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A B S T R A C T

Statistical properties of light waves reflected from a one-dimensional (1D) disordered optical medium [n(x) = n0
+ dn(x), < dn(x) > =0] have been well studied, however, most of the studies have focused on the situation when
the mean refractive index of the optical medium matched with the outside medium, i.e., n0 = nout =1. Further,
considering dn(x) as a Gaussian color noise refractive index medium with exponential spatial correlation decay
length lc and k as the incident wave vector, it has been shown that for smaller correlation length limit, i.e., klc <
< 1, both the mean reflection coefficient < r > and std of r, σ(r), have same value, and they follow the relation <
r > = σ(r) ∝ < dn2 > lc. However, when the refractive index of the sample medium is different from the outside
medium, the reflection statistics may have interesting features, which has not been well studied or understood.
We studied the reflection statistics of a 1D weakly disordered optical medium with the mean background
refractive index n0 being different from the outside medium nout (≠n0), to see the effect of mismatching (i.e.,
value of n0 - nout) on the reflection statistics. In the mismatched case, the results show that the mean reflection
coefficient < r > follows a form similar to that of the matched refractive-index case, i.e., < r(dn, lc) > ∝ < dn2 >
lc, with a linear increased shift, which is due to 1D uniform background reflection from a slab. However, σ(r) is
shown to be σ(r) ∝ ( < dn2 > lc)

1/2, which is different from the matched case. This change in std of r is
attributed to the interference between the mismatched-crerated edge mediated multiple scattering that are
coupled with the random scattering. Applications to light scattering from random layered media and biological
cells are discussed.

1. Introduction

The statistical transport properties of one-dimensional (1D) meso-
scopic disordered optical and electronic media are now well studied [1–
6]. The Schrödinger equation and Maxwell's wave equation are similar
in the sense that they can be projected to the Helmholtz equation;
therefore, the formalisms are the same for corresponding scalar waves
in both cases [7–10]. After the Landauer formalism showed that the
reflection coefficient is related to the resistance/conductance of the
sample, the outer scattering parameters such as the reflection and
transmission coefficients became important for the study of localization
and conductance fluctuations in the electronics case [7,8]. Similarly,
extending the idea from the electronic systems, in most of the previous
studies of light scattering and localization properties of different optical
disordered media, the fluctuation part of the refractive index is
primarily considered while the sample's mean refractive index is the

same as the outside medium [7,9–11]. The results show that both the
average reflection and the fluctuations have the same form for the
mesoscopic optical sample. However, the mismatch of the refractive
index between the sample and the outside medium and its effect upon
the reflection statistics remains poorly understood.

In this paper, we study reflection statistics in the context of the
synergistic effects between refractive index mismatched values and the
fluctuation of the refractive index. For a biological medium, for
example a biological cell, the spatial fluctuation of the refractive index
is relatively weak (~.01) and buried in a higher uniform mean back-
ground refractive index (~1.38). Enhancement of the backscattering
signals from the weakly fluctuating refractive index, as mediated by the
refractive index mismatching, is also addressed. Finally, applications of
the method for light scattering from biological cells are discussed in
terms of the enhancement of the scattering signal from the spatial
refractive index nanoscale fluctuations of a biological cell that is
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associated with the progress of cancer. This will improve the sensitivity
of cancer detection.

2. Reflection statistics of matched disordered media

Consider a 1D sample of length L with refractive index inside the
sample n(x) = n0 + dn(x) ( for 0 < x < L), where the average refractive
index of the samples is n0 = < n(x) > , dn(x) is the fluctuation part of the
refractive index with its average < dn(x) > =0, and nout is the refractive
index of the outside medium as shown schematically in Fig. 1. The
‘matched’ case can be defined as equality between the mean refractive
index of the sample and the outside medium, i.e., n0 = nout, whereas the
‘mismatched’ case can be defined as n0 ≠ nout. Since we are interested
in the reflection statistics, let us define R(L) as the complex reflection
amplitude of a sample of length L which is illuminated by a plane wave
of wave vector k. Then, the mean and standard deviation of the
reflection coefficient (r = RR*) are the primary concerns of this work.
For example, we will prove below that the mean reflection coefficient
for the mismatched case, < rmismatched > , can be written in terms of
the reflection coefficient of a slab (n0 ≠ nout) and the mean reflection
coefficient of the matched case, rslab and < rmatched > , as:

r r r F k dn l L r< > = + < > × ( , , , n , , ).mismatched slab matched c slab0 (1)

In the literature, reflection statistics from disordered optical media
are primarily studied assuming the matched case; however, the
mismatched case, as defined above, is not well studied. Therefore, we
first briefly review the results of a 1D matched case (rmatched) before
describing the results of the mismatched case (rmismatched). The
statistics of spatial random refractive index fluctuation, dn(x), gener-
ally represented by Gaussian color noise, i.e., < dn(x) > = 0 and <
dn(x)× dn(x′) > = < dn2 > exp(-|x-x′|/lc), where lc is the exponential
spatial correlation decay length of the spatial refractive index fluctua-
tion dn(x). Then, using the Fokker-Planck approach, the above <
rmatched > can be solved analytically in the weakly disordered limit
(i.e., dn « n0) [7,9]. The mean value of the reflection coefficient and its
standard deviation both have the same value, < rmatched >
=σ(rmatched) = L/ξ, where the inverse of the localization length has
the form ξ–1= 2k2 < dn2 > ×lc/[1+(2klc)

2]. This is true for a weakly
disordered sample where ξ > L, which can also be defined as a Born
approximation limit of the scattering from the weakly disordered part
of the refractive index.

3. Reflection statistics of mismatched disordered media

However, index mismatched weakly disordered samples are quite
common for optical scattering experiments. For example, biological
cells and tissues have refractive indices n0 ~ 1.3 – 1.5 and dn ~ 0.01 –
0.1 with the outside air medium nout =1. In the case of weak refractive
index fluctuations, the backscattering light transport properties of such
biological cells can be decomposed into a multiple-transport 1D
channel or a quasi-1D parallel multichannel problem [12]. It was
recently shown that quasi-1D multichannel backscattering would
provide sensitivity to changes in the nanoscale signal relative to a
three-dimensional (3D) bulk for weakly disordered media such as
biological cells. Furthermore, the quasi-1D analysis approach has been

proven to be useful for early pre-cancer screening by detecting changes
in the nanoscale refractive index fluctuations of cells related to the
progress of carcinogenesis in different types of cancers [13–16].

To derive the form of Eq. (1), we start from a stochastic Langevin
equation (here, stochasticity enters into the equation through the
dn (x) term) for the index mismatched case (nout ≠ n0) which gives
the reflection amplitude Rt. For simplicity, we will consider that the
sample is kept in air, i.e., nout =1 and n0 > 1. Substituting these terms
(nout, n0, and dn) with color noise, the Langevin equation for the
mismatched case can be derived following the invariant imbedding
approach [7]:

dR L
dL

ikR L ik n n dn L R L( ) = 2 ( ) +
2

[( − 1) + 2 ( )] × [1 + ( )] .t
t t0

2
0

2
(2)

The complex total reflection amplitude Rt(L) from a weakly
disordered medium can be considered as a combination of: (i) a
deterministic sinusoidal oscillation component Rslab based on the
pure background of a thin-film slab of length L without any stochastic
dn(x) terms, and (ii) a R component that contains dn(x) terms.
Therefore, we may write Rt = Rslab+R. Each term can then be easily
derived from Eq. (2) as follows:

R L R L R L( ) = ( ) + ( ),t slab (3a)

dR L
dL

ikR ik n R( ) = 2 +
2

( − 1) × [1 + ] ,slab
slab slab0

2 2
(3b)

dR L
dL

ikR ik n dn L R R i k n

R R R

( ) = 2 +
2

(2 ( )) × [1 + + ] +
2

( − 1)

× [2 (1 + ) + ].

slab

slab

0
2

0
2

2 (3c)

In Eq. (3a-c), the perturbative contribution by the stochastic term
dn(x) has many cross-terms between Rslab and R. We will assume that
R is in the first order in dn(x). By performing a phase transformation as
below in Eq. (3b-c), we can further simplify and assimilate the Rslab –
R cross-terms in the equation. For this, we introduce new variables,
Q(L) and α(L), which are derived from R(L) by a phase transformation
as follows:

R L Q L e( ) = ( )⋅ ,slab slab
ikα L2 ( ) (4a)

R L Q L e( ) = ( )⋅ .ikα L2 ( ) (4b)

This yields a new set of simplified equations for Q(L) and α(L)
which further simplifies to:

dα L
dL

n
R( ) = 1 +

( − 1)
2

(1 + ),slab
0
2

(5a)

dQ
dL

i k n dn L e R Qe i k n Q e=
2

(2 ( )) [1 + + ] +
2

( − 1)( ) .ikα
slab

ikα ikα
0

−2 2 2
0
2 2 2

(5b)

With the new representation above Eq. (5), the mean < rt > and
the standard deviation σ(rt) of the reflectance for mismatched case
rmismatched = rt ≡ RtRt* can be derived. By using Eq. (3a) and
performing a realization averaging over the disordered samples, we
obtain:

r L R R Q Q Q Q

r Q Q c c Q

< ( ) > = < * > = < ( + ) × ( + )* > ,

= + * < > + . . + < > ,
t t t slab slab

slab slab
2 (6a)

r R

r R Q

where = and

= = = .

t t

slab slab slab
n n kL

n n n kL

2

2 2 ( − 1) sin ( )

4 + ( − 1) sin ( )
0
2 2 2 0

0
2

0
2 2 2 0 (6b)

In Eq. (6a), we have separated the slab's pure reflection/inter-
ference contribution, rslab, (when dn =0) and the disorder contribu-
tion. The pure slab solution, that is for n0−1 > 0 and dn=0, is presented
in Eq. (6b). This also confirms the validation of the invariant imbed-
ding Langevin Eq. (2) with mismatched situation. In particular, the

0 0 0L L L
+=

n(x)=n0+dn(x) n0 dn(x)

nout

Fig. 1. Schematic of a mismatched case where outside refractive index is nout and
sample refractive index is n(x) = n0 + dn (x), with n0 as the average refractive index of the
sample and dn(x) as the spatial refractive index fluctuation of the sample < dn(x) > =0.
For matched case, n0=nout.
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solution of the invariant imbedding equation Eq. (2) converges to the
reflection from a slab (of length L) solution for the finite mismatched
situation ( n0-1 > 0) and no disorder (dn=0), as expected. Therefore, an
addition of weak RI fluctuations dn (x) «(n0−1) to the sample will also
provide the correct evolution of the mismatched imbedding equation of
R(L) with the length L, i.e., dR(L)/d(L) in Eq. (2). Furthermore, we
have shown later ( in Fig. 2) that the theoretical solutions also match
well with the pure stochastic numerical simulations, for each slab
solutions at dn =0, supporting the validation of the Eq. (2) for
mismatched solution .

To evaluate the averages in Eq. (6a) and the standard deviations
(see below), we calculate the following terms in leading order of dn as:

Q Q Q< > , < ( ) > , < > ,2 2

which can be written explicitly as:

∫Q i kn dL e R dnQ c c< > = −
2

′[ (1 + * ) × < 2 > − . . ],
L

ikα
slab

2
0

0
2 * 2

(7a)

∫Q ikn dL e R dnQ<( ) > = ′ (1 + ) × < 2 > ,
L

ikα
slab

2
0

0
−2 2

(7b)

∫Q ik dL n R dnQ n e Q< > = ′[ (1 + ) < 2 > + 1
2

( − 1) < ( ) >].
L

slab
ikα

0
0 0

2 −2 2

(7c)

By using the Ornestein-Uhlenbeck stochastic process and Novikov
theorem [7], the averaging of the above Eq. (7a-c) were performed.

Later been shown that the analytical solutions match well with the
numerical simulations, validating the analytical steps. For example, the
disorder average of the product term < 2dn(L)R > is:

dn L R i kn g
L l

e R

O dn l O dn l

<2 ( ) > =
2

(
2

) × [1 − ∂
∂( / )

] (1 + )

+ ( ⋅ ) + ( ⋅ ) ,
c

ikα
slab

c c

0
−2 2

2 3 4 2 (8)

where the value of g and α can be expressed as:

g dn l= 8 < > (disorder strength),c
2 (9a)

∫α ik n R dL= [2 + ( − 1) × (1 + )] ′.
L

slab
0

0
2

(9b)

Finally, by using Eqs. (7−9) and averaging over the ensemble space,
that is, performing ensemble averaging, we can write the average < rt
> in terms of < dn2 > and lc as:

r r r dn l k Q n I kn n I

c c n I c c O dn

< > = < > = + < > ⋅ [ * ( + ( − 1) )

+ . . + + . . ] + ( ),
mismatched t slab c slab

2 2
0
2

1 0
2

0
2

2

0
2

3
4 (10)

where we have defined I1, I2, and I3 in the above deterministic
equations as:

∫I dL R
L l

e R= −2 ′(1 + ) × [1 − ∂
∂( ′/ )

] (1 + ) ,
L

slab
c

ikα
slab1

0
−2 2

(11a)

(a) (b)

(a’) (b’) L=5µ

L=5µL=2µ

L=2µ

Fig. 2. (a)-(b) Plots of analytical calculations (solid lines) of Eq. (12) with the pure numerical integration of Eq. (11) for < r > and numerical simulations (squares) based on Eq. (2) with
lengths: (a) L =2µ and (b) L =5µ. (a′)-(b′) The plot of the semi-analytical calculations (solid lines) of Eq. (15) and numerical simulations (squares) for σ(r) based on Eq. (2) with lengths:
(a′) L =2µ and (b′) L =5µ. Refractive index of outside medium is taken as air nout =1. The mean refractive indexes of the samples are n0 =1 (blue, matched case), 1.1(green), 1.2(red),
1.3(cyan), 1.4(purple), and 1.5(yellow). Refractive index fluctuations were varied such that dn =0 – 0.03. Correlation length of dn spatial fluctuations lc =20 nm. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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∫ ∫I i dL e dL e R L

L l
e R L

= − ′ ′ (1 + ( ′ ))
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∂( ′ / )
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′

′

L
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L
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c
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slab
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′
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′
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(11b)

∫I dL e R
L l

e R= ′ (1 + * ) × [1 − ∂
∂( ′/ )

] (1 + ) .
L

ikα
slab

c

ikα
slab3

0
−2 * 2 −2 2

(11c)

Eq. (10) can now be rewritten in terms of a pure slab's reflection
term (without dn(x)) and the average of the fluctuation terms. For weak
disorder with short range correlation 2klc < 1, the quantities I1, I2, and
I3 are approximately independent of lc. In this case, we obtain.

(12a)

(12b)

r r

r dn l k L F k dn l n L O dn l

r L
ξ

F k dn l n L

< > = < > =

= + 1
2

< > ⋅ × [1 + ( , , , , )] + [ ]

= + × [1 + ( , , , , )].

t mismatched

slab c c c

slab c

2 2
0

4 2

0 (12b)

Where we have defined:

L
ξ

dn l k Lr = = 1
2

< > ⋅cmatched
2 2

Here, ξ is the localization length, which is readily derived [7].
Further, we have defined

F k L r L Q n I kn n I

c c n I c c

( , n , , ) = (2/ ). [ * ( + ( − 1) )

+ . . + + . . ] − 1.
slab slab0 0

2
1 0

2
0
2

2

0
2

3 (12c)

Thus, we can write a relationship between the matched and
mismatched cases from Eq. (12):

r r r r F k dn l n L< > = < > = +< > × [1 + ( , , , , )].mismatched t slab matched c 0

(13a)

For a small length scale, klc < 1, the above equation Eq. (13a)
variation with the parameters k, dn, lc, n0, and L is given. From the
above equation, it can be seen that, in the limit of the small L and small
dn, there will be a negligible contribution from the interference term,
that is F(k, dn,lc,n0,L) ~ 0 in the Eq. (13a), as expected, will simply
change to:

r r r r< > ~ ≈ < > = + < > .mismatched dn t slab matched0 (13b)

However, in case of larger L and higher dn values the F(k,
dn,lc,n0,L) has finite, significant contribution. In that case we need to
calculate the value of F(k, dn,lc,n0,L) numerically using Eq. (12c).

Finally, the mean-square fluctuation of r, σ2(r), can be evaluated as:

σ r r r

r Q Q Q

r Q Q Q

( ) = < > − ( < > )

= < ( + 2 Re( * ) + ) >

− ( < + 2 Re( * ) + > ) .

mismatched mismatched mismatched

slab slab

slab slab

2 2 2

2 2

2 2 (14a)

The above equation can now be further modified by applying Eqs.
(4) and (7):

σ r Q Q c c r Q O dn l( ) = * < > + . . +2 < > + ( ).mismatched slab slab c
2 2 4 2 (14b)

Taking the average over the disorder, we obtain a deterministic
expression of the above equation:

σ r dn l k n Q I c c

r I c c O dn l

( ) = < > ⋅ [ * + . .

+2 + . . ] + ( ) .
mismatched c slab

slab

2 2 2
0
2

4

3
4

c
2 (14c)

For the mismatched case, it should be noted that the mean-square
fluctuation of r has a barrier or mismatch-induced leading order: <
dn2 > .lc. In the matched case, the leading order is higher, that is, < dn2

> 2.lc
2. Therefore, we obtain the expression for the standard deviation

σ(r) as follows:

σ r dn l k Q I c c r I c c

O dn

( ) = < > ⋅ [ * + . . +2 + . .]

+ ( ),
mismatched c slab slab

2 1/2 1/2
4 3

1/2

2 (15)

where we have defined:

∫I dL e R
L l

e R= −2 ′ (1 + ) [1 − ∂
∂( ′/ )

] (1 + ) .
L

ikα
slab

c

ikα
slab4

0
−2 2 −2 2

(16)

Eq. (15) can be further written to the leading order as (following
[7]):

σ r dn l kL G k dn l n L( ) = < > ⋅ [ ( , , , , ) − 1].mismatched c c
2 1/2 1/2 1/2

0 (17a)

where G(k, dn,lc,n0,L) is a function without the < dn2 > term, defined
as:

G k dn n l L L Q I c c r I c c( , , , , ) = (2/ ) [ * + . . +2 + . . ] + 1.c slab slab0
1/2

4 3
1/2

(17b)

It can be noted that in the matched case (n0=1), the value of G is 1
since Qslab and rslab have the multiplicative factor (n0

2 – 1)=0 as
n0=1. In this case, in σ(r) the first order term in < dn2 > 1/2 vanishes
and the second order term < dn2 > is the leading term, recovering the
matched case.

For a small length scale, klc < 1, the Eq. (17a) variation with dn is
given. From the equation, it can be seen that in the limit of the small L
(«ξ) and small dn, there will be a negligible interference contribution,
that is the term G(k, dn,lc,n0,L) ~ 1. There will not be a contribution
from the first order term in the standard deviation of the refractive
index, or from the dn2 terms but the contribution will come from the
second order correction or ~dn4 terms, and (17a) will be replaced by:

σ r σ r( ) ~ ( ).mismatched dn matched→0 (17c)

However, in case of larger L and dn, G(k, dn,lc,n0,L) term is more
than 1. In that case, we need to calculate the value of G(k, dn,lc,n0,L)
numerically using Eq. (17b).

Here we emphasize again that the value of σ(r) calculated here with
the assumption that the reflection from the fluctuating part is less than
the reflection amplitude from the slab.

3.1. Numerical simulations of stochastic equation and analytical
semi-integral equation results

Semi-integral Eq. (10) for < r >mismatched and (15) σmismatched

are evaluated and plotted in Fig. 2(a) and (a′) respectively for a sample
length L =2 µ; similarly, and in Fig. 2(b) and (b′) for L =5 µ. In the plot
for a constant length, the varying parameters are dn and for different
mismatched parameters. The other parameters remain the same:
wavelength =500 nm and lc =20 nm. We also performed direct
stochastic simulation of Eq. (2) and then performed realization
averages numerically as shown by the dotted lines in Fig. 2(a)-(a′)
and (b)-(b′), respectively. It can be seen that the disorder averaged
analytical semi-integral results and the corresponding numerical
results agree well for all the parameters, thereby validating our semi-
integral analytical equation form. For the case 2klc > 1, detailed
calculations will be reported in a separate paper.

3.2. Extension of calculation to a wavelength spectra

For the simplicity of the calculation and for the proof of the concept,
we have taken into consideration only one wave vector/wavelength
here, however, the formalism is true for any wave vector/wavelength.
In case of a wavelength spectra, the equation for a single wavelength
equation can be added up systematically. In particular, one can sum up
the < r(k) > and σ(r(k)) equation for single wave contributions from
the developed formalism, to obtain the result of a full spectra Δk: .

∑r r k< > = ( )Δk
k

k Δk+

(18a)

P. Pradhan et al. Optics Communications 393 (2017) 185–190

188



∑σ r σ r k( ) = ( ( ))Δk
k

k Δk+

(18b)

4. Conclusions and discussions

In conclusion, our results show that the average reflection coeffi-
cient, for the mismatched case with weak disorder and short range
correlation, is linearly dependent on that of the matched case; the
average reflectance < r >mismatched is proportional to < dn2 > lc,,
with a shift due to the slab reflection. However, the value of the
standard deviation of the reflection coefficient has a different form (Eq.
(15)). This is because, as seen in Eq. (14(b)), the index mismatched
parameter (n0

2 – 1) contributes (through Qslab and rslab) and this
changes the leading term of the mean-square fluctuations from ( < dn2

> .lc)
2 to < dn2 > .lc. Therefore, the RMS fluctuations, or STD for the

mismatched case, σ(r(dn ,lc)mismatched) is proportional to < dn2 > 1/

2lc
1/2. Furthermore, the relative fluctuation σ(rmismatched)/ <

rmismatched > decreases ( < 1) with the increase of the mismatched
parameter (n0

2 – 1). However, the relative σ(rmismatched) value for
the mismatched case, compared to the matched case, increases. The
decrease by a square root factor in the standard deviation σ(r), from
the matched to mismatched case, will drastically increase the value as
σ(r)1/2 > > σ(r), for σ(r)«1.

The phenomena of the mismatched-induced enhancement can be
useful for enhancing a weakly reflective signal from the weak refractive
index fluctuations ( < dn2 > 1/2) imbedded in a strong uniform refrac-
tive index background (n0), such as in biological cells. Our results show
that the backscattering signal from the fluctuation part of the refractive
index can be enhanced by increasing the mean background refractive
index. This is due to the multiple reflections of the wave within the
background allowing more ( i.e. longer) interaction times between the
wave within the higher refractive index background boundaries and the
imbedded refractive index fluctuations. Therefore, the developed
method has potential applications for enhancing scattering from
biological cells where the refractive index fluctuations ( < dn2 > 1/2

varies from 0.001 to ~.02) are imbedded within the cell's background
refractive index n0~1.38–1.5, with mismatched refractive index ~0.38–
0.5, with respect to the air medium index 1. Recently it has been shown
that nanoscale fluctuations in a cell increase with the progress of early
carcinogenesis due to the rearrangements of the cell's building blocks
(DNA, RANA, Lipids etc.). Thus, detecting these small changes in the
refractive index fluctuations in cancer/pre-cancer cells, relative to the
normal cells, we can detect the progression of carcinogenesis [13,14].
Therefore, enhancing the nanoscale signal from biological cells by
simply changing the background (i.e., slab) refractive index will
significantly increase cancer detection sensitivity by optical experi-
ments. For example, one can easily enhance the reflection signal from
the fluctuating part by simply increasing the background refractive
index, such as by dipping or treating the cell in a nonreactive liquid
having a higher refractive index than the cell (i.e., > 1.38). This is
important for practical applications, as just a simple cell treatment/
preparation could enhance the diagnostic or sensitivity/specificity, and
will have potential clinical applications in improving cancer detection.
Our results further suggest the best way to obtain a stronger signal
from the fluctuating parts in a cell is keeping the cell in a refractive
index high-contrast situation. For example, a stronger signal from
nano-fluctuations can be obtained when the cells are kept on a slide
and exposed to air interface, producing a high-contrast situation, than
when the cells are kept on a slide covered with a coverslip, producing a
low-contrast situation. Furthermore, the present work is significant as
well as for other types of weakly embedded disordered media such as
polymers and dielectric thin films.

Although we have considered here the one-dimensional back
reflection case, the fact of signal enhancement from embedded
fluctuation in a background will have similar physical reasons for

higher dimensions, especially for back reflection statistics. For a
thinner sample (relative to the probing wavelength λ), such as inner
cheek cells or buccal cells (width ~500 nm), the back reflection can be
treated as a bunch of quasi-one-dimensional parallel back-propagating
interacting channels (area of a channel ~λ2). It has been shown that the
average value of the reflection from a channel in a multi-channel
propagation decreases inversely with the number of channels [12].
Therefore, the solution of a 1D channel provides us with an under-
standing of the signal enhancement and framework for more practical
three-dimensional signal enhancement. Other than biological media,
artificial layered media could be made easily [17] for active (e.g., with
lasing or absorption) and passive cases, for 1D or quasi-1D systems for
different applications. Therefore, we believe the present work will have
many applications, varying from biological cells to varieties of passive/
active layered random media.

Recently there are reported studies [18] of the effect of boundary
refractive index mismatching on photon diffusive reflectance from the
bulk disordered media, and the results show that the matching
significantly inproves the spatial resolution of the spatial photon
sensitivity profile. This is in the diffusive case where photons mainly
transported by random walks and wave interferences are negligible.
The presence of a mismatched interface plays an important role, as it
effects the Lambertian diffusive reflectance properties of the mis-
matched surface. Our results in one dimensional disordered mis-
matched media with strong interference effects here show a significant
enhancement in signal due to the multiple reflections from the confined
boundaries due to the mismatched condition and in the presence of
scatteres, due to the interference effects. All these results demand
further study of the effects of the boundary mismatched parameters in
higher dimensions and its different practical applications.

Acknowledgements

This work was partly supported by NIH grants (Nos.
R01EB003682, R01EB016983, R01CA128641 and U54CA143869), a
NSF grant no CBET-0937987, a FedEx Institute of Technology Grant,
and a Faculty Research Grant from the University of Memphis.

References

[1] P.W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109
(1958) 1492–1505.

[2] P.A. Lee, T.V. Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys. 57
(1985) 287–337.

[3] E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Scaling theory
of localization—absence of quantum diffusion in two dimensions, Phys. Rev. Lett.
42 (1979) 673–676.

[4] B. Kramer, A. Mackinnon, Localization—theory and experiment, Rep. Prog. Phys.
56 (1993) 1469–1564.

[5] W. Kohler, G.C. Papanicolaou, Power statistics for wave propagation in one
dimension an comparison with radiative transport theory, J. Math. Phys. 14 (1973)
1733–1745.

[6] R.H. Lang, Probability density function and moments of the field in a slab of one‐
dimensional random medium, J. Math. Phys. 14 (1973) 1921–1926.

[7] R. Rammal, B. Doucot, Invariant imbedding approach to localization. 1. general
framework and basic equations, J. Phys. 48 (1987) 509–526.

[8] N. Kumar, Resistance fluctuation in a one-dimensional conductor with static
disorder, Phys. Rev. B 31 (1985) 5513–5515.

[9] S.B. Haley, P. Erdos, Wave-propagation in one-dimensional disordered structures,
Phys. Rev. B 45 (1992) 8572–8584.

[10] S. John, Localization of light, Phys. Today 44 (5) (1991) 32–40.
[11] P. Pradhan, N. Kumar, Localization of light in coherently amplifying random

media, Phys. Rev. B 50 (1994) 9644–9647.
[12] A. Abrikosov, I.A. Ryzhkin, Conductivity of quasi-one-dimensional metal systems,

Adv. Phys. 27 (1978) 147–230.
[13] H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heiftez,

D. Kunte, H.K. Roy, A. Taflove, V. Backman, Optical methodology for detecting
histologically unapparent nanoscale consequences of genetic alterations in biolo-
gical cells, Proc. Nat. Acad. Sci. USA (PNAS) 150 (2008) 20124–20129.

[14] H. Subramanian, P. Pradhan, Y. Liu, I. Capoglua, J. Rogers, H.K. Roy, V. Backman,
Partial wave microscopic spectroscopy detects sub-wavelength refractive index
fluctuations: an application to cancer diagnosis, Opt. Lett. 34 (2009) 518–520.

[15] P. Pradhan, D. Damania, H. Joshi, V. Turzhitsky, H. Subramanian, H.K. Roy,

P. Pradhan et al. Optics Communications 393 (2017) 185–190

189

http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref1
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref1
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref2
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref2
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref3
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref3
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref3
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref4
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref4
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref5
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref5
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref5
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref6
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref6
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref7
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref7
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref8
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref8
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref9
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref9
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref10
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref11
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref11
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref12
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref12
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref13
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref13
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref13
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref13
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref14
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref14
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref14
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref15


A. Taflove, V.P. Dravid, V. Backman, Quantification of nanoscale density fluctua-
tions by electron microscopy: probing cellular alterations in early carcinogenesis,
Phys. Biol. 8 (2011) 026012–026020.

[16] H. Subramanian, H.K. Roy, P. Pradhan, M.J. Goldberg, J. Muldoon, R.E. Brand,
C. Sturgis, T. Hensing, D. Ray, A. Bogojevic, J. Mohammed, J.-S. Chang,
V. Backman, Partial wave spectroscopic microscopy for detection of nanoscale

alterations of field carcinogenesis, Cancer Res. 69 (2009) 5357–5363.
[17] V. Milner, A.Z. Genack, Photon localization laser: low-threshold lasing in a random

amplifying layered medium via wave localization, Phys. Rev. Lett. 94 (2005)
073901.

[18] D.Y. Churmakov, I.V. Meglinski, D.A. Greenhalgh, Influence of refractive index
matching on the photon diffuse reflectance, Phys. Med. Biol. 47 (2002) 4271.

P. Pradhan et al. Optics Communications 393 (2017) 185–190

190

http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref15
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref15
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref15
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref16
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref16
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref16
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref16
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref17
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref17
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref17
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref18
http://refhub.elsevier.com/S0030-4018(17)30133-5/sbref18

	Reflection statistics of weakly disordered optical medium when its mean refractive index is different from an outside medium
	Introduction
	Reflection statistics of matched disordered media
	Reflection statistics of mismatched disordered media
	Numerical simulations of stochastic equation and analytical semi-integral equation results
	Extension of calculation to a wavelength spectra

	Conclusions and discussions
	Acknowledgements
	References




