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A Frequency-Domain Near-Field-to-Far-Field
Transform for Planar Layered Media
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Abstract—We report a frequency-domain near-field-to-far-field
transform (NFFFT) for the numerical modeling of radiation and
scattering in planar multilayered spaces. Although the results are
equivalent to those of Demarest et al. (1996), the formulation is
more compact, more stable, and applicable to observation angles
in the lower half space. Furthermore, the results are presented
in a vector-potential formalism that is more easily adaptable to
existing free-space implementations. The NFFFT algorithm can be
used in any differential-equation-based finite numerical method,
including but not limited to the finite-difference time-domain
(FDTD) method and the finite-element method (FEM).

Index Terms—FDTD methods, finite difference methods, finite
element methods, near-field far-field transformation.

I. INTRODUCTION

N EAR-FIELD-TO-FAR-FIELD transforms (NFFFTs) in-
volve the formulation of the radiated far field (or Fraun-

hofer field) in terms of near fields obtained via some finite nu-
merical method. A free-space frequency-domain near-field-to-
far-field transform (NFFFT) was developed for the finite-differ-
ence time-domain (FDTD) method by Umashankar and Taflove
[1]–[3]. This NFFFT algorithm was later generalized to mul-
tilayered spaces in [4]. In [5] and [6], a direct time-domain
NFFFT algorithm was introduced for the FDTD analysis of
three-layered media using a transmission-line (TL) analogy. In
this paper, we describe the frequency domain generalization and
extension of this TL-based approach to general (possibly lossy)
layered media. The resulting NFFFT algorithm can be used in
conjunction with any finite-difference numerical scheme, in-
cluding the FDTD and finite-element (FEM) methods. The re-
sults are equivalent to those in [4], with the following additions
and improvements:
(a) The results are bounded and numerically stable for arbi-

trarily-large electrical conductivities within the layering
structure. This is achieved by putting the recursive rela-
tions in a coordinate-independent form that is free of ex-
ponentially-increasing terms.
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(b) The far field is expressed in a uniform manner that is valid
for an arbitrary observation angle, whether it falls within
the upper or lower half space.

(c) A clear connection is maintained with the traditional
vector-potential integral formulation. This helps the
generalization of existing free-space NFFFT imple-
mentations which are usually formulated in terms of
vector-potentials. The software implementer does not
need to change the formulation of the radiated field
based on the vector potentials , [see (3)–(4)], which
is common in existing free-space NFFFTs. The only
component of the software that needs to be updated is the
one that calculates the vector potentials , using the
scalar transmission-line Green’s functions pertinent to the
specific layering structure. The NFFFT is thus split into
two independent modules, rendering it more amenable to
modularization and code reuse.

(d) Explicit formulas are given for up to three layers in
closed form. From a software-implementation perspec-
tive, a closed-form solution for a restricted geometry is
a convenient starting point before attempting a full gen-
eralization to the most complete and complex solution.
After implementing and validating the simpler three-layer
NFFFT, the implementer is equipped with considerable
experience for a more general NFFFT implementation. In
the debugging stage, a lot of errors in the general NFFFT
can be caught by checking it against the (already tested)
three-layer NFFFT in a three-layered geometry.

The rest of the paper is organized as follows. In Section II,
the theoretical formulation of the NFFFT is explained. A recur-
sive algorithm is described for general layered media, and ex-
plicit formulas are noted for the special case of three or fewer
layers. In Section III, a validation study is presented to confirm
the accuracy of the method. In Section IV, an FDTD software
package featuring the NFFFT in this paper is briefly introduced.
Section V concludes the paper with a summary.

II. THEORY

The geometry of the problem is shown in Fig. 1 [7]. The
scattering or radiating structure in Fig. 1(a) is embedded
in a planar -layered medium, with relative permittivities

, relative permeabilities , and elec-
trical conductivities from top to bottom. For the
phasor analysis to be valid, the materials that make up the
structure and the layer materials have to be linear. The half
space (upper or lower) containing the direction of observation
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Fig. 1. Cross section of the radiation/scattering geometry in a planar layered medium. (a) The original geometry. (b) The equivalent geometry with surface currents.

is assumed to be lossless. In other words, if the observa-
tion direction is in the upper half space, ; otherwise,

. The axis of the Cartesian coordinates is aligned
with the direction of stratification, and the coordinates of
the layer interfaces from top to bottom are denoted as

.
A separate formulation for a NFFFT is rarely necessary for

integral-equation-based numerical method such as the method
of moments (MoM) because the Green’s functions pertaining to
the layered medium are already available. We therefore assume
that a differential-equation-based finite method is employed,
and the structure within the solution space is enclosed by a
closed NFFFT surface as shown in Fig. 1(a). The dimensions
and positioning of the NFFFT surface are arbitrary, as long as
the surface contains the structure . If the finite solution method
operates directly in time-domain (e.g., FDTD), the time-depen-
dent tangential electric and magnetic field components ,

on are converted to phasor values , at frequency
using on-the-fly discrete Fourier transform [3], [8]:

(1)

where is the time step and is the number of FDTD itera-
tions. The true weight of the desired frequency component in the
frequency spectrum of the waveform is obtained by applying the
extra prefactor to the summation representing the Fourier
transform. The sign of the complex exponent in (1) follows from
the electrical engineering convention for the harmonic
time dependence of every field and source variable. Using the
surface-equivalence principle [9], these tangential phasor field
components are replaced by equivalent surface currents ,
radiating in the layered space without as shown in Fig. 1(b).
The equivalent surface currents are given by

(2)

in which is the outward normal shown in Fig. 1(a). If the solu-
tion method operates directly in frequency-domain (e.g., FEM),
then the equivalent surface currents , are already avail-
able in phasor form.

A. Dyadic Green’s Functions for the Vector Potentials

Let the spherical coordinates be centered around the
origin, and the angle variables and denote the longitudinal
angle with respect to and the azimuthal angle in the plane,
respectively. The and components of radiated electric field
at the observation direction specified by the angles can be
directly obtained from the vector potentials , as follows [9]:

(3)

(4)

in which is the wave impedance of the
observation half space (index 0 or ), and , are the
relative permittivity and permeability in the same half space,
respectively. In the radiated-field zone, the vector potentials can
be written as

(5)

(6)

in which primed coordinates denote the positions on the sur-
face , is the unit vector in the direction of observation,

is the wavenumber in the same direction, is
the lateral position vector , and is the differen-

tial area element. The functions and are the asymp-
totic forms of the dyadic Green’s functions pertaining
to the specific layered geometry. The operator denotes the
dyadic-vector dot product, which produces a vector from an-
other vector. The axial coordinate does not appear in the
phase term in (5)–(6), since the effect of on the far field is en-

tirely absorbed in the dyadic Green’s functions and .
For free space, a quick comparison with well-known expres-

sions reveals that and are proportional to the iden-
tity dyadic :

(7)

The integrals (5)–(6) with (7) form the basis of the well-known
free-space NFFFT [3]. Solving for the vector potentials in gen-
eral layered media requires much more effort. Our approach is
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based on expressing the radiated field in an entirely different
form and comparing the results with (3)–(4). In Appendix A, the
radiated field in the upper and lower half spaces is expressed in
terms of one-dimensional scalar transmission-line Green’s func-
tions [10], [11] by constructing an analogy between Maxwell’s
equations simplified by planar invariance and transmission-line
voltage/current equations. The interested reader is referred to
[7] for a more detailed discussion. The necessary information
for expressing the vector potentials , in terms of the cur-
rents , is contained in Appendix A, (47), (49), (61), and
(62). By comparison of these equations with (3)–(6), the dyadic

Green’s functions and are found to be

(8)

(9)

Here, and denote the complex
relative permittivity and the relative permeability at the source
point in the layer. The positive and negative signs in front
of the curly braces correspond to observation directions in the
upper and lower half spaces, respectively. The scalar functions

, are related in a trivial manner to the transmis-
sion-line voltage/voltage and voltage/current Green’s functions
V , V (see Appendix A):

V (10)

As explained in Appendix A, V and V are the
voltage responses at to an excitation at in the
form of an impulsive voltage and current, respectively. Here,
is an arbitrary position that is above (or below, for an obser-
vation direction in the lower half space) all the radiators, scat-
terers, sources, and layer interfaces. It is a temporary value that
will be seen to eventually drop out of the equations. The de-
pendence of , is omitted from the notation for
brevity. We will refer to and as the transmis-
sion-line voltage and current responses, respectively. The pa-
rameters , are the only part of the formulation
that depends on the specific layering. In the following, we de-
scribe a straightforward method for computing these functions
for an arbitrary stratification.

B. Calculation of the Voltage and Current Responses

From a theoretical standpoint, it turns out to be more conve-
nient to calculate the response inside the layers of a transmission
line to an excitation away from all the layer interfaces, rather
than the converse implied in (10). The former is strictly anal-
ogous to plane-wave incidence on a planar layered medium; a
subject that has been documented thoroughly in the literature

[12]. Using the reciprocity properties of the transmission-line
equations [10], the observation and excitation coordinates can
be exchanged as follows:

V V (11)

V I (12)

The Green’s functions on the right side now represent the re-
sponses at the source point to a impulsive voltage or current
at the auxiliary position away from all the sources and
layer interfaces. The voltage functions in (10) can therefore be
written as

V (13)

I (14)

From here on, we will omit the polarization superscript , be-
cause the formulas are exactly the same for the two polariza-
tions and except the definitions of and [see (59)]. The
common equations for both polarizations will be presented, with
the implicit assumption that the calculation should be done for
the ( ) and ( ) polarizations separately.
Since (13)–(14) are in the form of voltage and current waves

traveling on a transmission line, we can assume that in the
layer (see Fig. 1), they are a sum of upward and downward prop-
agating waves:

(15)

(16)

where the upward and downward propagating waves aremarked
by the superscripts and , respectively. Although the in-
terface coordinates and do not exist, they cancel out
in the final equations, so their values can be chosen arbitrarily
(for example, and ). They are included
in the formulation to preserve uniformity in the notation. The
propagation constant and the intrinsic impedance in the

layer are given by (58) and (59) with (53). As argued in the
discussion following (59), the correct root for the propagation
constants is the one with a negative imaginary component;
for the exponential term would otherwise grow unphysically
without bound in a lossy layer ( ) or in the total-internal-
reflection (TIR) regime ( ). With this
choice for , the amplitudes of the exponentials in (15)–(16)
always remain smaller than unity, since in
the layer. This will lead to a numerically stable algorithm
for , that avoids floating-point overflows even for
the lossiest layers.
As a first step toward a recursive relation for , , we

introduce the total-wave impedance at the interfaces of the
transmission line, defined as the ratio of the total voltage and
the total current at :

V

I
(17)
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Eavluating the above expression in both sides of the interface
and using the continuity of the voltage and the current, the fol-
lowing recursive relations are obtained for [12], [13]:

(18)

(19)

where is the (always positive) thickness of
the layer. The upward recursion in (18) is useful when the
observation direction is in the upper half space; in which case
the recursion is initiated at the lowermost interface ( )
with

(20)

This is because there are only downward-propagating waves in
the lowermost layer. If the observation direction is in the lower
half space, the downward recursion (19) should be used with the
following initial value at the uppermost interface ( ):

(21)

As the second step, we derive a relationship between the coeffi-
cients , of the upward and downward propagating waves
in terms of the total-wave impedance. Substituting (13)–(16)
into (17) and evaluating at and , we obtain, respectively,

(22)

(23)

Finally, the continuity of the voltage wave (15) at the interface
dictates that

(24)

A downward recursion for is obtained (after considerable
algebra) by substituting (22) into (24), and expressing in
terms of using (19):

(25)

Similarly, an upward recursion is obtained for by substi-
tuting (23) into (24), and expressing in terms of
using (18):

(26)

The downward recursion (25) is useful if the observation direc-
tion is in the upper half space; in which case, is fixed by
the transmission-line excitation at . It follows from the
transmission-line (54)–(55) and symmetry considerations that

an impulsive current at creates two voltage waves of am-
plitude traveling in opposite directions. Therefore, from
(15) we can write the following:

(27)

which, since in the upper half space, simplifies to

(28)

Using this as the starting point, in each layer can be calcu-
lated recursively using (25). If the observation direction is in the
lower half space, the upward recursion (26) for should be
used. It is initialized by , which satisfies

(29)
Since in the lower half space, this amounts
to

(30)

The fictitious layer interface positions and in (28) and
(30) are canceled out by the fictitious thicknesses and
in the recursions (25)–(26). Their exact values are, therefore,
completely arbitrary.
Some of the above formulation bears resemblance to previous

results in the literature [4], [13]; although our presentation is
more concise (for example, compare (25) with its counterpart
[4, (18a)]), numerically more stable, and applicable to any ob-
servation angle. The reason behind the numerical stability of our
method is that the exponential terms are always bounded in all
of the recursive relations, regardless of the conductivities in the
layers. In all the recursive relations, the exponentials are in the
form where is a positive real number and the
imaginary part of is zero or negative.
If the far field with respect to a given origin is known, the

far field with respect to another origin follows trivially. If the
new and old origins are at and , respec-
tively, the far field amplitude with respect to the new origin
is simply a phase-shifted version of the far field amplitude
with respect to the old origin;

(31)

C. Explicit Formulas for Three Layers

For up to three layers, compact closed-form expressions for
and can be found by explicitly carrying out the re-

cursions in the previous subsection. If the observation direction
is in the upper half space ( ),

(32)
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TABLE I
POSITIONS OF THE HERTZIAN DIPOLES USED AS EXCITATION

IN THE EXAMPLE PROBLEM (UNITS IN MM).

(33)

(34)

If the observation direction is in the lower half space ( ),

(35)

(36)

(37)

In the above, the reflection and transmission coefficients ,
are defined as follows:

(38)

The current responses can be obtained trivially from
using the relations (15)–(16). The downward-prop-

agating parts of with dependence are
multiplied by , whereas the upward-propagating parts with

dependence are multiplied by .
For free space ( , ),

and reduce to , re-
duces to , and reduces to

. Substituting these into (8)–(9), it is
easily found that these dyadics both reduce to (7), leading to
the well-known free-space formulation [3].

III. NUMERICAL RESULTS

In this section,wewill demonstrate the accuracy of theNFFFT
algorithm in the previous section by comparing the numerical
results obtained using a finite-difference time-domain (FDTD)
implementation with theoretical values. An 8-layered space is
considered for our example, with layer thicknesses

. The relative permittivities, relative per-
meabilities and the electrical conductivities are varied linearly
from , ,
and . The upper and lower
half spaces are assumed lossless: . The origin is
placed at the uppermost surface of the layering structure. A total
of 9 infinitesimalHertzian dipoles are placed in the FDTDgrid at
the positions with respect to the origin indicated in Table I. The

Hertzian dipoles are modeled in the FDTD method by a single
current element on the edge of a grid cell. Each dipole represents
a current distribution of the form

(39)

where is either , , or , is the Dirac delta function, and
the dipolemoment is a sine-modulatedGaussianwaveform:

(40)

with GHz and . The power in the corre-
sponding temporal spectrum ( )

(41)

falls to of itsmaximumat 4GHzand8GHz.The theoret-
ical far field created by the dipoles can be found using the formu-
lation in the previous section. For example, the radiated electric
fieldofa time-harmonic -directedHertziandipoleofcurrentmo-
ment placed at is, from (3), (5) and (8),

(42)

inwhich istherelativepermittivityoftheobservationhalfspace
and isgivenby(16).Theparametersof theFDTDsimula-
tionare the following:griddimensions15.2cm 15.2cm 15.2
cm, grid spacing mm, time step

. The computational grid is truncated by
10-cell thick convolution perfectly matched layer (CPML) [14].
The constitutive parameters and are interpolated at the planar
interfaces to preserve second-order accuracy [15]. The scattered
field is collected on a rectangular NFFFT surface 3 cells away
from the PML, and transformed to the far field using the NFFFT
described in Section II. For better accuracy, twoNFFFT surfaces
are used for and [16], and the wavenumber is disper-
sion-corrected using the exact dispersion relation in the observa-
tion half space [3]. All far field amplitudes are normalized by the
factor

(43)

which is the broadside amplitude of the far field created by a
dipole with time-harmonic current moment (41) in free space. In
Fig. 2(a), the real and imaginary parts of both the and com-
ponents of the electric field at are compared with
theoretical results for 100 equally-spaced frequencies between 4
GHz and 8 GHz. The solid and dashed lines represent the FDTD
results, while the dot and cross marks denote theoretical values.
In Fig. 2(b), the and components of the phasor electric field
at GHz on the plane is shown on a Cartesian plot
at 240 equally-spaced values between 0 and (end points in-
cluded). The angles and are deliberately not
included in this range, since there are singularities in the formulas
at these angles. However, the formulas remain stable for angles
arbitrarily close to and . In Fig. 2(c), the and
components of the phasor electric field at GHz on the

cone is shown in aCartesian plot at 120 equally-spaced
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Fig. 2. Comparison of phasor far-field amplitudes obtained using FDTD with theoretical values for a total of 9 Hertzian dipoles radiating in an 8-layered medium.
The positions of the dipoles are given in Table I. (a) Frequency spectra of (top) and (bottom) at . (b) Cartesian plot of (top) and
(bottom) with respect to on the plane at GHz. (c) Cartesian plot of (top) and (bottom) with respect to at and GHz.
The legend in (a) applies to all subfigures.

values between 0 and (end points included). The maximum
root-mean-square error in all the plots in Fig. 2 is 1%.

IV. SOFTWARE IMPLEMENTATION

A general-purpose finite-difference time-domain (FDTD)
software package is being developed by the Biophotonics Group
in the Biomedical Engineering Department of Northwestern
University. The software is developed as part of National Insti-
tutes of Health (NIH) grants R01EB003682 and R01CA128641,
and will be made freely available to the public in open source. It
features a full implementation of theNFFFTalgorithmdescribed
in this paper, as well as other auxiliarymethods pertaining to lay-
ered media that are not currently available in commercial FDTD
packages. Interested readers can contact capoglu@ieee.org to
be notified when the software becomes available for download.

V. SUMMARY

In this paper, a concise and numerically stable frequency-do-
main near-field-to-far-field transform (NFFFT) is described
for general planar layered media. The results are applicable to
layers with arbitrary frequency-dispersion properties, although
only electrical conductivity is considered here. Unlike pre-
vious studies, the formulation also covers observation angles
in the lower half space. The results are especially relevant to
differential-equation-based finite methods such as the finite-dif-
ference time-domain (FDTD) method and the finite-element
method (FEM). Although the core derivation is based on a
transmission-line analogy, the final formulas are presented in
vector-potential form;which helps the transition from free-space
implementations. Numerical FDTD results were given for an
8-layered medium and shown to agree well with theory.

APPENDIX
RADIATED ELECTRIC FIELD IN TERMS OF THE
TRANSMISSION-LINE GREEN’S FUNCTIONS

If the electric-field distribution on an infinite planar surface
is known and the region above the planar surface is homoge-
neous, then the electric field above the planar surface is also
known [17]. The same principle applies to the electric field in
the lower half space, if it is known on a plane situated below
all the sources. We will now make use of these facts to derive
the radiated electric field in the uppermost and lowermost re-
gions of the multilayered structure shown in Fig. 1. The relative
permittivity and permeability in the observation region will be
denoted by and , respectively. In the notation of Fig. 1(a),
these are , if the observation direction is in the upper half
space, and , otherwise.
Let the equivalent electric and magnetic currents ,

radiate in the layered space shown in Fig. 1(b). Let
be any plane above or below all the layer interfaces

and the source currents. The exact value of is immaterial
since it will cancel out in the final result; but it is of conceptual
importance that it exists. In the subsequent analysis, we will
use the plane-wave spectrum of the electric field on this plane
to derive the radiated electric field in the upper and lower half
spaces. Let the plane-wave spectrum of the 2D electric-field
distribution on the planar surface be defined by
the following Fourier transform operation:

(44)

The inverse of this Fourier relation is the plane-wave represen-
tation

(45)
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In the above, the Fourier operation is applied separately to each
Cartesian component of the electric-field vector. Extending each
plane wave in (45) into the upper or lower half space, the fol-
lowing expression can be written for the electric field anywhere
in the region or :

(46)

with , and is the
wavenumber in the observation half space. The plus and minus
signs in front of are for the upper and lower half spaces, re-
spectively. This field satisfies Maxwell’s equations in the ob-
servation region, as well as the boundary conditions at
specified by (45). It is therefore the unique solution for the elec-
tric field in the observation region. The radiated electric field,
defined as the asymptotic limit of the integral (46) for ,
can be obtained using the steepest-descent method [17]:

(47)

in which are the usual spherical coordinates, and

(48)

The far-field expression (47) is valid for the full range from 0
to , covering observation angles both in the upper and lower
half spaces. The interpretation of (47) is that the far-field at a
given observation direction is directly proportional to the vector
amplitude of the plane-wave component on the surface
that is incident in the same direction. For a planar layered

medium, the invariance of the geometry perpendicular to the
axis of stratification (the axis) can be exploited to obtain the
vector plane-wave amplitude in terms of one-dimen-
sional scalar transmission-line Green’s functions [10], [11]. As
a consequence of the lateral invariance of the geometry, the fol-
lowing spectral superposition integral holds for [7]:

(49)

where and is the lateral position

vector at the source point. In (49), denote
the spectral dyadic Green’s functions, explicit expressions for
which are given in [10, Eqs. (28)–(31)]. These expressions are
reproduced here for the sake of completeness:

V V

I V

I

(50)

I V

I V (51)

In these expressions, the unit vector is defined to be parallel
to the -projection of the radial unit vector in the direction
of observation, while is the 90 -rotation of in the plane:

(52)

The unit vector is equivalent to the unit vector in spherical
coordinates. In (50)–(51), , and

(53)

are the complex relative permittivity and the relative perme-
ability at the source coordinate , assumed to be in the
layer. The scalar functions V , V , I , I (polarization
superscript being or ) are transmission-line Green’s func-
tions, representing the voltage (or current) response at
to an impulsive voltage (or current) excitation at the source co-
ordinate . They satisfy the following transmission-line
equations:

V
I (54)

I
V (55)

and

V
I (56)

I
V (57)

where the propagation constant and the polarization-depen-
dent intrinsic impedance of the transmission line are

(58)

(59)

In (59), is the wave impedance of the
observation half space. In lossy layers ( ) or in the total-
internal-reflection (TIR) regime ( ), the
sign of the imaginary part of the propagation constant should
negative so that all the exponentials decay in the direction of
propagation.
Thanks to the placement of above (or below) all the sources,
never equals ; therefore, the term in (50) can

be neglected. Because is also above (or below) all layer in-
terfaces, there is only an upward- (or downward-) propagating
transmission-line voltage/current wave at . Consequently,
the ratio between the transmission-line voltages V , V and
the transmission-line currents I , I is simply the intrinsic
impedance :

I
V

I
V

(60)

The positive and negative signs in the above relations corre-
spond to the upper and lower half spaces, respectively. Note that
the intrinsic impedance is defined to be positive, hence the
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sign in front of the term. The dyadic Green’s functions
are put into a more convenient form if the first vector compo-
nent in each of the dyads , , , etc. is projected onto the
spherical-coordinate unit vectors ( , , ), whereas the second
vector component in each dyad is projected onto the Cartesian
unit vectors ( , , ). After substituting (60) and simplifying
considerably, the following expressions for the dyadic Green’s
functions are obtained:

V V

V V

V (61)

V V

V V

V (62)

Substituting (61)–(62) into (49), and (49) into (47), the radiated
electric field is expressed in terms of scalar transmission-line
Green’s functionsV ,V , I , I (polarization superscript
or ) that satisfy (54)–(56). The calculation of the radiated

electric field is thus reduced to the calculation of V , V ,
I , I for a given layering structure in the direction.
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