
Numerical simulation of partially coherent
broadband optical imaging

using the finite-difference time-domain method
İlker R. Çapoğlu,1,* Craig A. White,1 Jeremy D. Rogers,1 Hariharan Subramanian,1

Allen Taflove,2 and Vadim Backman1

1Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
2Electrical Engineering and Computer Science Department, Northwestern University, 2145 Sheridan Road,

Evanston, Illinois 60208, USA
*Corresponding author: capoglu@ieee.org

Received December 20, 2010; revised March 5, 2011; accepted March 15, 2011;
posted March 25, 2011 (Doc. ID 139711); published April 27, 2011

Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from bio-
photonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband op-
tical imaging systemwith partially coherent and unpolarized illumination. The scattering of light from the sample is
calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are
applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces
are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to
and shown to agree well with broadband experimental microscopy results. © 2011 Optical Society of America
OCIS codes: 050.1755, 110.0180.

Rigorous numerical electromagnetic methods are gaining
more attention for characterizing, optimizing, and syn-
thesizing optical systems in several areas of physics
and engineering, including photolithography [1], inte-
grated circuit inspection [2], and biophotonics [3]. One
of the most popular of these methods is the finite-
difference time-domain (FDTD) method [4], which
provides a direct time-domain solution to Maxwell’s
equations by discretizing the electromagnetic field in
both space and time. Compared to other prominent nu-
merical electromagnetic methods, FDTD is very easy to
implement and parallelize. In this Letter, we describe the
full-vector FDTD numerical modeling of optical imaging
systems with partially coherent, unpolarized illumina-
tion. In addition, our method supports planar multi-
layered object spaces, such as glass–air interfaces and
silicon substrates of integrated circuits. The time-domain
nature of FDTD also inherently supports broadband
image formation.
An optical imaging system can conceptually be decom-

posed into four subcomponents: illumination, scattering,
collection, and refocusing. The illumination and scatter-
ing subcomponents are shown in Fig. 1(a). The object to
be imaged is placed in an FDTD grid, shown by the solid
rectangle around the object. The illumination is intro-
duced into the FDTD grid using the total-field/
scattered-field (TF/SF) method [4]. In this method, the
electric and magnetic fields of the illumination are only
calculated on a closed surface called the TF/SF bound-
ary, shown by the dashed rectangle in Fig. 1(a). The illu-
mination scheme considered here is referred to as
the Kohler illumination, shown on the left portion of
Fig. 1(a). The light source on the left is imaged by an aux-
iliary lens on the aperture stop, situated on the front focal
plane of the condenser lens. Light rays emanating from
two mutually incoherent point sources L1 and L2 on the
light source are represented by solid and dashed lines,
respectively. The images of L1 and L2 on the aperture

stop can also be assumed incoherent if the aperture stop
is much larger than the Airy disk associated with the aux-
iliary lens [5]. For every image point on the aperture stop,
the condenser lens creates an incident plane wave in its
back focal plane. For an inhomogeneous source such as
an arc lamp, these plane waves may have different am-
plitudes. The plane waves corresponding to L1 and L2
are shown by W 1 and W2, respectively. Thus, Kohler il-
lumination in its most ideal form is an incoherent summa-
tion of an infinite number of plane waves covering the
numerical aperture NAill ¼ sinðθillÞ. Evidently, only a
finite number of these plane waves can be employed
in practice. An equally spaced arrangement of 88

Fig. 1. Four subcomponents of an optical imaging system.
(a) Illumination and scattering, (b) collection and refocusing.
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plane waves in the direction-cosine space ðsx; syÞ ¼
ðsin θ cosϕ; sin θ sinϕÞ is shown in Fig. 2. Two orthogonal
polarization states for each plane wave are denoted by
ðþÞ and ð×Þ. It will be explained shortly that these two
states can always be chosen to be mutually incoherent;
therefore, the intensities corresponding to each plane
wave and each polarization state should be added to ob-
tain the total intensity. In order to achieve this, every
plane wave and every polarization should be simulated
in a separate FDTD run. For the example in Fig. 2, 88
plane waves with two polarization states require 176 si-
mulations in total. This is true for every deterministic
numerical method in electromagnetics, time-domain, or
frequency-domain.
The directions and weights of the orthogonal polariza-

tion states are determined by the polarization properties
of the source image on the aperture stop. In addition to
incoherence, we assume further that each point on the
aperture stop is completely unpolarized, meaning that
the two orthogonal polarization components at each
point are completely incoherent [5]. As a result, any

two equal-amplitude orthogonal polarization states can
be chosen for the plane waves þ and × in Fig. 2. If
the source image on the aperture stop is partially polar-
ized, the choice of these two mutually incoherent ortho-
gonal polarization states is no longer arbitrary [6].
For each incident plane wave and polarization, the

scattered near fields are calculated using FDTD, as
shown in the right portion of Fig. 1(a). The near-field-
to-far-field transform (NFFFT) [4] is then employed
for calculating the far-zone radiated wavefront Ws in
Fig. 1(b), using the near-field information on the NFFFT
boundary shown by the dotted rectangle. This boundary
is placed outside the dashed TF/SF boundary in Fig. 1(a)
in order to collect only the scattered field from the ob-
ject. The far field is calculated at discrete observation di-
rections in an arrangement strictly analogous to that in
Fig. 2, except that the directions are now inside the ob-
ject-side numerical aperture NAcoll ¼ sinðθobjÞ. The far
field corresponding to a multilayered medium is calcu-
lated in a fashion similar to that in [7], the only difference
being frequency-domain operation. Assuming a well-
corrected objective satisfying the Abbe sine condition,
the direction cosines s0x, s0y of a particular ray entering
the entrance pupil, denoted as α in Fig. 1(b), are re-
duced at the exit pupil by the magnification M ¼
sinðθobjÞ= sinðθimgÞ of the objective. Neglecting chromatic
aberrations, each ray on the wavefront Wf leaving the

exit pupil also has the same frequency content as Ws.
The θ̂ and ϕ̂ components (in the spherical coordinate sys-
tem around ẑ) of the electric field on each ray are also
invariant [5]. Combining these facts with the vectorial dif-
fraction theory, the final field distribution on the image
plane is given by [8]

Eimgðx; yÞ ¼ −

ik
2π

ZZ

Ωimg

Aðs00x; s00yÞ expðikðs00xxþ s00yyÞÞdΩ; ð1Þ

in which k ¼ ω=c, ðs00x; s00yÞ ¼ ðs0x=M; s0y=MÞ are the direc-
tion cosines at the exit pupil, Ωimg is the solid angle
bounded by θimg, dΩ ¼ ds00xds00y=s00z ¼ ds00xds00y= cos θ, and
Aðs00x; s00yÞ is the vectorial far-field amplitude of the ray
at s00x, s00y. The integral in Eq. (1) can be evaluated using
discrete methods such as two-dimensional FFT. The ab-
solute square of Eimgðx; yÞ for each plane wave and po-
larization in Fig. 2 should be added to obtain the final
image intensity.

The algorithm described thus far assumes narrowband
operation. If a broadband solution is of interest, the
FDTD grid is excited by a time pulse that contains the
desired frequency band, and the response is calculated
at the desired frequencies using the phasor-domain
NFFFT [4]. The absolute square of this response can then
be used for obtaining power spectral densities resulting
from statistically stationary illuminations.

If the object space is multilayered, there exists a
scattered plane wave corresponding to each incident
plane wave. This plane wave is a result of the reflections
from the layer boundaries and is considered “part of the
incident wave” by the multilayer TF/SF plane-wave injec-
tor used in our algorithm [7]. It is therefore not collected
by the NFFFT in Fig. 1(b). In order to propagate this
wave to the image space, we first obtain its spectral con-
tent from the multilayer TF/SF plane-wave injector. We
then trace the scattered plane wave through the collec-
tion refocusing system in Fig. 1(b) by keeping track of its
direction cosines ðs0x; s0yÞ and ðs00x; s00yÞ, as done above for
the ray α. Finally, we add the scattered plane wave and
the scattered field calculated by the NFFFT coherently at
the image plane.

In Fig. 3, the spectral data obtained from microscopy
experiments for two different sizes of polystyrene latex
beads (2.1 and 4:3 μm diameter) placed on a glass slide
(n ¼ 1:5) are compared to numerical spectra calculated
purely using FDTD. The experimental setup has NAill ¼
0:2, NAcoll ¼ 0:6, and magnification M ¼ 40. Details of
the setup can be found in [9]. The parameters for the
FDTD simulation are as follows: 5 μm × 5 μm × 5 μm grid
with Δx ¼ Δy ¼ Δz ¼ 31 nm, Δt ¼ ð0:98= ffiffiffi

3
p ÞΔx=c, and

a 10-cell-thick convolutional perfectly matched layer. A
total of 204 plane waves (102 × 2 polarizations) are sent
within the first quadrant of the circle of illumination in
Fig. 2, and the rotational symmetry of the bead is
exploited to synthesize the final image. Each plane wave
has a sine-modulated Gaussian waveform, whose −20 dB
wavelengths are adjusted to coincide with the edges of
the desired wavelength range. Both the measured/
simulated spectra are normalized by the measured/
simulated spectrum at a glass pixel. The plots on the left
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Fig. 2. Equally spaced arrangement of 88 plane waves for
Kohler illumination with NAill ¼ 0:6. Two orthogonal polariza-
tions ðþÞ and ð×Þ are shown for each direction of incidence.
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and center of Fig. 3 show the simulated and measured
bright-field images in grayscale, respectively. The plots
on the right in Fig. 3 show the measured and simulated
spectra between 486 and 589 nm at the pixels annotated
by arrows. In this wavelength range, the refractive index
of the latex bead varies between 1.59 and 1:61. In the si-
mulations, a fixed refractive index value of n ¼ 1:61 is
chosen as a first approximation. Modeling the exact dis-
persion relation can be an interesting extension to this
comparison, but is outside our scope. Since the focusing
depth in the measurement is unknown, a FDTD image at
the optimum focusing depth is chosen for each compar-
ison. At the optimum depth, the rms errors in the spectra
are 11.4% and 8.2%, respectively. The frequency disper-
sion and the bead size variations are the most prominent
contributors to this error.
Because of the air–glass interface, the simulation geo-

metry is two-layered [10]. Therefore, the multilayer tech-
niques mentioned earlier are used to illuminate the bead
and collect the scattered light [7]. To illustrate the impor-
tance of this, the FDTD-simulated center-pixel reflec-
tance spectrum for a bead suspended in free space is
plotted in Fig. 4, together with the corresponding spec-
trum for a bead placed on a glass half-space. For better
comparison, the reflection from the glass is subtracted
coherently from the latter, as done in dark-field micro-
scopy. Both spectra are normalized by the reflection
from the glass half-space. The comparison clearly shows

that the glass half-space has a drastic effect on the reflec-
tance spectrum, underlining the importance of the multi-
layer FDTD methods.

In this Letter, an FDTD-based algorithm for the full-
vector numerical simulation of a broadband, partially
coherent, unpolarized optical imaging system was de-
scribed. Numerical results were shown to agree well with
broadband experimental data for latex beads placed on a
glass slide. Possible uses for this method include
the calibration/design of optical systems and sample
characterization.
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Fig. 3. Comparison of experimental results with FDTD calcu-
lations. (a) 2:1 μm bead, (b) 4:3 μm bead.

Fig. 4. Effect of the glass half-space below the bead on the
reflectance spectrum at the center pixel.
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