is provided by an electrically-large conical monopole referenced
to the same ground plane. The aperture, usually a circumferential slot at the
ground plane, has an adjustable size. Other adjustments include the position of
the internal shorting plug and the position and number of the internal wires. For
the cases studied, the circumferential slot aperture has 0.125m arc length and
0.0125m gap. The internal shorting plug is 0.40 m above the ground plane. For
the one-wire study, a wire of length 0.30m and radius 0.0004953 m is centered
within PLUTO and connected to the ground plane with a lumped 50-ohm load.
For the two-wire study, parallel wires of these dimensions are located 0.01 m apart
at the center of PLUTO. Here, one of the wires is shorted to the ground plane, and
one is connected to the ground plane with a lumped 50-ohm load. Measured data
includes the magnitude and phase of the transfer function between the incident
electric field and the voltage across the wire load over a wide range of UHF and
microwave frequencies. The frequency range discussed here is 1.0 to 1.25 GHz,
which includes a prominent coupling peak apparently due to the slot resonance.

For purposes of FD-TD modeling, PLUTO is embedded within a 16 x 32 x 88
cell space lattice. Even symmetry in both the z and z directions is exploited
to minimize computer resources. Extensive convergence studies indicate that the
stepped-surface FD-TD approximation of the smooth PLUTO cylinder wall and
circumferential slot aperture provides a loading effect which shifts the computed
resonant coupling peak downward in frequency from the measured value. It is
found that the bulk of this downward shift is caused by the stepped-surface ap-
proximation of the aperture, and that this frequency-shift component can be elim-
inated by employing a Faraday’s Law contour integral model to reduce the total
stepped-edge length of the aperture to the desired value of 0.125m [14]. With
6=0.0125m (1/24 wavelength at 1.0 GHz), the residual downward shift in the
coupling peak is about 32 MHz (2.8%) for the single-wire case, and about 18
MHz (1.6%) for the two-wire case. To permit a straightforward comparison of
the modeled and measured coupling response with this residual frequency shift
eliminated, the lattice cell size is reduced by 2.8% (to 0.012144m) and 1.6% (to
0.0123m) for the two cases.

Figures 10(a) and 10(b) compare (as a function of frequency) the measured
and numerically modeled wire load current for the one-wire and two-wire cases,
respectively, assuming a 1 v/m incident electric field. With the small residual res-
onance frequency shift eliminated, excellent agreement is observed for both cases.
Note that the two-wire case is an especially challenging test of the hybrid FD-
TD/MOM model, since the observed @ factor of the coupling response, defined
as the center frequency divided by the half-power bandwidth, is high (approxi-
~mately 75). Indeed, it is found that the FD-TD code has to be stepped through
as many as 80 cycles to approximately reach the sinusoidal steady state for exci-
tation frequencies near the resonant peak. However, substantially fewer cycles of
time stepping are needed away from the resonance, as indicated in the figure.
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Figure 10.
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(3a)

(b)

Comparison between experimental data and calculation
based on hybrid FD-TD/MOM technique: (a) single wire in
cavity, (b) two wires in cavity.

‘Figures 11(a) and 11(b) show the predicted detailed distribution of the induced
currents on the single wire and on each of the wires of the two-wire bundle in
PLUTO at their respective resonant peaks (1.166 GHz and 1.141 GHz). Only the
current at the base of each wire is experimentally verified, as in Figs. 10(a) and
10(b). Figures 11(a) and 11(b) are included since little data has been published

concerning coupling to wires in three-dimensional cavities.

The hybrid FD-TD/MOM approach introduced in [14] and reviewed here ap-
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pears to have substantial promise for allowing the numerical modeling of elec-
tromagnetic coupling to realistic wires and cables within complex cavities. This
approach takes advantage of the detailed volumetric modeling afforded by FD-

ID, and the detailed wire modeling afforded by MOM, by modeling the cavity
physics and wire bundle physics in a self-consistent manner.
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Figure 11. Distribution of induced currents on the wire(s) in Pluto pre-
‘dicted by the hybrid FD-TD/MOM model at the resonant fre-
quency of the coupling response: (a) single wire case; (b) two
wire bundle case.
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Transient Phenomena

Analytical validations have been obtained relative to FD-TD modeling of re-
flection of a monochromatic plane wave by a perfectly-conducting surface either
moving at a uniform relativistic velocity or vibrating at a frequency and ampli-
tude large enough so that the surface attains relativistic speeds [15]. The latter
case will be summarized here.

Figure 12(a) depicts the geometry of the vibrating surface and its illumination.
FD-TD modeling is performed as usual, with the addition of a fully relativistic
field boundary condition at the surface, and linear interpolation is used to compute
the incident field at the surface when its position does not coincide with a field
sample point [15]. Figure 12(b) graphs the predictions of the moving-boundary
FD-TD code for the magnitude of the spectral component of the reflected wave at
the illumination frequency as a function of the maximum surface speed normal-
1zed to the speed of light. For this case, the surface vibration frequency is fixed
at one-fifth of the illumination frequency. (It should be noted that the vibrating
surface generates a spectrum similar to tone-modulated FM, with spectral com-
ponents below, at, and above the illumination frequency at sideband frequencies
equal to integer multiples of the vibration frequency.) An analysis available in
the literature [25] demonstrates that the magnitude of the reflected field at the
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1llumination frequency has a Bessel function (order zero) dependence upon the
normalized maximum surface speed. This dependence is also graphed in Fig.
12(b) to permit comparison with the FD-TD results. We see that there exists an
excellent correspondence between the numerical and analytical results.
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Figure 12. Magnitude of reflected field at the illumination frequency as a
function of maximum surface speed: (a) geometry; (b) Bessel

(analytical) vs. FD-TD.

The moving-boundary FD-TD code is currently being adapted to model even
more complex time-variable phenomena. In all such cases, the time domain for-

mulation of FD-TD is of prime importance since it permits us to deal with rapidly
time-variable phenomena in a natural way.
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Inverse Scattering

Initial work has demonstrated the possibility of accurately reconstructing the
shape of a two-dimensional conducting or homogeneous dielectric target from its
scattered field pulse response observed at only a single point.* The general ap-

proach involves setting up a numerical feedback loop which uses a two-dimensional
FD-TD code as a forward-scattering element, and a specially constructed nonlin-

ear optimization code as the feedback element. FD-TD generates a test pulse
response for a proposed target shape. The test pulse is compared to the mea-
sured pulse, and an error signal is developed. Working on this error signal, the
nonlinear optimization element perturbs the originally proposed target shape in
a manner to drive down the error. Upon repeated iterations, the proposed target
shape ideally converges to the actual shape [16], a strategy smnla.r to that of [26].

The advantage of working in the time domain is that a target shape can be
reconstructed sequentially in time as the incident pulse moves across the target,
taking advantage of causality. This reduces the complexity of reconstruction since
only a portion of the target shape is being generated at each iteration.

For a conducting target, detailed reconstruction begins by locating the point on
the target whose response to the incident pulse is first sensed at the observation
point. The FD-TD lattice points adjacent to the initial point are then perturbed
by sequentially assigning them high values of conductivity. The new addition
to the target surface is obtained by comparing the scattered electric field values
(observed at a single point) for each perturbation with the measured values, and
selecting the surface perturbation that gives the best agreement with measured
data in the least-squares sense. This process is repeated using the target surface
points generated in the previous iteration as the base from which to launch the
new surface perturbation. In this manner, the actual target surface contour is

generated synchronously as the leading edge of the incident pulse moves across
the target.

The FD-TD /feedback technique has been successfully used to accurately re-
construct conducting and homogeneous dielectric target shapes such as triangles,
rectangles, and J-shapes [16]. Currently, the “measured” input data is generated
by a high-resolution forward FD-TD code for a half-sine incident pulse, and recon-
struction is accomplished with a coarser resolution FD-TD code in the numerical
feedback loop. Figure 13 illustrates (to scale) one such reconstruction, a prism
having a 0.6 X 0.3 wavelength triangular cross section reconstructed from simu-
lated measured data taken at a single point 15 wavelengths away. Efforts are now
underway to obtain actual measured data for such two-dimensional targets. Pre-
liminary indications are that measurement errors and noise may primarily affect
reconstruction of the target shape in shadow regions. Simulated signal-to-noise

ratios as low as 30 dB, however, have been found to permit exact reconstructions
of 1-wavelength size targets in a number of cases [16].

* Extension of this two-dimensional work to full three-dimensional configurations
involves issues of uniqueness not currently addressed.
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Figure 13. Relative scale of one FD-TD/feedback inverse scattering
target reconstruction.

AVDANCES IN FD-TD SOFTWARE

Supercomputer Software

Let us now consider computation times of present FD-TD codes. Table 4 lists
computation times (derived either from benchmark runs or based on analysts’ esti-
mates) for modeling one look angle of a 10-wavelength three-dimensional scatterer
using the present FD-TD code. Four computing systems are listed in the table.
The first is the Digital Equipment VAX 11/780, without floating point accelera-
tor. The second and third are, respectively, single-processor and four-processor
versions of the Cray-2. The fourth is a hypothetical next-generation machine op-
erating at an average rate of 10 Gflops (10-billion floating point operations per
second). This last computer is generally expected to be available about 1990.

Table 4. Computation times.

10-Wavelength Model

Machine Present FD-TD Code *
VAX 11/780 (no floating point accelerator) 40.0 h
Cray-2 (single processor, using the VAX Fortran) 12.0 min
Cray-2 (single processor, some code optimization) 3.0 min
Cray-2 (four processors, some code optimization) 1.0 min (est.)
True 10 Gflop machine (Available around 1990) 2.0 sec (est.)

* 1.55 X 10 unknown field components, 661 time steps.

Note that the single-processor Cray-2, ﬁsing the VAX code with no modifica-
tions, reduces the FD-TD modeling time by 200:1. With some code modifications
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to take advantage of features specific to the single-processor Cray-2, the reduction
in modeling time is 800:1. With the use of all four processors of the Cray-2, it
1s estimated that the reduction in modeling time would be 2400:1. Clearly, it
1s advantageous to run existing FD-TD software on the Cray-2 (or similar ma-
chines), rather than the VAX. Further, optimization of FD-TD software for such
supercomputers will likely lead to additional time-savings benefits.

The recent availability of supercomputers such as the Cray X-MP and Cray-2
to university researchers via programs sponsored by National Science Foundation
has permitted substantial progress to be made in FD-TD code applications and
optimization. For example, efficient memory management FD-TD software for
the single-processor Cray X-MP has recently been finished and validated. This
software can intelligently map a very large electromagnetic field data base onto
the Cray solid-state device (SSD) which is used as the secondary memory for
the X-MP. Efficient interleaving of field data in transverse lattice planes and the
use of asynchronous input/output calls contribute to the realization of a nearly
balanced code (equal time devoted to arithmetic and data input/output). Work
1s now being initiated to develop coarse-grain multiprocessing FD-TD software
for the Cray X-MP and Cray-2 to take advantage of the availability of up to four
highly capable processors on each machine.

Mini-Supercomputer Software

It 1s acknowledged that many individuals wishing to utilize FD-TD to model
large electromagnetics problems will not have access to Cray-class supercomput-
ers. Therefore, research has been initiated to develop software for machines of
much lower cost which can have capabilities comparable to the original Cray-1.
As a class, these machines have been termed mini-supercomputers.

T'wo widely different computers of this type are now being studied. The first is
the Floating Point Systems 264, which is considered to be a vector array processor.
Here, the recently completed memory management FD-TD software for the single-
processor Cray X-MP has been adapted, since the Floating Point Systems machine
can suffer from the same bottleneck problem of data input/output to secondary
memory for large modeling runs. This bottleneck would cause much or most of
the arithmetic speed of the computer to be lost since data calls would dominate
running time.

The second mini-supercomputer being studied is the Intel Hypercube D-5. This
computer has 32 microprocessors reconfigurable via software command to have a
number of modes of connectivity, such as rings, trees, nearest-neighbor grids, and
full hypercube. In operation, each microprocessor can be assigned a specific part of
the FD-TD lattice, and all can work in parallel. (The Hypercube is an example of a
broad class of moderately—to—masswely parallel architectures recently introduced.)

Here, the goal is to gain experience with the fine grain multiprocessing software
reqmred for such a machine, and to develop and validate a FD-TD code.
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RADIATION CONDITION THEORY

One outgrowth of an increasing understanding of wave physics modeled via dif-
ferential marching-in-time approaches has been the advance of the theory of one-
way wave equations [17]-[20]. One-way wave equations yield radiation conditions
which can truncate a FD-TD lattice in the near field and in the time domain
with acceptably small non-physical wave reflections, as discussed earlier. Theo-
retical work in this area is being continued to further improve FD-TD radiation
conditions to permit models of structures with large RCS dynamic range.

An interesting spin-off of the work on radiation condition theory has been the
recent introduction of the on-surface radiation condition (OSRC) formulation of
scattering for convex two-dimensional bodies [21], [22]. OSRC was prompted
by the observation that FD-TD radiation boundary surfaces could be brought
very close to a scatterer (refer to the crossed-plate RCS model discussed earlier)
with completely acceptable far-field results. It was conjectured that applying a
suitable radiation boundary condition even closer to a scatterer could permit an
approximation for the near-surface fields which could serve as a zero-order guess
in an iterative procedure. A surprising result was obtained by accident: namely,
if the radiation boundary condition were applied directly on the scatterer surface,
the original integral equation for the scattered field could be reduced to merely
a line integral of known fields around the surface contour (for the TM case) or
an ordinary differential equation to be solved around the surface contour (for the
TE case). Note that FD-TD is no longer involved. Numerical experiments with
OSRC for circular cylinders, square cylinders, and flat strips, indicate substantial
promise for this new approach as a useful alternative to present integral equation
and uniform asymptotic methods for electrically-large, convex, two-dimensional

structures. Research is also being directed to better understand why OSRC works
as well as 1t does.

SUMMARY OF THE CHARACTERISTICS OF FD-TD

This section will concisely list the strong points and limitations of FD-TD, the

types of problems FD-TD is suited for and why, when FD-TD should be used,
and when FD-TD should not be used.

Strong Points of ¥FD-TD

1. FD-TD can provide volumetric models of structures (possibly with compli-
cated cavities) spanning 10 or more wavelengths in three dimensions, and yet
maintain a umform space resolution of 1/10 wavelength. FD-TD accuracy in
calculating near and far fields is generally within 4+1 dB.

2. FD-TD has a dimensionally-low computer storage and running time propor-
tional to N, the number of electromagnetic field unknowns in the volume mod-
eled. FD-TD models with N ~ 10° are currently routine. Conventional de-
tailed numerical modeling approaches such as the method of moments (MOM)
have an N% to N 3 dependence, limiting applicability to N < 10°, in general.

3. The explicit formulation of FD-TD is excellent for programming on modern
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.

vectorizing and multiprocessing computers.

4. FD-TD can easily interface with other detailed numerical modeling approaches
such as the method of moments, when desirable.

_ Limitations of FD-TD
1. The FD-TD code must be re-run when the incident wave angle is changed.
2. Present FD-TD codes staircase smooth surfaces. (This limitation is disappear-
ing, however, as new versions of the FD-TD codes employ contour-integral
conformal smooth surface models [27].)

3. The discrete FD-TD space lattice causes dispersion of propagating pulses in
two and three dimensions.

4. Supercomputer usage is presently advised for large three-dimensional problems.
Such machines may not be available to the general user.

Types of Problems FD-TD is Suited for, and Why

1. FD-TD 1s suited for modeling complex metal and dielectric structures, includ-
ing cavities, for wave penetration, coupling, and radar cross section. This is
because it achieves fine spatial resolution, naturally satisfies field continuity
conditions at media interfaces, computes fields at every lattice point within the
structure, and permits an easy derivation of far fields from near fields.

2. FD-TD is suited for modeling coupling to wires and wire bundles in free space
or in cavities. This is because it can incorporate field singularities near wires,
and can interface with MOM to provide a self-consistent treatment of wires
and bundles in complicated exposure environments.

3. FD-TD is suited for modeling wave interactions with non-linear media and
rapidly time-varying media. This is because non-linearities and rapid time-
dependent behavior can be naturally modeled by a time-domain approach.

4. Within the limits set by lattice dispersion effects, FD-TD can model the pulse
response of scatterers, because it is a direct time-domain approach.

FD-TD Should Be Used When:

1. The structure to be modeled has an extremely complex surface shape and/or
internal structure.

2. The structure to be modeled spans more than 2-5 wavelengths in each of the
three dimensions.

3. The number of electromagnetic field unknowns to be solved is greater than
5,000-10,000.

4. The problem involves pulse response, non-linearities, or time-varying media
which mandate a detailed time-domain solution.

FD-TD Should Not Be Used When:
1. The structure to be modeled has only a moderately complex surface shape, no

internal structure, and requires fewer than 1,000 field unknowns to be solved,
thus permitting the application of MOM.

2. The structure is highly conducting, electrically large, and has no important
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re-entrant features, thus permitting the application of the geometric theory of
diffraction (GTD) or its variants to model scattering.

. The structure’s scattering is dominated by rough-surface physics, ehm.ma,tmg
the effective use of staircase approximation of curved surfaces. (New versions

of the FD-TD codes will not have this problem.)

. There 1s available a less computationally-intensive approach which provides the
needed data.
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