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FDTD Computational Study of Ultra-Narrow TM
Non-Paraxial Spatial Soliton Interactions
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Abstract—We consider the interaction between two (1+1)D
ultra-narrow optical spatial solitons in a nonlinear dispersive
medium using the finite-difference time-domain (FDTD) method
for the transverse magnetic (TM) polarization. The model uses the
general vector auxiliary differential equation (GVADE) approach
to include multiple electric-field components, a Kerr nonlinearity,
and multiple-pole Lorentz and Raman dispersive terms. This
study is believed to be the first considering narrow soliton interac-
tion dynamics for the TM case using the GVADE FDTD method,
and our findings demonstrate the utility of GVADE simulation in
the design of soliton-based optical switches.

Index Terms—Finite-difference time-domain method, FDTD,
GVADE, nonlinear optics, spatial solitons.

S PATIAL optical solitons are self-trapped optical beams bal-
ancing diffraction and self-focusing due to intensity-in-

duced modifications in the local refractive index. One fasci-
nating feature of solitons is their deflection behavior when in the
vicinity of other solitons. This can be exploited for applications
in optical routing and guiding or in switching applications in all
optical-based interconnects and nanocircuits (for example, [1]).

The work by Aitchison, et al. first reported experimental ob-
servations that solitons either repel or attract each other with a
periodic evolution over propagation, depending on the relative
phase between them [2]. Subsequent studies extended the find-
ings and explored applications; slight variation on the launch
angle and relative phase was found to cause a soliton pair to
merge into one of the original trajectories [3]. More recent ef-
forts considered interactions in semiconductor media [4], in-
coherent interactions [5], all-optical switching [6], long-range
interactions [7], and the dynamics of interacting, self-focusing
beams [8].

An effective numerical technique known as the beam prop-
agation method (BPM) can be used to model soliton interac-
tion. It is a Fourier-based algorithm that solves the nonlinear
Schrodinger equation (NLSE) for the envelope of the field. It
typically requires low memory for computer implementation.
Some limitations, however, are that it makes a scalar approxima-
tion, relies on paraxiality, and also depends on slowly-varying
envelope conditions for validity without proper modifications
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[9]. Such modifications to enhance its capability have been pro-
posed in [10], [11].

The finite-difference time-domain (FDTD) method has been
previously applied to analyzing problems in nonlinear optics,
including solitons [9], [12]–[17]. FDTD accounts for the
full-vector nature of the fields, and can readily accommodate
inhomogeneous and dispersive media. FDTD does not rely
on any simplifying assumptions such as paraxial or scalar
approximations as is often employed in a typical analysis
with the NLSE. Such assumptions are not appropriate when
considering soliton beamwidths on the order of a wavelength.
Recently, a new FDTD algorithm was described, which can
accommodate more than one electric-field component in media
possessing both instantaneous and dispersive nonlinearities, as
well as linear material dispersion. Known as the general vector
auxiliary differential equation (GVADE) method [15], it has
been applied to the study of soliton interactions with nanoscale
air gaps embedded in glass [16]. Ultra-narrow solitons involve
significant interactions between both longitudinal and trans-
verse electric-field components [14] and the GVADE method
accounts for this physics.

In this study, we consider the problem of modeling interacting
spatial solitons with beamwidths on the order of one wavelength
using the GVADE FDTD method. The separation of the solitons
as well as their relative phase is varied, and their influences on
the propagation dynamics are qualitatively assessed. Soliton in-
teraction has previously been modeled using FDTD, but only
for the transverse electric (TE) polarization case with a single
electric-field component, and the model did not incorporate dis-
persion [13]. To the best of our knowledge, this is the first work
utilizing the GVADE FDTD method to simulate ultra-narrow
soliton interactions in the transverse magnetic (TM) polariza-
tion. Our study is of interest to efforts involved with time-do-
main numerical techniques for electromagnetic fields, and rel-
evant to both optical switching applications and control of mi-
crowave devices given increasing integration of microwave and
optical technology.

I. GVADE FDTD MODEL

The GVADE method allows for multiple electric-field com-
ponents to be included in the FDTD domain where a media
nonlinearity is present. It also permits integration of linear
and nonlinear dispersive models. GVADE has been shown to
converge to previously published FDTD results, as well as
reproduce known characteristics of higher-order solitons [15].
GVADE could also easily accommodate complex boundary
conditions where a variety of materials exist in the propagation
path, such as plasmonic nanoscale metals.
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Fig. 1. The magnitude of the electric-field ��� is plotted from a simulation of a single, ultra-narrow soliton using the GVADE FDTD model.

We consider the transverse magnetic (TM) polarization, mod-
eling two electric-field components ( ) and a magnetic-
field component . We assume fused silica as the propaga-
tion medium, having an instantaneous Kerr nonlinearity and a
Raman dispersive nonlinearity. A Lorentzian linear dispersion
is included, based on a three-pole Sellmeier model as

(1)

The model parameters used for all dispersions are the same
as those used in [17]. The resonant strengths in (1) are

, and ,
and the resonant wavelengths are m,

m, and m. For the Raman
nonlinear dispersion, the time constants are fs and

fs with a relative Kerr strength factor of 0.7.
The computational grid dimensions are 50 m in the x-(prop-

agation) dimension and 30 m in the y-(transverse) dimension.
No outer absorbing boundary is used but the grid is sufficiently
extended to avoid reflections over the time span of interest. The
grid cell-size is nm and the time-step increment is

sec. An excitation waveform is generated
at the far-left side of the computational grid. The excitation is
applied to the component as

(2)

which is of the form for a pair of fundamental bright spatial
solitons [13]. We use a carrier wavelength of 800 nm. The terms

and are the locations of the transverse profile peaks, and
their separation distance is given by

(3)

The relative phase between the solitons is specified by and the
amplitude is A/m. The characteristic width is
261 nm and gives a full-width at half-maximum to the dielec-
tric wavelength ratio of . With a beamwidth
on the order of a wavelength, the soliton is ultra-narrow and
highly non-paraxial. The GVADE FDTD method is well-suited
to model such optics, as both electric-field components are ac-
counted for through solution of the vector Maxwell’s equations.
The constant is set to unity when a soliton pair is desired, and
to zero in the single soliton case. The latter is shown in Fig. 1, a
false-color plot of the magnitude of the electric-field in the

Fig. 2. ��� for two solitons launched in phase, parallel to each other, with �
of (a) 3.5; (b) 2.5; (c) 1.5. The solitons are seen to merge into a single beam, and
the onset of their merge depends on the initial pair separation. The color scale
is the same as shown in Fig. 1.

FDTD grid at 60 000 time-steps. The transverse profile is ob-
served to remain preserved over a propagation length exceeding
120 diffraction lengths, where a diffraction length (or Rayleigh
range) is defined as . These results were obtained
using an Intel Xeon 3.2 GHz 20-processor Linux cluster and
typical simulation time was 25 hours. Physical memory usage
was 134 MB per process.

II. SOLITON INTERACTION EXPERIMENTS

The GVADE FDTD model described above is used to simu-
late a pair of ultra-narrow solitons with profiles as given in (2),
launched in parallel with a spatial separation of as given in
(3). The relative phase between the solitons is set to zero. The
spacing d is varied in terms of the FWHM; define a “normal-
ized” soliton separation as . Fig. 2 shows re-
sults for the cases of , and 1.5. We have observed
what starts as an independent propagation of the soliton pair, but
rapidly transforms via mutual attraction to a single soliton-like
beam. It is found to retain this form for the length of the grid, ex-
tending more than 120 diffraction lengths. As it is apparent from
Fig. 2(a), we find that the distance to the soliton “merging” de-
pends on the initial separation; it begins to set in near 15 m
for the case of , but shrinks to 3 m when

(Fig. 2(c)). While there are slight periodic expansions
and focusing of the fused transverse profile, it never “splits”, i.e.,
where we recover the pair within the grid length of 50 m. These
results illustrate the interaction dynamics of two close-prox-
imity, non-paraxial TM solitons, and can have application to
nonlinear optical circuits involving signal “combiners”.

The relative phase is now set equal to the antiphase case,
radians. The separation is again varied while all other simu-
lation parameters remain unchanged. Fig. 3(a) shows the results
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Fig. 3. ��� for two solitons launched antiphase, parallel to each other, with �
of (a) 3.5; (b) 2.5; (c) 1.5. An eventual divergence is observed between them,
although its onset appears to be heavily influenced by the initial separation dis-
tance � . The color scale is the same as shown in Fig. 1.

Fig. 4. ��� for two solitons launched with a relative phase of ��� radians, par-
allel to each other, with� of (a) 3.5; (b) 2.5; (c) 1.5. As the spacing� decreases
the lower soliton gains energy at the expense of the other, and starts to take on
an oblique trajectory. The color scale is the same as shown in Fig. 1.

for the case of . A gradual, mutual repulsion is ob-
served over a propagation distance on the order of 37 m. This
is followed by a more rapid repulsion extending to the end of the
grid. As is decreased, the rate of the spatial repulsion grows.
As seen in Fig. 3(c), with a separation of , the pair be-
gins to repel within a propagation distance of only 3 m.

In a third experiment, the phase is set to radians. The
results, shown in Fig. 4, exhibit a mutual repulsion between the
soliton pair for similar to the antiphase case. However,
as decreases, the lower soliton gains energy at the expense
of the other and takes on a large divergence angle with respect
to the optical axis. Fig. 4(c) shows the case, where
the upper soliton has collapsed due to diffraction and the lower
exhibits deflection with increased energy.

The soliton interaction behavior is consistent with the exper-
imental findings of [2], [18] and we believe this to be the first
study demonstrating GVADE FDTD numerical techniques ap-
plied to this problem.

III. CONCLUSION

We have utilized the GVADE FDTD method to study inter-
actions between a pair of TM-polarized, D ultra-narrow
spatial solitons, incorporating an instantaneous Kerr nonlin-
earity and linear and nonlinear dispersions. These results are

relevant to switching and control device simulation/design for
not only optical wavelengths, but microwave as well as we
believe these technologies will find a potential merge in future
hybrid wireless. Through new demonstrations, we have shown
FDTD as an effective approach to computer-aided design for
such applications.
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