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Abstract—A new formulation of electromagnetic wave scattering by
convex, two-dimensional conducting bodies is reported. This formula-
tion, called the on-surface radiation condition (OSRC) approach, is based
upon an expansion of the radiation condition applied directly on the
surface of a scatterer. Past approaches involved applying a radiation
condition at some distance from the scatterer in order to achieve a nearly
reflection-free truncation of a finite-difference time-domain lattice.
- However, it is now shown that application of a suitable radiation
~ condition directly on the surface of a convex conducting scatterer can lead
to substantial simplification of the frequency-domain integral equation
for the scattered field, which is reduced to just a line integral. For the
transverse magnetic (TM) case, the integrand is known explicitly. For the
transverse electric (TE) case, the integrand can be easily constructed by

solving an ordinary differential equation around the scatterer surface

contour. Examples are provided which show that OSRC yields computed
near and far fields which approach the exact results for canonical shapes
such as the circular cylinder, square cylinder, and strip. Electrical sizes for
the examples are ka = 5 and ka = 10. The new OSRC formulation of
scattering may present a useful alternative to present integral equation
and uniform high-frequency approaches for convex cylinders larger than
ka = 1. Structures with edges or corners can also be analyzed, although
more work is needed to incorporate the physics of singular currents at
these discontinuities. Convex dielectric structures can also be treated
using OSRC. These will be the subject of a forthcoming paper.

I. INTRODUCTION

HE APPROACH PRESENTED here 1s a high-frequency
technique for modeling electromagnetic scattering,
radically different from the geometric theory of ditfraction
(GTD). This new technique, which we call the on-surface
radiation condition (OSRC) approach, converts the usual
surface integral equation for the scattering problem into either
an integration of known quantities or a simple ordinary
-differential equation for convex two-dimensional targets. It is
currently applicable to convex conducting cylinders of arbi-
trary cross section, yielding codes for both the transverse
electric (TE) and transverse magnetic (TM) cases that are
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suitable for rapid processing by computers in the class of the
VAX 11/780. The OSRC approach has been extended to two-
dimensional homogeneous dielectric targets, yielding similar
analyses. These will be reported in a separate paper [1].

The OSRC approach was motivated by numerical experi-
ments conducted over the past twenty years aimed at simulat-
ing scalar or vector wave propagation and scattering using a
finite-difference time-domain (FD-TD) model of the govern-
ing wave equation. This type of simulation results in numerical
analogs of the incident and scattered waves propagating within

‘a finite, two- or three-dimensional data space of field
‘components positioned at distinct points in a lattice. To bound

the numerical domain, but not disturb the simulation of a
scatterer embedded in an infinite space, it has been found
necessary to introduce a suitable radiation boundary condition
at the outermost lattice planes. This boundary condition should
allow outgoing scattered waves to exit the numerical data
domain without undergoing nonphysical reflection.

Several early investigators employed the Sommerfeld condi-
tion (in the time domain) as a local radiation boundary
condition to truncate the numerical domain [2]-[5]. Later
workers identified and exploited higher order differential
operators for this purpose [6]-[11]. These operators appear to
fall into two categories. The first, exemplified by the work of

‘Kriegsmann and Morawetz [8] and Bayliss and Turkel [9],

uses the asymptotic behavior of the scattered field in cylindri-

cal or spherical coordinate systems to establish a series B, of
operators that, when applied to the scattered field, annihilate
the first n terms of the asymptotic series. Bayliss and Turkel

further demonstrated that the series B, can be conveniently

generated using a recursive formula. The second category,
exemplified by the work of Trefethen and Halpern [11],
derives an approximate one-way wave equation in Cartesian
coordinates by factoring the dispersion relation of the full
wave equation, and providing a rational polynomial interpola-
tion of the resulting square root at selected wave propagation
angles. This results in a reflection-free passage of plane waves

propagating at these angles through the lattice truncation

plane. The number of reflection-free angles and their values
can be selected in a systematic manner.

“A recent series of numerical experiments involving FD-TD
modeling of Maxwell’s equations in Cartesian coordinates and
two and three space dimensions has been reported [12]-[14].
These experiments utilized the radiation boundary operator

0018-926X/87/0200-0153$01.00 © 1987 IEEE



154

published by Mur [10], which is now known to be a Pade (2,

0) approximant as defined by Trefethen and Halpern [11]. For
continuous, sinusoidal excitation, it was observed that, if the
Mur condition were applied only eight space cells from the
outer surfaces of structures spanning up to 96 cells (with each
cell spanning approximately 0.1 wavelength), the radar cross
section could be modeled with an accuracy of 1 dB or better
over a 40 dB dynamic range [14]. The robustness of the

numerical experimental data suggested that it might be

possible to apply a suitable radiation condition even closer to a
scatterer to further reduce the required FD-TD lattice size.
In preparing for the new series of FD-TD numerical
experiments, an analysis revealed unexpectedly that substan-
tial simplification of the overall scattering problem would
occur for the important class of convex-shaped, two-dimen-
sional, conducting scatterers if the radiation condition were
applied directly on the surface of a scatterer in this class.
Essentially, the original frequency-domain integral equation

for the scattered field would be reduced to just a line integral

about the scatterer surface contour, where the integrand is
either known explicitly (for the TM case) or can be easily
constructed via solution of an ordinary differential equation
“about the surface contour (for the TE case). The prior
application of this concept, which we call the OSRC approach
1s not evident 1n the literature. -
Subsequent sections of this paper will develop the OSRC

theory for two-dimensional, convex-shaped, conducting scat-
terers for the TM and TE cases. Radiation boundary condi-
tions published by Kriegsmann and Morawetz [8], similar to
B, and B, published by Bayhss and Turkel [9], will be used in
this development. (It should be understood that OSRC theory

might be developed for the full range of Cartesian or circular
coordinate radiation operators, and that operators other than

B, and B, may present specific advantages.) It will be
demonstrated that use of a higher order OSRC can yield
computed near and far scattered fields which approach the
exact solution for several canonical conducting geometries
having electrical sizes ka = 5 and ka = 10. The results
indicate that OSRC may present a useful alternative to present
integral equation and uniform high-frequency methods for
electrically large convex cylinders of arbitrary cross section
shape.

I[I. FORMULATION OF THE OSRC APPROACH (TM POLARIZATION)

We shall consider a plane electromagnetic wave illuminat-
ing a two-dimensional, perfectly conducting, convex-shaped
cylinder for the transverse magnetic polarization case. The
incident wave, propagating at an angle o with respect to the
— X axis, 1s given by

amp

E..=U,e /%;: U, =e/k(xcosa-ysina)

ey
where the unit vector Z is parallel to the cylinder axis. The
parameter w 1s the frequency of the incident wave; kK = wa/
c; a is a characteristic dimension of the cylinder’s cross

section; and c is the speed of light in free space. The variables
x and y are the corresponding dimensionless Cartesian

coordinates in the plane orthogonal to 2. They are scaled with
respect to the length a.
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The scattered electric field E; is given by

E.=U/(x)e /'3 (2a)
; LUL(E) - AG(E|E)
I (2b)

where C represents the boundary of the cylinder’s cross
section; d/dv’ denotes an outward normal derivative on C:
and G 1s the free-space Green’s function given by

G(x|x’) =£— H, (kR) (2¢)
 R=|x-x'|= (x-x’)2+(y-—y’)2. - (2d)

The vectors X and X " appearing above are ]llSt normalized (x,
y) and (x’, y’), respectively. Since the cylinder is perfectly

conducting, the function Uy(x") can be replaced by — Uj,(X")
in (2b) to obtain '
] 1 ot o AUs(X7) IG (x| x’
US(X)"'—-" S G(XI.X',) | Uinc( ) ———— | ds
C v’ dv’
(3a)

Thus, the scattered field is completely determined when
dU.(x’)/dv’ is found. The z-directed surface electric current
J is related to this normal derivative by

' .] (aUS annc)
ﬂok I av’ dv’ '
where g = V 0/ €. An expresswn for the normal derivative
will be derived shortly.

First, the far-field expansion of (3) can be obtained by using
the asymptotic expansion of H{ as r = |X| = oo

J= (3b)

e JKkr

4
Np (4)

Us(X) = [i An(p, a, k)r"”] '

where r and ¢ are the cylindrical coordmates of X. The term
Ao in (4) is given exphcltly by

Aot @ k)= pJT/4 S [BUS | - ! ] Y g
T 8k UC _ o’ o
~(Sa)
where Y = X¥'-Xandcos 6 = ¥’ X, for £ = (cos o, sin @)
and v’ = umt normal to the curve C at s’. The bistatic radar

cross section (RCS) is related to A, by the expression:

RCS =27a|Ay|* (5b)

Next, a sequence of radiation boundary operators {B,}, n
=1, 2, -+ can be constructed which, for any », annihilates
the first n terms in the asymptotic expansion of (4). This can
be considered as a way of matching the solution on the
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radiation boundary to the first n terms of the expansion of the respectively,
solution exterior to the boundary. When B,, 1s applied to U; at

a fixed radius r = R, the annihilation relationship can be aUs | §(s7) il u for B (10a)
expressed as _ _ _ v’ 2 / . |
B U O(R on - 1/2) n=1, 2, 3, "t (6) aUS {g“(s’) jfz(S') }
, — _Jk o _""'""'“"__',_ Uinc
In this expression, the symbol O(R~"™) denotes a quantity 9V 2 8[x+JS(s")]
which decays like R~ as R — oo, The first two operators, 220

which are used 1n this paper, are _ — J _ _
‘ C2Lk+jS(s) 8s7E

for B,. (10b)

By=0d/dr+1/2r—jk ' (7a)

; Inserting either of these results into (3a) gives an analytical
) /12r2(1/r — jK)]. formdla for the scattered field. The correspondin.g. surface
' electric current expressions are obtained by combining (3b)

with either (10a) or (10b).

We observe that the term — jkU,,., which appears in both
(10a) and (10b), is the leading-order Kirchoff term. In the
OSRC formulation, however, this term as well as the others 1s
valid in both the lit and shadow regions of a convex scatterer.

|
B,=0d/0r+1/2r—jk — (82/a¢2+_

4
(7b)

These operators appeared 1n [8], and differ trom those 1n [9]
by the inclusion of the 1/r term in the denominator of the last
term in (7b). The 1/r term may be neglected for the TM case,
but must be retained for the TE case. Equation (6) has been
previously used (with n» = 1, 2) in conjunction with finite-
difference time-marching schemes to close the computational
space at some distance from the scatterer while permitting only ~  This section will discuss the application ot the on-surface
an acceptably small level of nonphysical wave reflection [8], radiation condition formulation to the first of three canonical,
[9]. Excellent results have been obtained for radiation bound- two-dimensional, convex conducting geometries, the circular
ary surfaces only a few space cells trom the scatterer for a cylinder for TM polarization of the incident wave. For this
wide variety of problems. problem, Cis the circle r = 1, with d/dv” = d/0r’, { = 1,
Now, however, B, will be applied to U, directly on the and the s’ derivatives in (10b) are just ¢ " derivatives. Without

surface of the scatterer, instead of at some distance off the loss of generality, « is taken as zero in (1) so that (10a) and
scatterer. This permits formal expressions for the normal (10b) become
derivative of the scattered field dU,/dv’ to be obtained via

III. APPLICATION TO THE CIRCULAR CYLINDER: TM
POLARIZATION

application of (6) on contour C, and setting the right hand side aU; (_I__J k) pikcose’  for B (11a)
of (6) equal to zero. First, the following replacements are =~ ar’ 2
made: " ' |
' ' ' . .- U, (1 " Jj 1
0 0 1 1 92 52 P -2-—1 BT COSs ¢’
Do = () —  ®
or’ ov’  r’ r’'?op’? 0s’? , ik .
. - +'— sin? ¢ )ef"c"s“", for B,. (11b)
where {(s’) 1s the curvature of the cylinder’s surface at s’, and L 2 -

2 ,2 . . . ¢ | | .
d</0ds’“ 1s the second derivative with respect to the arc length In (11b), the term (k + j¢) in (10b) has been replaced by .
of C. Essentially, these replacements are motivated by

approximating C at a point X(s’) by its osculating circle [15]
and locally defining the operator B,,. Then, B; U; = 0 implies

Computed results for the surface current obtained using these
expressions and (3b) are shown in Fig. 1(a) for £k = 5, and in
Fig. 1(b) for k = 10, along with the results obtained by using

U a cylindrical mode summation. As is evident, (11b) agrees

=[jk— £(s’)/2] U, (9a) with the modal sum more closely than (11a). In general, the
v’ use of the higher order B, operator implied oy (11b) results 1n
o - - ' agreement of the surface current to within 1 dB of the exact
while B,U; = 0 gives S - solution for the k = 10 case. '
o . L - ~ Inserting (11a) and (11b) 1nto (5) gives, after some
aUs o C(s”) . JeE(s’) vy manipulation, the following respective formulas for bistatic
o,V > 8[k+jes)y ¢ radar cross section:
92 RCS k? '
e U gy BELEE )
2[k+j§‘(s )] 65’2 A 2 |\ 2k
Since the cylinder 1s perfectly conducting, U, is replacedby - +sin (¢/2) J;1 (&) 2 , for B; (12a)
— U,y on the right hand side of (9). This gives, for B, and B,, e -
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USING B,

-_—.

20°  I50°  180° ¢

°  30° 60°  90° 150°  180°

(b)

Fig. 1. Surface electric current on conducting circular cylinder, TM case,

computed using OSRC method, showing convergence to exact solution for
_ higher order radiation boundary operator. (a) k = 5. (b) £k = 10.

120°

)

RS _kr l ['—-1——-5 2 /2)] Jo(£)
N 2 ||V 2k 27 WA
2 _ -
+g(o)i(8)| . for B, (12b)
( )=(1+j> in (¢/2) 4+ —2 12
glp) = 5 ) S (9/2)- 2 (12c)
¢ = 2k sin (¢/2). (12d)

Note that the evaluation of only two Bessel functions 1s
required for the RCS computation, regardless of the electrical
size of the cylinder. -

Fig. 2(a) shows the magnitudes of the radar cross section
computed using (12a) and (12b) for the k¥ = 5 cylinder case,
along with the exact solution. Fig. 2(b) plots corresponding
data for the k = 10 cylinder case. Just as observed in Figs.
1(a) and 1(b) (cylinder surface currents), the radar cross
section obtained using the formula corresponding to the
higher order radiation condition B,, is in much better agree-
ment with the exact solution than that corresponding to B,;.
Here, the higher order formula, (12b), results in agreement to
within 0.5 dB of the exact radar cross section, in general.

IV. APPLICATION TO THE CONDUCTING STRIP: TM POLARIZATION

In this example, the scatterer surface contour C 1s composed
of the upper and lower halves of the line segment y = 0, |x]
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\ \ f‘\

30° 60° 90°
(b)

Fig. 2. Bistatic radar cross section of conducting circular cylinder, TM case,
computed using OSRC method, showing convergence to exact solution for
higher order radiation boundary operator. (a) k = 5. (b) kK = 10.

120° 1I50° 180° ¢

"= 1. On the upper half of the strip, /dv’ = d/dy’, { = 0,

and 0%/0s’? = 02%/dx’?; while on the lower half of the strip,
d/dv’ = —a/dy’. No special attention or care is paid to the
edges, x’ = +1, y’ = 0 although the edges are points of
infinite curvature. For brevity, only the higher order normal
derivative expression, (10b), will be used in this example.
Inserting (1) into (10b) gives

ﬁ Y —Jk | 1 D) cos’ o | e/ s for B,. (13a)
4

Using (13a) and (3b), the z-directed surface electric current 1s
given by

2

1 | o o
J=— | + sina+1——=cos? o | e/kx cosa

No

for B,(at y=0=x). (13b)

Note that for a given wave angle of incidence «, the magnitude
of J 1s independent of position x’ on the strip, similar to the

physical optics case. However, a nonzero value of J 1s

computed in the shadow region y = 0 —.
Inserting (13a) into (5) with ¢ = © — o gives

< 1 ) sin (2k cos «)
l-—cos?* o | ——8
2 COS &

RCS 1

A 2T

) .
. for Bz

(14)

“as the monostatic radar cross section of the conducting strip.
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Via method of moments
O----0-  Using OSRC with B,
IO -
~<
N
9P |
O
o
O.l
00 O° _ IO° 20° a
1010,
E. y — Via method of moments -
o---0-  Using OSRC with B, [
0 -| | " .
~<
~
v | )
QO
@
-
|
| {
'
1
»
%0y :
0, _ 5
0.0l & - '
00 |O° 20° 30° 40° 90° 60° 70° 80° 90° «a

(b)

Fig. 3. Monostatic radar cross section of conducting strip, TM case, computed using OSRC method with the B, radiation boundary
operator. (a) kK = 5. (b) £k = 10.

Fig. 3(a) compares the results of this analysis to those of the used in Section IV. In particular, (10b) directly gives
moment method [16] for a kK = J strip; and Fig. 3(b) contains

th.e same information for £ = 10. In generoal, the. agreement 1S 6(1,5___ — jk ( 1 __1_ COS 2 a) e/k(x" cosaF sina)  for B,
within 1 dB for look angle, o, between 60~ and 90, except at dv - 2
nulls. Disagreement at smaller o 1s probably due to edge 15
currents. (152)
V. APPLICATION TO THE SQUARE CONDUCTING CYLINDER: . for |x| = 1, + 1; and
TM POLARIZATION ' oU. . 1 -
\Y . . : , .
o _ - —jk 1 —-= San o e_/k(:.t cosa—y  Ssin a)e. for B2
In this example, the scatterer surface contour C'1s a square 3" 9 . ’

with the four corners (++/2, ++/2). The determination of the .
surface current distribution follows the same line of analysis as (15b) .
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for x = +1, and |y| = 1. The z-directed surface electric
current follows from (15a), (15b), and (3b). It is given by

1 ' 1 2 . jk(x’ cos a¥F sin a)
J=— | £ sina+1——=cos“a)e - , ftor B,

Mo 2

.(16a)

for |x| = 1,y = *+1; and

1 1 _ ,
J=— (=F cos o+ 1 3 sin* a) e/k(* cosa-yisina) - for B,
Mo

(16b)

forx = =1, and |y| < 1. Similar to the strip case of Section
IV, it 1s noted that, for a given wave angle of incidence « the
magnitude of J 1s independent of position, x* or ¥, on each
side of the cylinder. It 1s also noted that nonzero values of J
are computed in the shadow regions ot the cylinder.

To compute the monostatic radar cross section, (15a) and
(15b) are inserted 1nto (5) with ¢ = ™ — «: '

RCS 1
"")"\"":5}' - lgi(a) + g2 (a) + g3(a)|? (17a)
where
1 in (2K sin
gl(a)= (1 — — sin? O() -S-ll"l—i——"‘—{“—(i)' COS (2k COS Ol)
2 Sin o
(17b)
1 sin (2k cos o) | |
g (a)= (1 — — COs? ) ———— ¢0s (2K sin o)
2 - Cos o
(17¢)
—J sin (2K sin «) sin (2k cos '
g3(a)=_____{______(_______cf_)___(______32 _ (17d)

SIn @ COS

The formula for the monostatic radar cross section versus « 18
now given by (17a). Results using this formula are shown 1in
Figs. 4(a) and 4(b) in comparison with the method of moments
[16] for the Kk = § and Kk = 10 cylinder cases. Agreement is
within about 0.5 dB at all points (except fora = 12° and o =
14° for the £k = 10 case). ' -

VI. FormuLATION OF THE OSRC ArprOACH (TE
POLARIZATION) '

For the case of TE polarization, (2b) is still valid if U; 1s
identified as the scattered z-directed magnetic field. Now,
- however, the surface current is given in terms of the incident
field, i.e., dU,/dv’ is known in (2b). If B, is used, (9a) would
then give U, on C, and (2b) would be an analytic formula for
U.(x). If the higher order B, expression of (9b) is used, then
U.[x'(s’)] satisfies a linear second-order differential equa-
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10° 20° 30°

40° 45° @
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Fig. 4. Monstatic radar cross section of conducting square cylinder, TM

case, computed using OSRC method with the B, radiation boundary
operator. (a) k = 5. (b) k = 10.

tion. By requiring that the solution be L-periodic (L is the
dimensionless length ot C'; L-periodic means that the solution
must be observed to. repeat itself upon successive complete
walks around C), and noting that the coefficient of U, is not
purely complex, a unique solution of (9b) can be found. When
this 1s 1nserted into (2b), once again an analytic formula for
U,(xX) can be obtained.

Let us now apply the above to the case of the circular
conducting cylinder. For convenience, the definitions of
Section III will again be used. For TE polarization, we have

Jqo: _(Us+ Uinc)

(18a)
and
aUs annc .
= — . (18b)
0 v’ oy’

On substituting (18a) and (18b) into (9a), the total surface
electric current on the circular cylinder 1s obtained as

J,= = Up - (1—=cos ¢), for B. (19)

Note that the use of B, provides an explicit expression for the

current. ' ' ' .
The case for B, is more involved. Substituting (18a) and

(18b) 1into (9b) yields the tollowing second-order differential
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(b)

Surface electric current on conducting circular cylinder, TE case, computed using OSRC method, showmg convergence to

exact solution for higher order radiation boundary operator. (a) kK = 5. (b) &k = 10.

equation for the current:

32U,

c, £ J,=Up - (1=C C B
2 dgo inc © (1 —C} cos @) — C; 3902 , for B,
(20a)
where '
8k + j8k —4 '
Cl""—"_"'_-;—:-— ; sz“—__*—“—“-— (20b)
—3+8k“+j12k —3+8k2+112k

and J, 1s 2w-periodic. We note that this system is linear with
constant coefficients, and can be solved using standard
analytical or numerical methods. We also note from (20) that,
in the high-frequency limit (large k), C, approaches 1 and C,

- cylinder.
oscillatory behavior (identified as the result of the creeping
wave) 1n the shadow region.

approaches — 1/2k*%. However, (20) does not reduce to (19)

because the ® derlvatlves introduce k¢ factors multiplying the
C, terms.

Fig. 5 graphs the B, OSRC solution (from (19)), the B,
OSRC solution (from the system of (20)), and the method of
moments solution for the current distributionona k = 5 and &
= 10 cylinder. Note that the use of the B, operator extends the
range of essential agreement between OSRC and the method of
moments result over most of the circumference of the
In particular, we observe the evolution of an

When the scattering cylinder is convex but not circular, the
system of (20) no longer has constant coefficients. Again,
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there are standard solution techniques. In particular, a simple.
and very promising approach is the - following iteratiVe
scheme, illustrated for (20) as

The ability to easily construct a sequence of higher order
OSRC operators may ultimately lead to new approaches in
modeling reentrant scatterers (as well as convex) and three-
dimensional scatterers. This may present a useful alternative
to present integral equation and uniform high-frequency
approaches for such structures. A forthcoming paper will

consider the application of OSRC to convex dielectric scatter-
ers [1]. '

62(]inc
— U - (1=Cj cos ¢)+ C, _
dp?

d?Jm
4
do?

J =, (21)

where J™ denotes the nth iteration for the current. A
convenient selection for J g’) is the B, result given by (19). This
scheme would be conveniently implemented for arbitrary
convex bodies on conventional computers.
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VII. RELATION TO PREVIOUS HIGH-FREQUENCY APPROACHES careful checking of the analysis and numerical implementa-

The OSRC approach provides an approximate asymptotic tion.

high-frequency result which is convenient for engineering
applications. This new approach 1s valid both for fields
directly at the surface and exterior to the surface of a smooth,
perfectly conducting, convex cylinder when it 1s 1lluminated
by a plane wave. As was seen for the kK = 5 and k = 10
circular cylinders, the computed surface current result 1s
uniform in the sense that it remains essentially valid within the
transition region between lit and shadow regions, and even in
deep shadow regions. As observed earlier, the OSRC results
contain the leading-order Kirchott term, as well as others,
which are valid in both lit and shadow regions.

Previous work in this area [17], [18] also developed
uniform-theory solutions for convex, conducting, two-dimen-
sional cylinders. However, the previous work required a
complicated analysis. In fact, a separate analysis was needed
close to the cylinder surface. The new approach discussed in
this paper has the advantages of simplicity and a consistent
ease of application for arbitrary convex cylinders, for both on-
surface and off-surface fields. Further, the new approach
appears to permit good treatment of convex scatterers that do
not have smooth surface contours, 1.€., have edges or corners,
as exemplified by the strip and square-cylinder results reported
in this paper. Shadow-region currents with OSRC are nonzero
for such structures. However, OSRC does not currently
provide edge-current singularity behavior.

VIII. SUMMARY AND CONCLUSION

A new formulation of electromagnetic wave scattering by

two-dimensional conducting bodies of convex shape has been
presented. This formulation is based upon a series expansion

of the radiation condition which is applied directly on the
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