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Single Realization Stochastic FDTD for Weak
Scattering Waves in Biological Random Media

Tengmeng Tan, Member, IEEE, Allen Taflove, Fellow, IEEE, and Vadim Backman

Abstract—This paper introduces an iterative scheme to over-
come the unresolved issues presented in S-FDTD (stochastic
finite-difference time-domain) for obtaining ensemble average
field values recently reported by Smith and Furse in an attempt
to replace the brute force multiple-realization also known as
Monte-Carlo approach with a single-realization scheme. Our for-
mulation is particularly useful for studying light interactions with
biological cells and tissues having sub-wavelength scale features.
Numerical results demonstrate that such a small scale variation
can be effectively modeled with a random medium problem which
when simulated with the proposed S-FDTD indeed produces a
very accurate result.

Index Terms—Biological cells and tissues, FDTD, iterative, PDE,
randommedia, S-FDTD, S-PDE, statistical fluctuations, sub-wave-
length.

I. INTRODUCTION

B IOLOGICAL cells/tissues are an extremely complicated
material and light interactions in this medium are there-

fore too complex to be solved using a deterministic formulation.
For example, in additional to the fact that the heterogeneities of
these materials are below the sub-wavelength scale, an exact
knowledge of these heterogeneity variations is far from com-
plete. A more useful formulation for such a small scale variation
may come from a randommedium problem. Rayleigh scattering
of sunlight in the atmosphere causing diffuse sky radiation is
such a great example of a random medium problem.
A brute force technique for evaluating a random medium

problem is to run Monte-Carlo simulations with multiple real-
izations. In this implementation the statistical heterogeneities
characterizing the random medium magnetic and electric
and are a priori. The Monte-Carlo simulation uses this statis-
tical information to assemble a large number of realizations. To
this end, field quantities of interest are the scattered fields and
the ensemble average of these fields are computed by taking
the arithmetic mean over the total number of realizations. Note
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that in this multiple-realization Monte-Carlo approach the exact
number of realizations needed to converge to a true ensemble
average is not yet known and therefore becomes a part of the
approximation. Depending on the nature of its statistical corre-
lation, a random medium problem may require tens or hundreds
of thousands of realizations. This means a brute force approach
is very inefficient, particularly for a 2d/3d problem.
An efficient alternative is to formulate the problem in such a

way that its ensemble averages are ready to be run in a single
realization scheme. Early reports on running a single-realiza-
tion Monte-Carlo relevant to numerical electromagnetic waves
seem to appear in [1]–[4]. In [1], [2] the authors focused on
electromagnetic field uncertainties as a consequence of statis-
tical uncertainties caused by either material inhomogeneities,
or fabrication and placement tolerances. These uncertainties
are becoming important in modern electronic devices where
the wavelength is commensurable to its physical size. Using a
single-realization scheme to evaluate radiation absorption in the
human body affected by uncertainty measurements in tissues
was reported in [3], [4]. The authors in this paper called the
technique stochastic or S-FDTD, because the governing equa-
tions were taken directly from Maxwell’s equations discretized
with FDTD (finite-difference time-domain) methodology. On
the other hand, the governing electromagnetic equations in [1]
are taken from transmission-line matrix or TLM formulation.
In both cases their ensemble averages are constructed by

evoking the definition of expectation operator applied directly
to the governing numerical schemes updating the wave propa-
gations. However, due to the fact that fluctuations in material
quantities , , and are directly coupled to the electric
and magnetic , that is , , and where denote
partial derivative with respect to time , Taylor expansions
were needed to further approximate these coupling terms. As a
consequence, there are correlation coefficients that need to be
resolved. It should be pointed out that such a coupling difficulty
in mathematical literature is known as a multiplicative noise,
and this type of noise in general is very difficult to solve [5],
[6]. A unique procedure to relate the truncation error in Taylor
expansion to that of the statistical moments that results in
an optimized solution having significantly fewer numbers of
realizations was also developed in [7].
In this paper we are proposing an iterative technique which

will reformulate the multiplicative noise into an additive noise.
Additive noise in Lagenvin’s words is ”infinitely simpler” to
solve [8]. In this scheme the accuracy is determined by the
number of the iterations which for a weak scattering problem
can be as small as two or three iterations. To this end, the
FDTD (finite-difference time-domain) algorithm established
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by Yee [9] has proven to be one of the most robust numerical
tools to solve wave propagations including complex media
exhibiting high levels of heterogeneities [10]–[12]. The method
directly discretizes Maxwell’s equations, and hence it contains
the true physics of classical electrodynamics. This means that
FDTD is fully equipped for studying wave propagation in
random media. Following [3], [4], we also refer to this random
medium single realization formulation as S-FDTD, because
the numerical implementation also continues with the standard
Yee’s algorithm. The formulation of the method is presented
in Section II, which will include discussions on multiplicative
and additive noise. Section III provides numerical examples of
the technique in practice, which is followed by discussion and
conclusion.

II. FORMULATION

Let and represent the total electric and
magnetic fields with denoting spatial coordinate
and denoting time.Maxwell’s equations for waves propagating
in a heterogeneous or random medium sourced by a temporal
excitation at a point can be written as

(1a)

(1b)

The subscript is an integer signifying a specific realiza-
tion generated by one particular sample associated with the
known statistical distributions , , and . For
example, in a multiple-realization Monte-Carlo approach, the
idea is to generate as many realizations as required (a large
value) so that ensemble averages can be approximated from
such a set of simulations.
If one associates a non-dispersive electric medium and

and magnetic medium to be the average electro-
magnetic medium which by definition do not change over any
realization then a wave propagating in this effective average
medium is known to satisfy the incident fields

(2a)

(2b)

Detailed physical discussions on the existence of such an aver-
aging process derived from the microscopic viewpoints can be
found in Jackson [13]. The subscript letter is to emphasize
background materials which are not fluctuating with but can
vary with .
Next, the total fields are partitioned into incident and scattered

fields and . Substi-
tuting these partitions into (1) and then subtracting the incident
wave using (2), it follows that the scattered field can be written
as

(3a)

(3b)

Note that the fluctuations are defined as
and . Equation (3) makes

it very clear that a non-zero statistical uncertainty or fluctua-
tion in , or will give rise to uncertainties in
scattered fields and . As a result, there will also be
fluctuations in and because statistical fluctuations
are superimposing the classical microscopic average incident
fields and . This is a well-known scattered field and
total field decomposition formulation which can be found in
many text books on electromagnetic theories [14]–[16]. Scat-
tered fields can therefore be viewed as a consequence of electro-
magnetic materials deviating from their mean values. This is the
central idea for constructing a weak scattering random medium
problem.

A. Multiplicative Noise

In random medium problems executed with a multiple-real-
ization Monte-Carlo approach, the quantities of interest are the
ensemble average of the scattered fields. Mathematically, these
averaging values are obtained via the discrete expectation oper-
ator summing over one single variable

(4a)

(4b)

An ensemble quantity therefore is a single value not depending
on one particular realization but on the resulting average of
all realization . All other statistical average values are also
defined in this way. In other words, the Monte-Carlo approach
fundamentally assumes that a realization is simply one par-
ticular discrete sample whose infinite sum defines an ensemble
average.
Applying such a discrete expectation directly to (3) gives rise

to

(5a)

(5b)

These equations need further clarifications. First notice that
every ensemble term on the right-hand-side is already expressed
as a single number which no longer depends on the realization
. This means that each of these terms is readily evaluated or

replaced with one single variable. On the other hand, because
all the terms on the left-hand-side of (3) are multiplications of
two statistical variables which depend on , it then follows
that their ensemble averages need to be summed over the
multiplications which in this case depends on the realization
. This multiplication relation is emphasized by the subscript
inside the expectation as appeared in the left-hand-side of

the ensemble (5). This notation will be used whenever there is
a need to emphasize the difficulty of resolving multiplication
of two statistical variables.
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The complication of achieving an algorithm that can
be evaluated with a single-realization for a random
medium problem is fundamentally rooted in the fact that
both expectations and

have a coupled relation. That
is, the input and which depend on the realiza-
tion are coupled to the output which also depends
on . In stochastic partial differential equations (S-PDE), this
coupling effect is called a multiplicative noise [5], [6], [8], in
the sense that the input random variables and and
the output random variable are related by a multiplication
operation. This type of coupling effect is known to be a difficult
S-PDE problem. Note that a non-magnetic material having

or for all reduces
equation (5b) to

(6)

In a non-magnetic material the fluctuations in the scattered fields
and , or the total fields and

are therefore strictly coming from the
electrical fluctuations and . With no loss of
generality, the remaining discussion in this paper assumes a non-
magnetic material for all realization over any
spatial .
The authors in both [1], [2] and [3], [4] make use of Taylor

series expansions to approximate the coupled or multiplicative-
noise terms. For example, it is possible to approximate the en-
semble average of the coupled term for the scattered field on the
left-hand-side of (5) with

(7a)

(7b)

where and are correlation coefficients introduced to
reduce numbers of realizations. That is to say, if these coef-
ficients are known (accurately) then (5) effectively reduces
to a deterministic wave propagation problem having an ef-
fective medium characterized by and

. Again, the sum of the scattered and
incident fields gives the needed total fields propagating within
the interior and exterior of the medium.

B. Additive Noise and Multiple Scattering

We now introduce an iterative procedure to turn the multi-
plicative noise into an additive noise. Additive noise is known
to be one of the simplest S-PDE to solve [5], [6], [8]. For ex-
ample, the well-celebrated Lagenvin equation that motivated a
systematic study of S-PDE is an additive noise model. To this
end, we first partition the scattered fields into a superposition of
linearly independent subset solutions

(8)

Note that the superscript integer with the bracket is not meant
to be an exponential. It is only a marker identifying their linear
independency. It will be shown soon that is directly related
to the order of accuracy. The corresponding ensemble averages
are

(9)

We next rewrite the scattered field (3a) as

(10)

From the physical argument, it is clear that smaller statistical
fluctuations and result in a smaller scattered field as
well. For example, if then both statistical
fluctuations and must be identically zero. Likewise,
if these scattered fields are much smaller than the incident field
then it is possible to approximate and this
error depends both on and . This means that the multi-
plicative noise in (10) to a first order accuracy (first iteration or
guess) can be approximated with an additive noise. In particular,
by assigning this first iteration to and the resulting
additive noise S-PDE becomes

(11a)

(11b)

Since is known for all necessary and , and inde-
pendent of , it follows that knowing the statistical
and the scattered fields and can be easily
evaluated using any known PDE methodology. In other words,
the first order approximation assumes the scattered fields
are directly excited by the incident and

. It is therefore convenient to think of these
excitations as a physical polarization current responsible for
generating a scattered field.
The ensemble average variables and which

are independent of the realization can now be evaluated using
a single realization scheme. This is achieved by directly ap-
plying the discrete expectation to (11). Specifically,

(12a)

(12b)

In this case the ensemble polarization currents are the incident
and . For complete-

ness, we state that a zero statistical mean or
to a first order accuracy formulation produces
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no scattered field. Such a statistical distribution requires at
least a second order iteration . The question of what
contributes as a first order accuracy solution (weak scattered
field problem) in general will depend on both the statistical
average and and their spatial correlation
length to be discussed in later sections. It will also be shown
numerically that this accuracy also depends on the bandwidth
of the incident excitation .
Substituting the linearly independent decomposition (8) into

(10) results in a set of iteration equalities

(13a)

(13b)

with the understanding that . It is
also true that if is much smaller than and

smaller than then in general

and . These are
essentially the consequence of a weak scattering property
where in each iteration (each of the multiple scattering) the
scattered fields will be smaller than their excitations [17]. The
implication is that the proposed methodology when applied to
a weak scattering problem will converge quickly to a useful
result after a few iterations—a smaller . Lastly, note also that
the polarization currents at each are simply the excitations

and .
Although every iteration in (13) now takes a form of an ad-

ditive noise S-PDE, a single-realization scheme for is
still not yet available. Specifically, the ensemble averages for
the above iterative Maxwell’s equations evaluate to

(14a)

(14b)

The coupling or multiplicative noise difficulty now re-
sides in the polarization currents and

. This can be resolved by explicitly ex-

pressing in terms of the known deterministic
incident and all other statistical ensembles. The
process should start with the lowest iteration (11). For example,
if a first order iteration is needed then solution to this
iteration can be obtained in many different ways. However,
if another higher order accuracy is needed then it may be
necessary to first approximate the first order solution and then
use the result to construct the second order iteration . This
process continues until an acceptable result is achieved.
To this end, constructing a solution for to be ex-

pressed explicitly in terms of the known incident and
all other statistical parameters follows a rather straightforward

process. The challenge lies in the numerical efficiency. Specif-
ically, it will be made clear that not making use of symmetry
(or redundancy) will result in a numerical complexity reaching

with referring to discrete points in the randommedium
and the physical dimension of the problem. For example, if
the details of a three dimension random medium numer-
ically requires discrete resolution points, then a
second order accuracy will have a complexity of . This
value could even be less efficient than running the multiple-re-
alization Monte-Carlo scheme. It is therefore vitally important
to make use of redundancy to reduce this computational com-
plexity.
For a 1d problem it is possible to reduce this complexity

to linearly proportional to . However, 1d and 2d/3d wave
problems differ in a very fundamental way. For example, the
Green’s function for the 1d wave propagating in a homoge-
neous medium without boundary condition follows a very
simple expression (has no singularity). The Green’s function
for a 2d/3d problem with the same open boundary, on the other
hand, has a much more complicated expression (also contains
singularity). In other words, the methodology to be used in
reducing complexities for 1d/2d/3d problems and yet main-
taining good accuracy also follows a very different process.
We therefore deem it necessary to focus this paper only on a 1d
random medium problem. A higher dimension random medium
problem requires another publication.

C. Single Realization 1d Weak Scattering Random Media

Let the 1d random medium propagate along the -direction.
The total field (1) now simplifies to

(15a)

(15b)

The background incident wave (2) also reduces to

(16a)

(16b)

Depending on the distribution of and , this back-
ground incident wave excited with a single point

can be obtained in many different ways. For example,
if it is a layered medium then the frequency domain boundary
matching technique can give an exact solution, simply by taking
the inverse transform of the frequency domain solution. For
other more complicated profiles, it is necessary to evaluate this
incident wave numerically. Lastly, the scattered field (3) written
in terms of the background incident electric be-
comes

(17a)

(17b)
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Equivalently, the (17a) can also be written in terms of a mix of
electric and magnetic incident fields:

(18)

A multiple-realization Monte-Carlo scheme obtains its scat-
tered field ensemble average by either running (15) and then
subtracting out the incident wave, or running (17) directly. In
either case, the fluctuations and in each realiza-
tion are drawn (simulated) from a pre-defined set of statistics.
These statistics in principle can come from a correlation func-
tion for which the solution to the governing S-PDE exists. Such
an existence is a subject of Ito’s Calculus [8], which will not
be discussed here. For the purpose of demonstrating the accu-
racy of the proposed algorithm, we shall only use an exponen-
tial correction function by varying its spatial correction length
. To this end, an exponential correlation function is a convo-
lution relation for a function with its neighboring
satisfying where the
root-mean-square is evaluated at . The correla-
tion length is therefore a scale measuring how well two dif-
ferent points along the function and are correlated.
A digital filter technique for realizing this correlation function
was provided in [1]. Numerical examples to be discussed in
a later section actually use a slightly different implementation
provided by Ilker Capoglu in our lab (this code is also available
upon request).
It is also important to point out that one should not mistakenly

conclude that biological cells follow such a simple correlation
function. In fact, characterizing experimental correlation func-
tions as a clinical marker for distinguishing a benign from a
cancerous cell is an ongoing work in our lab [18]–[20] which
motivated the need for a single-realization random medium
Monte-Carlo scheme. For example, large sets of scattered field
data collected from different types of cells supplied by a hos-
pital are currently being processed for the purpose of modeling
the statistical random medium problem. The verification of the
experimental data against possible models therefore requires
stochastic Maxwell’s partial differential equations for which
without a single-realization scheme would be an extremely
inefficient task to process.
Next, in a random medium with a weak scattering problem

the background is often composed of homogeneous medium
having constant and everywhere. Scattering by
dust particles is such an example. Similarly, the actual variations
of observed in biological cells also appear to be small
enough such that identifying a constant to form

satisfies the weak scattered field constraint, i.e,
is much larger than . In fact, inside the cell

is also ignored (measuring its actual value is another practical
challenge) since at the optical frequency the displacement cur-
rent is believed to be significantly larger than the
diffusion current . Upon employing the linearly inde-

pendent partition (8) together with the lossless and uniform as-
sumptions, the complete set of the 1d iterative scattered field
PDE now reduces

(19a)

(19b)

The polarization current density , which is an inde-
pendent source to the PDE and in the anticipation for the discrete
implementation to be fully discussed next, will be expressed in
terms of the unit sample having non-zero value only
at

(20)

where , and both and are integers.
The methodology tailored to the FDTD scheme for an

arbitrary order accuracy is now developed. In a discrete
formulation the incident wave exists only at discrete points

where assumes the FDTD
discrete spacing. Similarly, the random medium statistics are
also sampled at , which will be denoted
by . Let the random medium start at and extend
to a finite length of points, i.e., exterior to
this region. This discrete sampling process is depicted in Fig. 1
with part (a) showing the temporal derivative of the incident
field at the discrete points, (b) sampling with constant
value within the discrete spacing , and (c) the same
to be used in the FDTD discrete spacing. The independent
boundary value or excitation responsible for generating
the incident wave is assigned at a distance exterior (to the left)
to the random medium. It is also important to point out that
spacing needs to be small enough so that statistical details
in the fluctuations along the -direction are properly
characterized. In other words, the discretization spacing
required in a random medium problem in general is dictated
by the statistical spatial correlation length, which in this case
is the parameter , rather than the more conventional criterion
of wavelength per sample point.
1) First Order Iteration: The above discrete diagram makes

it clear that in a discrete formulation the polarization current has
a collection of discrete point sources distributing along the
discrete . This means that the first order iteration PDE (19) at

becomes

(21a)

(21b)

with the point polarization current densities composing of the
incident temporal derivative scaled by the statistical

(22)

Note that the excitation density needs to include
all , which exactly has points. To this
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Fig. 1. Discrete 1d random medium with equal spacing samplings (a) temporal derivative incident wave at every (b) sampled dielectric values constant
within each (c) arrangement of FDTD discrete spacing which must be small enough to account for statistical variations along the -axis.

end, if only the first order accuracy is required then the single-
realization ensemble average formulation simply comes from
the expectation value of this equation, and the process ends here.
Specifically,

(23a)

(23b)

where

(24)

Being an ensemble average formulation, notice that none of
the variables involves the realization . Also, the solution to
this single-realization equation can now be obtained in many
different ways. In particular, the complexity associated with
generating the polarization currents will be exactly N points.
Keep in mind that every incident is a known deter-
ministic variable. Lastly, this ensemble polarization if replaced
with the incident magnetic field becomes

, where signifies a discrete coun-
terpart of .
2) Second Order Iteration: Similarly, the second order iter-

ation is evaluated by

(25a)

(25b)

with the discrete polarization current densities coming from

(26)

Again, this current density also needs to sample all points.
As stated earlier, obtaining a second order iteration single-real-
ization scheme requires the polarization current to be fully ex-
pressed in terms of the deterministic incident wave and all other

ensemble parameters. This can be facilitated by the fact that the
first order scattered fields, because of discrete independent
excitations, must have a functional relation

(27)

where the unit consistency scaling for an FDTD implementation
should be set as and the shift accounts for
the temporal delay which in general depends on the distance
between and . Numerical efficient for a random medium
problem therefore depends strongly on how this delay relation
is implemented.
To begin, an complexity associated with the excitations

is clear, substituting (27) into (26) results in one summa-
tion calling another summation. Avoiding this power factor
complexity follows from the following observations. First,
the incident wave in this case is coming from the left with
exterior to the inhomogeneity. Next, a plane wave has a

property . Further-
more, the scattered field can be decomposed into
both left and right propagating waves, because every point
source generates a wave going both directions. In particular, a
right propagation wave will be in phase with whereas
the left propagation accumulates double delays (passing
first and then bouncing back). For example, at the furthest
point there is a superposition of in phase propagating

wave which when scaled by
and after taking the first temporal derivative forms the

polarization current density for the second order iteration that
accounts for the internal reflections within the random medium.
On the other hand, at the left scattered wave responsible
for the internal reflections within the inhomogeneities comes
from the superposition of .
These properties all together allow the polarizations to be
separated into the right and left current densities

(28)
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where

(29a)

(29b)

Equivalently, the left or the out of phase propagating polariza-
tion can also be written as

(30)

The advantage of this separation is that the in phase source
excitation reduces to an complexity, because

depends only on . However, the source
complexity for the out of phase term is ,
because its incident excitations depend also on and . De-
pending on the applications, this quadratic complexity may still
need to be reduced further. There are ways to accomplish this
task. This will be systematically addressed after the completion
of the single-realization ensemble average formulation.
To this end, a second order accuracy multiple-realization

Monte-Carlo scheme simply comes from the sum of the
two approximated solutions and

. Taking their expectation values
therefore completes the ensemble average readily to be eval-
uated with a single-realization scheme. Specifically, the sum
of (23) and the ensemble of (25) which after substituting their
corresponding polarization current densities reduces to

(31a)

(31b)

Here we have made use of the temporal delay (30) equivalence.
Unlike the first order iteration (23), this second order accu-
racy single-realization includes the second order cross-correla-
tion and statistics which account for the internal re-
flections within the random medium. It therefore is capable of
dealing with a zero mean . Again, the solution to this
single-realization scheme can be evaluated with any standard
mathematical techniques. However, we will continue with the

standard Yee’s 1d algorithm. Because an expectation is simply
a single value, (31) fundamentally amounts to a standard pure
scattered field formulation. Details of how to translate a pure
scattered field formulation into FDTD implementation can be
found in [12], [21], hence they will not be repeated here.
For completeness, we add that if lossy random medium

problem is of interest then additional ensemble average terms
such as the background , the first order
polarizations , and the
second order polarizations

will need to be added in the above
lossless formulation (31). In this case, the lossy background
incident wave also needs to be evaluated from (16) with
the corresponding non-zero . Lastly, the technique devel-
oped here can be adopted to address background consisting of
layered mediums. In particular, this incident could be obtained
more efficiently using the frequency domain formulation,
because of its analytic solution.
3) Polarization Complexity Reduction: We now show that

there are ways to implement more efficiently. The
key idea is to make use of the Fourier transform linear phase
shift and constant time delay relationship. For example, taking
its Fourier transform and the ensemble average of (29b), and
defining the linear phase result in

(32)

where is the transform pair of . Sim-
ilar to the in phase incident (29a), the polarization current den-
sity in this transform domain now also has an complexity.
Again, the incident wave in this case also depends only on .
In fact, to avoid evaluating at each this incident wave should
be replaced with . Following
the technique successfully employed in the AFP or O-AFP [22],
[23], the time sequences are recovered from the inverse trans-
form using FFT (fast Fourier transform). It should be said that
if all the temporal data are stored away before the run-time,
then for larger a potential disadvantage in this implemen-
tation would come from expensive memory requirement. This
memory storage can be avoided if the transformation is per-
formed over the space. For example, recall also [22], [23] that
space and time in a plane wave has a simple wave relation

where is the wavenumber and
refers to the discrete time-step , and hence
with the phase velocity . This means that the

linear phase can be replaced with , and
can also be converted to . In this way

the FFT can be evaluated at every time-step .
Another possibility is to introduce further approximations.

For example, consider the first which also has the longest
summation term in (32)

(33)
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In one extreme this excitation can be approximated with a single
source

(34)

where the effective magnitude and delay can be systemat-
ically obtained from a curve-fitting procedure. Its corresponding
time-domain translates to

(35)

If every second order polarization current density is approx-
imated with such a single source replacement then the com-
plexity associated with the source will again become linear. For
an exponential correlation function having a shorter correlation
length our numerical experiments had indeed verified that
such an approximation works very well. This is because points
that are farther apart, because they are not well-correlated, tend
to add incoherently. Obviously, adding more terms in the ap-
proximation helps improving the accuracy. Note also that the
last term needs no ap-
proximation.

III. NUMERICAL EXAMPLES

All simulations assume within which the
random medium statistics fluctuates. For an FDTD spacing

these points translate to a cell having
thickness. The incident wave excitation is a modulated Gaussian
with a bandwidth expanding approximately 500 nm to 700
nm and centering at . To eliminate numerical
dispersion mismatch [24], [25], both the multiple-realization
scheme (17) and single-realization scheme (31) also use the
same stability value . This setup translates to ap-
proximately 200 sample points per wavelength. The uniform
background for all examples also assumes an optical index
reflection with and fluctuating at a
maximum of and its relation to relative permit-
tivity is . For illustration purposes, some large discrete
points are intentionally added to both sides of the sample
to make room for displaying or recording the forward and
backward scattered fields (no absorbing boundary condition).
In the discrete spatial display, the random medium actually
resides within , and all other points
exterior this region is the uniform background (hence starts
at 3500, rather than 0, and ends at 7000). Lastly, since (32)
fundamentally amounts to introducing additional data structure
to the iteration formulation, all demonstrations use the direct
implementation (31) without any further approximation.
Figs. 2 and 3 show simulation results for an exponential cor-

relation function with correlation length of .
Fig. 2(a) plots a sample of this correlation function over space
. Because of this small correlation length, the index reflection

fluctuates very quickly, i.e., points that are larger than
distance away practically fluctuate independently. Fig. 2(b)

shows the actual ensemble scattered field av-
eraged over realizations, plotting over space
at one instant . The dashed blue line is simulated with the
multiple-realization Monte-Carlo whereas the dotted red line
comes from the proposed single-realization scheme. The two

Fig. 2. Exponential correlation function simulation results with correlation
(a) a sample of a statistical optical index fluc-

tuating around a mean of 1.45, and (b) ensemble scattered field
along at some time for both the multiple-realization and proposed
single-realization schemes averaging over 4000 realizations. (a) Index Reflec-
tion at ; (b) Ensemble Scattered Field .

Fig. 3. Scattered fields of Fig. 2 observed over time (a) back scattering recorded
at a few points before entering the random medium (b) forward (transmitted)
scattering at a few points after leaving the random medium. (a) Ensemble
Back Scattered Field ; (b) Ensemble Forward Scattered Field

.

techniques clearly show an excellent agreement. The same
holds true over the temporal distribution. Specifically, Fig. 3(a)
plots the back scattering field recorded at some fixed point
before entering the random medium and Fig. 3(b) plots the
forward (transmitted) scattering field collected at a few
points after leaving the random medium. It should be pointed
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Fig. 4. Exponential correlation function simulation results with correlation
(a) a sample of a statistical optical index fluc-

tuating around a mean of 1.45, and (b) ensemble scattered field
along at some time for both the multiple-realization and proposed
single-realization schemes averaging over 4000 realizations. (a) Index Reflec-
tion at ; (b) Ensemble Scattered Field .

Fig. 5. Scattered fields of Fig. 4 observed over time (a) back scattering recorded
at a few points before entering the random medium (b) forward (transmitted)
scattering at a few points after leaving the random medium. (a) Ensemble
Back Scattered Field ; (b) Ensemble Forward Scattered Field

.

that the accuracy of the proposed solution is valid for arbitrary
realization .

Fig. 6. Exponential correlation function simulation results with correlation
(a) a sample of a statistical optical index fluctu-

ating around a mean of 1.45 (b) ensemble scattered field along at
some time for both the multiple-realization and proposed single-realization
schemes averaging over 4000 realizations, and (c) the same simulation but with
incident wave not modulating with the sine wave. (a) Index Reflection
at ; (b) Ensemble Scattered Field (c) Ensemble
Scattered Field .

Figs. 4 and 5 show simulation results for
but keeping all other parameters unchanged. In com-

parison with the shorter above, the optical index in
Fig. 4(a) now fluctuates much slower. However, the scattered
fields as shown in the spatial 4 b and temporal 5 a,b are still in
a relatively agreement. For completeness, we would like to add
that it is at this large correlation that the single source replace-
ment (33) or (35) starts becoming ineffective.
Lastly, Fig. 6 demonstrates a large correlation

for which the second order iteration will also become
ineffective. Again, this very well correlated having all
other parameters unchanged otherwise is plotted in Fig. 6(a)
with its ensemble scattered field over space showing on part b.
Specifically, the inset showing in Fig. 6(b) demonstrates that
the two simulation results no longer follow each other. This can
be understood also through the expansion (33) where each of
the coefficients now will add coherently. This means that their
corresponding much smaller than is no longer

valid. As a result, the assumption no
longer forms a good approximation and hence additional itera-
tion becomes necessary. However, as stated earlier, the
accuracy of the proposed iterative formulation in general de-
pends also on the incident wave spectrum. This is demonstrated
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in Fig. 6(c) where in this case the incident is not modulated with
the sine wive. Notice that the two simulations again follow each
other.

IV. DISCUSSION AND CONCLUSION

Our numerical examples demonstrate that the proposed
single-realization works very well for a weak scattering
random medium problem characterized by a smaller ,
, and incident wave having a lower spectral content. It is
therefore an effective algorithm for evaluating biological cells
believed to fluctuate at a shorter correlation length. It loses its
effectiveness when the correlation length is commensurable
to the wavelength of the incident wave. This is a consequence
of the fact that for a shorter the second-order statistics or
the cross-correlation statistically will often add
more incoherently (more cancellations). For example, the po-
larization and its neighbor

for a shorter will
tend to cancel each other. On the other hand, a longer will
make these terms almost always add constructively. In the
latter case, the magnitudes of and can become
commensurable. Such a problem needs to be resolved with
additional iterations with .
In particular, if the cross-correlation is perfectly
correlated over a long wavelength, i.e., and
fluctuate exactly the same way over the entire points, then
this iterative methodology may lose its effectiveness if
occupies a few wavelength. In terms of Born’s approximation
insight [17], this is because there will be no internal multi-re-
flection cancellations within the medium to give rise to a weak
scattering phenomenon.
This reasoning also helps understand the less accurate results

reported in [3], [4]. For example, with some algebraic manip-
ulations it is not difficult to show that their variance wave and
the present first-order iteration single-realization scattered wave
formulation (23) and (24) if included all the lossy terms will
differ only by a scaling related to their proposed correlation co-
efficients and . This can be facilitated through (18), e.g.,
replace and with and and then take the expectation
operation. On the other hand, each of their samples has a corre-
lation length perfectly correlated over a few wavelengths (their
sample are embedded in the layeredmediums). As demonstrated
in Fig. 6(a) and (b), a relatively high correlated statistics is still
very difficult to be resolved even with the second order iteration
formulation. Hence, a first order approximation should not ex-
pect to outperform its corresponding higher order counterpart.
Lastly, the principle idea that a weak scattering can be ap-

proximated with an iterative formulation also applies to 2d/3d
random mediums. As demonstrated, to improve accurate it is
necessary to account for all necessary higher order internal re-
flections within the random medium. The challenge is there-
fore in the numerical efficiency. For example, further symmetry
and reducing internal reflections which may not contribute con-
structively to the ensemble averages will need to be identified.
If these redundancies are not employed then the formulation
may not be an effective solution for an accuracy higher than
a second-order iteration.
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