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Despite major importance in physics, biology, and other sciences, the optical sensing of nanoscale

structures in the far zone remains an open problem due to the fundamental diffraction limit of resolution.

We establish that the expected value of spectral variance (e�2
) of a far-field, diffraction-limited microscope

image can quantify the refractive-index fluctuations of a label-free, weakly scattering sample at

subdiffraction length scales. We report the general expression of e� for an arbitrary refractive-index

distribution. For an exponential refractive-index spatial correlation, we obtain a closed-form solution of e�
that is in excellent agreement with three-dimensional finite-difference time-domain solutions of

Maxwell’s equations. Sensing complex inhomogeneous media at the nanoscale can benefit fields from

material science to medical diagnostics.
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Do Maxwell’s equations permit determining the nature
of three-dimensional (3-D) subdiffractional refractive-
index (RI) fluctuations of a linear, label-free dielectric
medium in the far zone? Recently, by capturing high
spatial-frequency evanescent waves, metamaterial-based
lenses and grating-assisted tomography have achieved a
resolving power no longer limited by the diffraction of
light [1,2]. However, this super-resolution is confined to
the transverse plane, which limits its ability to characterize
3-D inhomogeneous media.

Whereas various nonlinear techniques have been pro-
posed to image subdiffractional structures in 3-D [3–5],
these techniques require exogenous labeling or intrinsic
fluorescence and, thus, only image the spatial distribution
of particular molecular species.

Currently, elastic, label-free spectroscopic microscopy
techniques are emerging that characterize the endogenous
properties of a medium by utilizing the spectral content of a
diffraction-limited microscopic image. Examples include
multiple high-precision quantitative phase microscopy
techniques [6–8], which measure the longitudinal integral
of RI and, hence, are insensitive to longitudinal RI fluctua-
tions. Alternatively, partial-wave spectroscopicmicroscopy
[9], confocal light scattering and absorption spectroscopy
[10], and spectral encoding of spatial frequency [11]
analyze the light-scattering response of inhomogeneous
materials to obtain information of their subdiffractional
structure in both lateral and longitudinal dimensions.
However, the reported theory behind these techniques
involves strong assumptions such as one-dimensional light
transport, approximation of the medium as solid spheres, or
having a single length scale.

Here, we establish that the spectral signature of scattered
light in a far-zone microscope image contains sufficient
information to quantify the 3-D RI fluctuations of weakly

scattering media at deeply subdiffractional scales. We
report three-dimensional light transport theory for linear,
label-freeweakly scatteringmediawith an arbitrary form of
RI distribution: continuous or discrete, random or determi-
nistic, statistically isotropic or not. We consider the

expected value of spectral variance (e�2
) of a far-field,

diffraction-limited image registered by a microscope with
a small numerical aperture (NA) of illumination and spec-

trally resolved image acquisition.We show that e� quantifies
RI fluctuations at nanometer length scales limited only by
the signal-to-noise ratio of the system. Under the single
scattering approximation, we obtain an explicit expression

relating e� to the statistics of RI fluctuations inside the
sample. Moreover, for the special case of an exponential
form of the RI spatial correlation, we present a closed-form

solution for e� and validate it via numerical simulations of
an experiment based on rigorous 3-D finite-difference time-
domain (FDTD) solutions of Maxwell’s equations [12].
Consider a spatially varying RI object sandwiched

between two semi-infinite homogeneous media (Fig. 1).
The RIs of the three media are, from top to bottom: n0,
n1½1þ n�ðrÞ� (as a function of location r), and n2. To

n2
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n0 0
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U(r) U(s)

I= U(r)+U(s) 2

air

sample

glass

FIG. 1 (color online). Sample: RI of the middle layer is
random, and RIs of the top and bottom layers are constant; RI
as a function of depth is shown in gray. The coherent sum of UðrÞ
and UðsÞ is detected. Reflection from the bottom of the substrate
(glass slide) is negligible, as its thickness (1 mm) is much larger
than themicroscope’s depth of field (formost setups, 0:5–15 �m).
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begin with, we assume n1 ¼ n2, approximating the case of
fixed biological media on a glass slide [13,14].

A unit amplitude plane wave with a wave vector ki is
incident normally onto a weakly scattering sample. Under
the Born approximation, the field inside the sample is uni-
form and has an amplitude T01 ¼ 2n0=ðn0 þ n1Þ (transmis-
sion Fresnel coefficient). In the far zone, the scattering

amplitude of the scalar field UðsÞ, scattered from the RI
fluctuations n�ðrÞ in the direction specified by the wave

vectorko, isfsðksÞ¼T01

Rðk2=2�Þn�ðr0Þe�iks�r0d3r0, where
ks ¼ ko � ki is the scattering wave vector (inside the sam-
ple) [15]. The scalar-wave approximation is used here as it
sufficiently describes the intensity image formed by a
microscope with a moderate NA [15]. Its further justifica-
tion by full-vector 3-D FDTD results is discussed below.

When the sample is imaged by an epi-illumination
bright-field microscope, the back-propagating field

reflected from the sample’s top surface, UðrÞ, returns to

the image plane. Meanwhile, only the part of UðsÞ that
propagates at solid angles within the NA of the objective
is collected. For a microscope with magnificationM, mod-
erate NA (kz � k), ignoring the angular dependence of the

Fresnel coefficient T10 ¼ 2n1=ðn0 þ n1Þ, UðsÞ focused at a
point (x0, y0) in the image plane is [16]

UðsÞ
imðx0; y0; kÞ ¼

kT10

i2�jMj
ZZ

TkNAfse
�iðkxx0þkyy

0Þd
kx
k
d
ky
k
;

(1)

where TkNA is the microscope’s pupil function—a cone in
the spatial-frequency space with a radius kNA [Fig. 2(a)].
Thus, the objective performs low-pass transverse-plane
spatial frequency filtering, with the cutoff corresponding
to the spatial coherence length. With substitution of fs into
Eq. (1) and the introduction of a windowing function Tks

that equals 1 at k ¼ ks and 0 at k � ks [Fig. 2(a)], U
ðsÞ
im is

UðsÞ
imðx0; y0; kÞ ¼

T10T01

ijMj
Z 1

�1
kn1DðrÞe�i2kzdz; (2)

where r is (x0=M, y0=M, z) inside the sample, and n1D is the
n�ðrÞ convolved (� ) with the unitary Fourier transform

(F ) of TkNATks
in the transverse plane (xy, ? ),

n1DðrÞ ¼ F?fTkNATks
g �? n�ðrÞ.

Equation (2) presents a new treatment of the Born
approximation, which is here extended to include the
optical imaging of a scattering object in the far zone.
Mathematically, Eq. (2) signifies that to describe a
microscope-generated spectrum (a 1-D signal), the 3-D
problem of light propagation can be reduced to a 1-D
problem where the RI is convolved with the Airy disk in
the transverse plane.
The microscope image intensity (normalized by the

image of the source) is an interferogram

Iðx0; y0; kÞ ¼ �2
01 � 2� Im

�Z þ1

�1
kn1DðrÞe�i2kzdz

�
; (3)

where �01 ¼ ðn0 � n1Þ=ðn0 þ n1Þ is the Fresnel reflec-
tance coefficient, � ¼ �01T01T10, Im denotes ‘‘the imagi-
nary part of,’’ and n1D is zero at z =2 ð�L; 0Þ. Here, Oðn2�Þ
terms are neglected.
We quantify the spatial distribution of n� via �2, the

spectral variance of the image intensity within the illumi-
nation bandwidth �k. Since the expectation of the spec-
trally averaged image intensity equals �2

01, �
2ðx0; y0Þ is

defined as �2ðx0; y0Þ ¼ R
�kðIðx0; y0; kÞ � �2

01Þ2dk=�k. For
convenience, we introduce a windowing function T�ks

that

is a unity at k ¼ ks for all ki with magnitudes within the
�k of the system and is zero elsewhere [jkij between k1
and k2 in Fig. 2(a)]. On denoting kc as the value of the
central wave number of illumination bandwidth inside
the sample, approximation of �k � kc, and application
of the convolution and the Parseval’s theorems [for mathe-
matical details see the Supplemental Material [17]],
�2ðx0; y0Þ equals

�2ðx0; y0Þ ¼ �2k2c
�k

Z 1

�1
jF fT�ks

TkNAg � n�ðrÞj2dz: (4)

Physically, T�ks accounts for the limited bandwidth of

illumination and serves as a bandpass longitudinal
spatial-frequency filter of RI distribution with its width
related to the temporal coherence length l� ¼ 2�=�k.
The interception of the two frequency filters associated
with the spatial and temporal coherence, TkNA and T�ks ,

signifies the frequency-space coherence volume centered
at kz ¼ 2kc: T3D ¼ T�ks

TkNA [Fig. 2(a)]. Given an infinite

bandwidth, one could reconstruct the full 3-D RI from
Iðx0; y0; kÞ. However, since �k and kc are finite, � detects
the variance of an ‘‘effective RI distribution,’’ i.e., of
n�ðrÞ �F fT3Dg [Eq. (4)].
Note that �2ðx0; y0Þ is random since n�ðrÞ is random.

Hence, to characterize the sample statistics, we compute

its expected value, denoted as e�2
. Using the Wiener-

Khinchine relation, we obtain e�2
from Eq. (4) as

FIG. 2 (color). Spatial-frequency space with kz axis antipar-
allel to ki. (a) Cross section of T�ks

, TkNA, and their interception

T3D; (b) PSD of the RI fluctuation (blue) and T3D (gray) when
lc � L and (c) lc & L.
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e� 2 ¼ �2k2cL

�k

Z
T3D

�n�
ðkÞd3k; (5)

where �n�
¼ jF fn�ðrÞgj2 is the power spectral density

(PSD) of n�.
Equation (5) establishes the general quadrature-form

expression for e�2
for an arbitrary n�ðrÞ. Note that while

the 3-D structure of complex inhomogeneous materials
cannot be described by a single measure of size or RI,
the PSD fully quantifies the magnitude, spatial frequency,
and orientation of all RI fluctuations present within the

sample. As seen from Eq. (5), e�2
measures the integral of

the tail of the PSD within T3D. Hence, as shown later, e�2

presents a monotonic measure of the width of the PSD.

When n1 � n2, the expression for e�2
has a different pre-

factor and a deterministic offset, specified in the
Supplemental Material [17].

We further obtain a closed-form expression for e�2
for a

special case when n�ðrÞ has an exponential form of spatial
correlation with a variance �n� and correlation distance lc.

Since lc can only be defined for a random medium with a
physical size much larger than the correlation distance, we
define lc as the correlation distance of an unbounded
medium n1� ðrÞ and the sample as a horizontal slice of

n1� ðrÞ with thickness L: n�ðrÞ ¼ TLn
1
� ðrÞ where TL is a

windowing function along the z axis with width L.
The PSD of such sample is an anisotropic function of lc
and L:�n�

ðkÞ ¼ jF fTLg �F fn1� gj2 [Figs. 2(b) and 2(c)].
Alternatively, e�2

is found by independently computing the
contributions from (i) scattering from within the sample

(e�2

R) and (ii) reflectance at z ¼ �L (e�2

L),

e� 2 ¼ e�2

R þ e�2

L: (6)

Here, e�L is fully described by the RI contrast at the

bottom surface e�2

L ¼ �2�2
?ðn1DÞ=4, where �2

?ðn1DÞ is the

variance of the effective n1D in the transverse plane [details

shown in the Supplemental Material [17]]. e�R, in turn, is
defined by �n1

�
, which is independent of L when L * l�;e�2

R is obtained by integrating the PSD of an exponentially

correlated n1� ðrÞ according to Eq. (5). Substituting e�2

R ande�2

L into Eq. (6) and introducing a unitless size parameter
x ¼ kclc, we obtain the following closed-form solution fore�2

for an exponential form of the spatial RI correlation:

e�2 ¼ 2�2�2
n�

�

kcLx
3NA2

½1þ x2ð4þ NA2Þ�ð1þ 4x2Þ
þ �2�2

n�½1� 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðxNAÞ2

q
�=4: (7)

Two assumptions were made to derive Eq. (7) from
Eq. (5): (1) we approximated the top and bottom surfaces
of T3D as planes perpendicular to the kz axis, and (2) we

calculated e�R from�n1
�
, not considering the extreme case

of L � l�. Both assumptions are not crucial from the
theoretical perspective and are there only to obtain a rela-
tively simple closed-form solution of Eq. (5).

To confirm these approximations, we evaluate e� pre-
dicted by the general quadrature-form expression [Eq. (5)]
using MATLAB computing software (MathWorks Inc.). We

obtain an excellent agreement between e� calculated from
Eq. (5) and the closed-form expression [Eq. (7)] derived
from it (Fig. 3). This validates the closed-form solution fore� for an exponential RI correlation.
We support the present theory by simulating a physical

experiment using the rigorous 3-D FDTD solution of
Maxwell’s equations [18–20]. Our technique accurately
synthesizes microscope images of arbitrary inhomogene-
ous samples under various imaging parameters, incorpo-
rating RI fluctuations as fine as 10 nm. We synthesized
bright-field, plane-wave epi-illumination microscope
images of samples with a RI distribution resembling that
of biological cells: n1 ¼ 1:53 [13,14], n1�n� ¼ 0:05 [21].
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FIG. 3 (color). Illustration of e� dependence on lc predicted by the quadrature-form [Eq. (5)] and the closed-form [Eq. (7)] analytical

expressions for e� (circles and solid lines, respectively) and by FDTD (solid lines with error bars representing standard deviation
between 20 realizations of each statistical condition), calculated for (a) L ¼ 0:5 �m, �k ¼ 4:9 �m�1, kc ¼ 16:8 �m�1,
(b) L ¼ 1:5 �m, �k ¼ 4:9 �m�1, kc ¼ 16:8 �m�1, and (c) L ¼ 2:0 �m. �k ¼ 11:9 �m�1, kc ¼ 18:1 �m�1 (wave number values
inside the sample). Data are shown normalized by �2

01, the image intensity in the absence of RI fluctuations inside the sample.
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The spatial RI correlation was set to be exponential,
and the RIs of the top and bottom media were n0 ¼ 1
and n2 ¼ 1:53.

Referring to Fig. 3, the e� predicted by the present theory
[either by the quadrature-form Eq. (5) or the closed-form
Eq. (7)] exhibits an excellent agreement with the FDTD-
simulated experimental results over a wide range of lc, L,
spectral bandwidth, and NA. The agreement is such that

the theoretically predicted e� values by both Eqs. (5) and
(7) lie within the standard deviation bars of the FDTD
results at all points tested. Whereas the present derivation
assumes �k � kc, in fact, the closed-form analytical so-
lution is robust for�k that includes the full range of visible
wavelengths [Fig. 3(c)]. This match also justifies the
employed scalar-wave approximation as well as that the
single scattering approximation applies to RI fluctuations
typical for fixed biological cells.

We next describe the lc dependence of
e� and compare its

key aspects to those of the commonly used scattering
parameters: the backscattering (�b) and the total scattering
(�s) cross sections. The value of �b manifests a nonmono-
tonic dependence on lc, which makes the inverse problem
ambiguous [22], whereas �s increases steeply / l3c and
thus is relatively insensitive to structural changes at small

length scales [23]. In turn, e�ðlcÞ is distinguished by three
important properties illustrated in Fig. 3. First, unlike �b,e�ðlcÞ can be monotonic. This property is apparent for thin
samples [L < 2 �m, Figs. 3(a) and 3(b)]. For thicker
samples, a smaller collection NA can be chosen so thate�ðlcÞ remains monotonic [e.g., NA ¼ 0:3 in Fig. 3(c)].

Second, as opposed to �sðlcÞ, the sensitivity of e� to
changes at smaller length scales is not obscured by changes

at larger lc. We note that the functional form of e�ðlcÞ for
lc < 1=kc can be roughly approximated as linear [r2 values

of linear regressions for e�ðlcÞ presented in Fig. 3 range

from 0.86 to 0.91]. Finally, e� is independent of lc for lc �
1=kc, and therefore e�ðlcÞ exhibits predominant sensitivity
to subdiffraction length scales that is only limited by the
signal-to-noise ratio (SNR). The larger structures are natu-
rally resolved in the microscope image. In addition,
whereas the above mentioned scattering parameters are

/ �2
n� ,

e� is / �n� (confirmed by FDTD with r2 ¼ 0:99,

data not shown), which substantially improves the SNR.
Results of an FDTD-simulated experiment are shown

in Fig. 4. As expected, the bright-field microscope images
of samples with lc ¼ 20 and 50 nm [Figs. 4(a) and 4(b)]
are essentially indistinguishable. However, a drastic dif-
ference between the two samples is revealed in the
respective �ðx0; y0Þ images [Figs. 4(c) and 4(d), where
color bar limits match the ordinate range in Fig. 3(c)].
Figures 4(e) and 4(f) illustrate that a smaller amplitude of

spectral oscillations in the wavelength-resolved micro-
scope image indicates a higher spatial frequency of the
sample’s RI fluctuations.
Recognizing that the experimental n�ðrÞ may not be

exponentially correlated, one may attempt to (a) use the
validated approximations to obtain a closed form solution
for a different functional form of the PSD from Eq. (5),
(b) represent the correlation function of n� as a superpo-
sition of exponentials, or (c) evaluate Eq. (5) numerically
(no explicit functional form of the PSD is required for the
latter two).

We emphasize that whereas e� does not probe spatial
frequencies above 2k, the subdiffraction-scale structural
alterations change the width of PSD and, therefore, the

value of e�. Thus, e� provides a monotonic measure for the
width of the 3-D PSD of RI fluctuations with a high
sensitivity to subdiffractional length scales, without
actually imaging the 3-D RI.
We have established that despite the diffraction limit of

resolution, the interferometric spectroscopy of scattered
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FIG. 4 (color). 40� magnification, 0.6 NA microscope
images of samples with L ¼ 2 �m were synthesized by
FDTD. Bright-field images of samples with (a) lc ¼ 20 nm
and (b) lc ¼ 50 nm; �ðx0; y0Þ=�2

01 obtained from the

wavelength-resolved image of (c) the sample with lc ¼ 20 nm
and (d) lc ¼ 50 nm; (e) RI of the two samples as a function of z
along central voxels (x0, y0), and (f) image spectra of the
corresponding pixels (x00, y

0
0).
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light can quantify the statistics of RI fluctuations at deeply

subdiffractional length scales. We have shown that e�
obtained from an elastic, label-free, spectrally resolved
far-field microscope image quantifies RI fluctuations inside
weakly scattering media at length scales limited by the
SNR of the detector. We have derived a closed-form ana-

lytical solution for e� that yields results that agree with
numerical solutions of Maxwell’s equations over a wide
tested range of sample and instrument parameters.
Potential applications include semiconductors, material
science, biology, and medical diagnostics.

This work was supported by National Institutes
of Health (NIH) Grants No. R01CA128641,
No. R01EB003682, and No. R01CA155284 and National
Science Foundation (NSF) Grant No. CBET-0937987.
The FDTD simulations were made possible by a computa-
tional allocation from the Quest high-performance com-
puting facility at Northwestern University.

*Corresponding author.

v-backman@northwestern.edu
[1] D. Lu and Z. Liu, Nat. Commun. 3, 1205 (2012).
[2] A. Sentenac, P. C. Chaumet, and K. Belkebir, Phys. Rev.

Lett. 97, 243901 (2006).
[3] S.W. Hell, Science 316, 1153 (2007).
[4] B. Huang, W. Wang, M. Bates, and X. Zhuang, Science

319, 810 (2008).
[5] D.W. Piston, Trends Cell Biol. 9, 66 (1999).
[6] G. Popescu, Quantitative Phase Imaging of Cells

and Tissues, McGraw-Hill Biophotonics (McGraw-Hill,

New York, 2011).
[7] Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J.

Rogers, M.U. Gillette, and G. Popescu, Opt. Express 19,
1016 (2011).

[8] B. Bhaduri, H. Pham, M. Mir, and G. Popescu, Opt. Lett.

37, 1094 (2012).

[9] H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D.
Rogers, H. K. Roy, R. E. Brand, and V. Backman, Opt.
Lett. 34, 518 (2009).

[10] I. Itzkan, L. Qiu, H. Fang, M.M. Zaman, E. Vitkin, I. C.
Ghiran, S. Salahuddin, M. Modell, C. Andersson, L.M.
Kimerer, P. B. Cipolloni, K.-H. Lim, S. D. Freedman, I.
Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, Proc.
Natl. Acad. Sci. U.S.A. 104, 17 255 (2007).

[11] S. A. Alexandrov, S. Uttam, R. K. Bista, K. Staton, and Y.
Liu, Appl. Phys. Lett. 101, 033702 (2012).

[12] A. Taflove and S. C. Hagness, Computational
Electrodynamics: The Finite-Difference Time-Domain
Method (Artech House, Norwood, 2005), 3rd ed.

[13] D. Cook, Cellular Pathology: An Introduction to
Techniques and Applications (Scion, Bloxham, 2006).

[14] G. C. Crossmon, Stain technology 24, 241 (1949).
[15] M. Born and E. Wolf, Electromagnetic Theory of

Propagation, Interference and Diffraction of Light, edited
by M. Born and E. Wolf (Cambridge University Press,
Cambridge, England, 1998).

[16] J. Goodman, Introduction To Fourier Optics, McGraw-Hill
Physical and Quantum Electronics Series (Roberts & Co.,
Englewood, 2005), pp. 126–154.

[17] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.111.033903 for a
detailed derivation.

[18] I. R. Capoglu, ANGORA: A free software package for
finite-difference time-domain (FDTD) electromagnetic
simulation (2012), date accessed: April 2012, http://
www.angorafdtd.org.

[19] I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman,
in Progress in Optics, Vol. 57, edited by E. Wolf (Elsevier,
New York, 2012), pp. 1–91.

[20] I. R. Capoglu, A. Taflove, and V. Backman, IEEE Trans.
Antennas Propag. (to be published).

[21] J.M. Schmitt and G. Kumar, Appl. Opt. 37, 2788
(1998).

[22] A. Ishimaru,Wave Propagation and Scattering in Random
Media, IEEE Press Series on Electromagnetic Wave
Theory (Wiley, New York, 1999).

[23] A. J. Radosevich, J. Yi, J. D. Rogers, and V. Backman,
Opt. Lett. 37, 5220 (2012).

PRL 111, 033903 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
19 JULY 2013

033903-5

http://dx.doi.org/10.1038/ncomms2176
http://dx.doi.org/10.1103/PhysRevLett.97.243901
http://dx.doi.org/10.1103/PhysRevLett.97.243901
http://dx.doi.org/10.1126/science.1137395
http://dx.doi.org/10.1126/science.1153529
http://dx.doi.org/10.1126/science.1153529
http://dx.doi.org/10.1016/S0962-8924(98)01432-9
http://dx.doi.org/10.1364/OE.19.001016
http://dx.doi.org/10.1364/OE.19.001016
http://dx.doi.org/10.1364/OL.37.001094
http://dx.doi.org/10.1364/OL.37.001094
http://dx.doi.org/10.1364/OL.34.000518
http://dx.doi.org/10.1364/OL.34.000518
http://dx.doi.org/10.1073/pnas.0708669104
http://dx.doi.org/10.1073/pnas.0708669104
http://dx.doi.org/10.1063/1.4737209
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.033903
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.033903
http://www.angorafdtd.org
http://www.angorafdtd.org
http://dx.doi.org/10.1364/AO.37.002788
http://dx.doi.org/10.1364/AO.37.002788
http://dx.doi.org/10.1364/OL.37.005220

