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Abstract: We provide a methodology for accurately predicting elastic 

backscattering radial distributions from random media with two simple 

empirical models. We apply these models to predict the backscattering 

based on two classes of scattering phase functions: the Henyey-Greenstein 

phase function and a generalized two parameter phase function that is 

derived from the Whittle-Matérn correlation function. We demonstrate that 

the model has excellent agreement over all length scales and has less than 

1% error for backscattering at subdiffusion length scales for tissue-relevant 

optical properties. The presented model is the first available approach for 

accurately predicting backscattering at length scales significantly smaller 

than the transport mean free path. 
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1. Introduction 

Diffusion approximations are often utilized to allow fast predictions of reflectance signals. 

These approximations involve a simplification of the transport equation and are typically 

validated with a more exact numerical method such as Monte Carlo [1]. Generally, diffusion 

approximations can be accurate for predicting the reflectance when the observed lateral 

distance (r) is much greater than the transport mean free path (ls*). Diffusion approximations 

are not accurate at small distances of light transport (e.g. source-detector separation), r, 

because they do not take the shape of the phase function into account. While at diffusion 

length scales (r/ls*>>1), light transport is primarily governed by the value of the transport 

mean free path (ls*), at sub-diffusion distances (r/ls*<1), the shape of the phase function may 

significantly affect the radial reflectance distribution. Foster and others have shown that the 

accuracy can be improved by accounting for higher order moments of the phase function in 

the P3 approximation [2,3]. However, even the P3 approximation becomes inaccurate for 

reflectance closer than ½ ls* [2]. 

For certain applications, it is important to be able to model and predict the backscattering 

signal from turbid media at source-detector separation distances that are significantly smaller 

than the transport mean free path ls*. For example, cancer detection often requires the 

isolation of a signal from superficial tissue such as the epithelium or mucosa. In many tissues, 

the thickness of the epithelium is much smaller than ls* therefore requiring a source detector 

separation much smaller than ls*. For this reason, several groups have developed fiber probes 

that sample small source-detector separations [4–6]. Other methods for sampling small radial 

transport distances include polarization gating or coherence based methods such as Low-

coherence Enhanced Backscattering [7,8]. Thus far, these methods have relied on time 

intensive computational solutions of the radiative transport equation (RTE), typically with 

Monte Carlo simulations that predict the backscattering signal as a function of optical 

properties [9,10]. These computational solutions have established that variations in the 

anisotropy factor and the shape of the phase function result in substantial variations to the 

reflectance at small r/ls* [2,11]. A fast and accurate predictive model of scattering at these 

small length scales is therefore of great interest for measuring properties of the scattering 

phase function as well as predicting epithelial tissue scattering. 

In this paper, we introduce a simple approach that allows for accurate prediction of the 

backscattering signal down to length scales that are several orders of magnitude smaller than 

ls*. The approach involves the construction of a simple model that predicts an infinitely 

narrow normally incident illumination beam response, termed p(r), from a turbid scattering 

medium. The response p(r) is a fundamental property of the turbid medium and is the 

objective for predictive modeling of most diffusion approximation models and Monte Carlo 
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methods. If p(r) is known, both the effects of a finite source and a numerical aperture can be 

modeled. We consider two types of phase functions in order to construct the models: the 

commonly used Henyey-Greenstein phase function, and a more general two parameter phase 

function which encompasses the Henyey-Greenstein phase function and uses parameters that 

quantify the sample refractive index correlation function. As an experimental example, we 

measure the reflectance distribution from a tissue phantom composed of a mixture of 

polystyrene microspheres using Low-coherence Enhanced Backscattering and compare the 

measured distribution at small length scales to the newly developed model. 

1. Monte Carlo Simulation of Reflectance 

One of the main determinants of the accuracy of a Monte Carlo simulation at small length 

scales is the choice of the phase function. Although the Henyey-Greenstein phase function has 

been described as a sufficiently accurate choice for prediction of backscattering at 

intermediate length scales (r~ls*), accurate modeling of small length scales (r<<ls*) requires 

a more general choice of phase function. For this purpose, we will follow a recently 

developed model that is based on the Whittle-Matérn correlation function [12,13]. 

The model implements the Born approximation in order to obtain the phase function from 

the refractive index correlation function. The Born (i.e. weakly scattering) approximation is 

valid in the regime relevant for soft biological tissue [14]. In the Born approximation, the 

differential cross section and, thus, the phase function, are completely defined through the 

Fourier transform of the refractive index correlation function [15]. In turn, the refractive index 

is a linear function of the local density of tissue macromolecules and the refractive index 

correlation function is proportional to that of the mass density. Thus, one can calculate the 

phase function if the mass density correlation is known (and vice versa). There have been 

several hypotheses on the best functional form that can model the refractive index correlation 

function in tissue, but one convenient expression can encompass nearly all of these 

possibilities. The refractive index fluctuations of biological tissue can be modeled with the 

Whittle-Matérn correlation function [16]:    
3/22

3/2( ) / /
m

n c m cB r n r l K r l


  , where Δn2 is 

the variance of the refractive index fluctuations, lc is the correlation length, and m is a 

parameter that determines the form of the function. The function Km-3/2 denotes the modified 

Bessel function of the second kind of order m-3/2. When m < 1.5, Bn(r) is a power law, thus 

corresponding to a mass fractal medium with mass fractal dimension Dmf = 2m. 1.5< m <2 

corresponds to a stretched exponential function, m = 2 corresponds to an exponential function, 

and as m becomes much larger than 2, Bn(r) approaches a Gaussian function. The correlation 

length lc has different physical meaning depending on the type of the correlation function. For 

m = 2,  2( ) exp /n cB r n r l    while in a mass fractal case of m < 1.5, lc represents the 

upper length scale at which the correlation function loses its fractal behavior. The differential 

scattering cross section can be derived by applying the Born approximation to the Whittle-

Matérn correlation function [13]. For the scalar wave case, the phase function assumes the 

following form: 
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where k = 2π/λ and the normalization is such that  cos cos 1F d    . We will refer to 

this phase function as the Whittle-Matérn phase function. The phase function can also be 

expressed as a function of m and klc without any change to the normalization: 
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It is important to note that a special case is observed when the value of m = 1.5. In this 

special case the correlation function is that of the space filling random field and the phase 

function simplifies to the commonly used form known as the Henyey-Greenstein phase 

function. The parameter ĝ then becomes the average cos(θ), also known as the anisotropy 

factor g. For other values of m, g is given by taking the forward moment: 

 

2 2 2 2 2 2

2 2 2 2

2

2 2

ˆ ˆ ˆ ˆ ˆ ˆ(1 ) (1 2 ( 1)) (1 ) (1 2 ( 1))
2

ˆ ˆ ˆ2 ( 2) (1 ) (1 )
cos

ˆ ˆ ˆ1 ln(1 ) ln(1 )
2

ˆ2 ˆ ˆ(1 ) (1 )

m m

m m

g g g m g g g m
m

g m g g
g

g g g
m

g g g g



 

 

 

           


      
  

     
     

  (3) 

Fig. 1(a) shows examples of the Whittle-Matérn phase functions with the same value of m, 

and varying values of g, while Fig. 1(b) shows examples of phase functions with the same 

value of g and varying values of m. The parameter g influences the width of the phase 

function while m influences the shape of the phase function independently of the width. There 

are two cases in the generalized phase function which are removable discontinuities: m = 1 

and g = 0. We can evaluate the phase function for these cases by employing L’Hospital’s rule: 
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In these two cases, g becomes: 
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The reflectance distribution was calculated with the Whittle-Matérn phase function by 

implementing the Monte Carlo method. An existing Monte Carlo code was modified to 

implement the generalized phase function [9,17]. The code was validated by comparing the 

results for m = 1.5 (Henyey-Greenstein case) with existing codes that implement the Henyey-

Greenstein phase function [10]. Simulations with values of g varying from 0 to 0.98 and 

values of m varying from 1.01 to 1.9 were obtained for the backscattering direction (0-10°). 

We found that the variations of backscattering probability distributions were small within the 

10° angular collection range when the backscattering probability distribution was stored as a 

function of the position of the final scattering event. Therefore, all reflectance distributions 

were stored as a function of the position of the last scattering event. ls* was maintained at 

100μm with a scattering slab thickness of 1cm, resulting in a scattering medium that 

approaches semi-infinite, with less than 2% of the intensity transmitting through the entire 

thickness of the slab. The infinitely narrow illumination beam was oriented orthogonally to 

the scattering medium. The boundary at the interface of the scattering medium was assumed 

to be index-matched and absorption was not present. The scattering angle, θ, in the Monte 
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Carlo simulation was chosen by expressing the probability of a selected angle as a function of 

the random variable ξ: 
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where ξ is uniformly distributed between 0 and 1 [10]. The azimuthal angle was chosen from 

a uniform random distribution: ψ = 2πξ. The remaining Monte Carlo simulation elements 

were identical to previously developed methodology for light propagation in turbid media 

[10]. 

-200 -100 0 100 200
10

-2

10
-1

10
0

10
1

10
2

Angle (degrees)

F
(

)

 

 
g=0.5, m=1.5

g=0.7, m=1.5

g=0.9, m=1.5

-60 -40 -20 0 20 40 60
10

-1

10
0

10
1

10
2

10
3

Angle (degrees)

F
(

)

 

 
g=0.9, m=1.2

g=0.9, m=1.3

g=0.9, m=1.5

a b  

Fig. 1. Example phase functions. (a) The Henyey-Greenstein case (m = 1.5) for various values 

of g. (b) The generalized Whittle-Matérn phase function for various values of m (g = 0.9). 

2. Model of Reflectance: Henyey-Greenstein Phase Function 

The backscattering distributions were obtained from Monte Carlo simulations by collecting 

rays within 10° of the backward direction and normalizing the reflectance such that 

( ) 1P s ds  , where s = r/ls* and 

2

0

( ) ( , ) 2 ( )P r p r rd r p r



      , r and θ being the polar 

coordinates in a plane perpendicular to the illumination beam. In a Monte Carlo simulation, 

P(r) is the obtained reflectance distribution that is collected with azimuthally integrated radial 

storage (θ is the azimuth angle). Figure 2(a) shows example P(r/ls*) curves obtained from 

Monte Carlo simulations using the Henyey-Greenstein phase function for four different values 

of g. All of the length scales in the Monte Carlo simulation are determined by ls, the mean 

free path. Additionally, it is known that the determining length scale in the diffusion regime is 

ls*. Therefore, the axes in Fig. 2 are normalized with respect to ls* in order to be scalable for 

any value of ls as well as observe the convergence of the results in the diffusion regime. All of 

the curves can be translated into units of P(r) by multiplying the abscissa axis by ls* and 

dividing the ordinate axis by ls*. Another words, P(r) = P(ls*·s)/ls*. The division by ls* is 

required due to the change of variable in the normalization integral (ds = dr/ls*) such that 

( ) 1P r dr  . 

Most diffusion approximations make the simplifying assumptions of isotropic scattering. 

We can evaluate the effect of anisotropy on P(r/ls*) at subdiffusion length scales by 

subtracting P(r/ls*) curves for isotropic scattering from P(r/ls*) for non-isotropic cases  

(i.e. g > 0). In Fig. 2(b), three difference curves are plotted for g values of 0.9, 0.8, and 0.7. 

Note that the integral of each difference curve is 0 because the integral of P(r/ls*) is always 1. 

The curves in Fig. 2(b) have very similar shapes but varying amplitudes. When each of these 

curves is rescaled by a constant that depends on g, they closely overlap [Fig. 2(c)]. 
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Fig. 2. Scaling relationships of P(r/ls*) from the Henyey-Greenstein phase function. (a) P(r/ls*) 

curves for varying values of g. The curves have variations at r/ls*<1 and converge for larger 

values of r/ls*. (b) Probability difference obtained by subtracting P(r/ls*) for the isotropic case 

(g = 0) from P(r/ls*) of a given g. (c) Probability difference curves for varying values of g with 

the amplitude rescaled by a coefficient that depends only on g. 

We can therefore employ a predictive model of P(r/ls*) that depends on just two 

simulation results: P(r/ls*) for g = 0 and P(r/ls*) for a particular g>0. While any value of g>0 

can be used, we use g = 0.9 in the following analysis for convenience (this results in accurate 

prediction within the range of tissue anisotropy): 

 
 0 0.9 0( )

( ) ,

g

b

P P c g P P

c g ag
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
  (7) 

where c(g) is an empirical model for the coefficients that multiply the difference term. The 

values of the constants a and b are approximately 1.244 and 2.338 respectively. The shortened 

notation Pg represents P(r/ls*) for a given value of g (e.g. P0.9 = P(r/ls*) for g = 0.9). The 

values of c(g) were determined by fitting Monte Carlo results for a particular g to the 

expression for Pg in Eq. (7). The values of c(g) and the empirical model for c(g) are plotted in 

Fig. 3(a). We can understand the difference between P0.9 and P0 as the alteration in the 

backscattering due to anisotropy. As g increases, the anisotropy contribution increases in 

amplitude but retains a very similar radial shape. This allows for a predictability of P(r) for 

any value of g with only two reference P(r) distributions. Fig. 3(b) shows a comparison of the 

Monte Carlo simulations and the model based on the difference relationship. Fig. 3(c) further 

illustrates the details of the model fit at small values of r/ls*. Note that the fits for g = 0 and g 

= 0.9 are not shown because the model and the Monte Carlo result are identical for those two 

cases (c = 1 when g = 0.9 and c = 0 when g = 0). The model has excellent agreement for 

values of g that are close to 0.9, but begins to deviate slightly at g = 0.7. As r/ls* becomes 

large, all of the curves converge and the backscattering can be predicted with an isotropic 

scattering model of equivalent ls*. 
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Fig. 3. Backscattering model for P(r/ls*) based on the Henyey-Greenstein phase function 

utilizing the difference method. (a) Value of amplitude coefficient as a function of g, c(g). The 

dots represent a least square fit to the Monte Carlo data and the solid line represents the model 

for c(g) from Eq. (7). The amplitude increases as a function of g follow a power law. (b) 

Comparison of Monte Carlo simulations (green, red, and purple curves) and model (black 

curves) for three values of g. g = 0.9 is not shown because the model and simulation are, by 

definition, identical for that case. (c) is a rescaled version of (b) shown for a smaller range of 

r/ls*. 

Another possible approach for predicting the backscattering signal at small radial 

distances is through an implementation of principle component analysis (PCA). PCA is a 

variance reduction technique that is often used to obtain dependencies when a large number of 

variables are present. The analysis typically involves mean-centering the data (i.e. subtracting 

the mean from each variable), followed by a transformation which decomposes the data into 

orthogonal components that explain the largest proportions of the variance within the data set. 

In order to apply this method to build a model of P(r/ls*), we used each value in r/ls* as an 

input variable. Instead of mean centering, we subtracted the P(r/ls*) curve for g = 0. The 

effect of subtracting the isotropic P(r/ls*) is similar to that of mean-centering, but results in a 

more predictable model that is independent of the particular reflectance distributions used in 

the PCA analysis. We then obtained a series of principle components and found that when the 

first three components are used, P(r,ls*) can be predicted more accurately than the single-

component difference model described above. The first three principle components (PC1-

PC3) predicted 99.966%, 0.027%, 0.002% of the variance in the data, respectively. Based on 

this model, P(r/ls*) can be predicted according to: 

 0 1 2 3( ) 1 ( ) 2 ( ) 3,g gP P c g PC c g PC c g PC      (8) 

where c1, c2, and c3 are the weights of the principle components. We utilized a polynomial 

equation to fit the weights with the order of the polynomial chosen such that the R2 coefficient 

is greater than 0.99. Fig. 4(a) shows a comparison of the principle component model with 

Monte Carlo simulation results for three tissue-relevant values of g. The r/ls* axis is in log 

scale, showing that the model is in excellent agreement with the Monte Carlo simulations for 

the entire simulated range of 0.001< r/ls*<10. Fig. 4(b) shows the same comparison in linear 

scale for the subdiffusion range of r/ls* < 1, again, showing excellent agreement. Fig. 4(c) 

shows the distributions of the three principle components that were used in the model. Note 

that the contribution of each successive component decreases, with higher components being 

noisier. Fig. 4(d) is a plot of the weights of the three components along with the polynomial 

fits that are used for the predictive model. 
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Fig. 4. Backscattering model for the Henyey-Greenstein case utilizing principle component 

analysis method. (a) Semi-log plot of Monte Carlo simulations and the PCA model for three 

values of g. (b) Comparison of PCA model and Monte Carlo simulation for r/ls* < 1. (c) Semi-

log plot of the three principle components. Note that higher principle components have less 

amplitude and contribute less to P(r/ls*) prediction. (d) Plot of coefficients that multiply the 

principle components and their polynomial fits used to obtain the predictive model. 

3. Model of Reflectance: Whittle-Matérn Phase Function 

To obtain a generalized model for reflectance based on the Whittle-Matérn phase function, we 

simulated P(r/ls*) distributions for varying values of g and m. In Fig. 5(a), P(r/ls*) curves for 

four values of m are shown with a constant anisotropy factor of g = 0.9. The isotropic 

component is subtracted from these curves in Fig. 5(b). From Fig. 5(b), it is apparent that a 

simple scaling in amplitude cannot account for the difference between these curves. There is 

an m-dependent alteration in the shape of the non-diffuse component of the curves. However, 

for a given value of m, changes in g only alter the amplitude of the non-diffuse component 

[Fig. 5(c)]. Therefore, it is clear that another component needs to be introduced that can 

account for the alterations in the shape of P(r/ls*) due to varying m. We can extend the 

difference model developed for the Henyey-Greenstein phase function (m = 1.5) discussed in 

the previous section by defining a second difference component that is calculated by 

subtracting the isotropic probability from P(r/ls*) for g = 0.9 and a particular m. In our 

analysis, we chose m = 1.01. This value of m was chosen because the shape of P(r/ls*) 

becomes dramatically altered as m approaches 1. The shapes of the two difference 

components are compared in  

Fig. 5(d). P(r/ls*) can then be predicted according to a two-component model: 

 

, 0 1 1 2 2

1 0.9, 1.5 0

2 0.9, 1.01 0

( , ) ( , )g m g

g m g

g m g

P P c g m P c g m P

P P P

P P P



  

  

    

  

  

  (9) 

The coefficients c1 and c2 vary smoothly and continuously with g and m. These 

coefficients can be fit to a variety of functions, depending on the desired simplicity and 

accuracy of the model. We fit these coefficients to a third order polynomial in two dimensions 

described by Eq. (10). 

 
2 2 3 3 2 2 ,i i i i i i i i i i ic a b x c y d x e y f x g y h xy i x y j xy            (10) 

#131517 - $15.00 USD Received 12 Jul 2010; revised 27 Aug 2010; accepted 26 Sep 2010; published 30 Sep 2010
(C) 2010 OSA 1 October 2010 / Vol. 1,  No. 3 / BIOMEDICAL OPTICS EXPRESS  1041



where x = ln(m) and y = 1/(1-g). The constants, a – j, are supplied in Table 1. These constants 

were optimized to obtain a minimized error for g0.6. 

a b

c d
 

Fig. 5. P(r/ls*) distributions for the generalized Whittle-Matérn phase function. (a) P(r/ls*) 

dependence on m for g = 0.9. The shape of the P(r/ls*) gradually changes with varying m. (b) 

Probability difference between P(r/ls*) curves and the isotropic P(r/ls*) for g = 0.9 and varying 

m. Unlike changes in g, alterations in m cannot be accounted for by a simple scaling of the 

amplitude of the probability difference curves. (d) Probability difference curves for various 

values of g and m = 1.8. The probability difference only changes in amplitude for a constant m 

and varying g. (d) The two probability difference curves used to model P(r/ls*) from Eq. (9). 

Alternatively, a principle component model can also be adopted similar to the one 

described by Eq. (8), except that the coefficients c1, c2, and c3 each vary as a function of g and 

m in the generalized model. The variation of these coefficients is also smooth and continuous 

and can be fit to a polynomial equation based model such as the one in Eq. (10). Fig. 6(a) 

shows a comparison of the difference model (PΔ model) for the Whittle-Matérn phase 

function with Monte Carlo results for varying values of m and a constant g of 0.9. The 

agreement is excellent, although the error slightly increases for larger values of m. The 

agreement is improved for the PCA based model, shown in Fig. 6(b). The error is quantified 

for the entire range of g and m for the PΔ and PCA models in Fig. 6(c) and Fig. 6(d), 

respectively. Although the equations were optimized for g0.6, the average error for r/ls* 

between 0 and 1 is less than 2% for the entire range of g and m values that were evaluated. 

The error was less than 1% for all values of m and biologically relevant anisotropy factors 

(g0.6). The PCA model had less error than the PΔ model for this biologically relevant 

anisotropy range. 
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Table 1. Values of constants from coefficients for PΔ model [Eq. (9)] 

Constant C1 C2 

a 0.29773 0.064755 
b 0.11547 0.46123 

c 0.068216 0.15039 

d 1.3086 1.5305 

e 0.0045095 0.0049453 

f 1.1378 1.0031 

g 7.4495·105 3.9844·105 

h 0.25636 0.37841 

i 0.047610 0.13420 
j 0.0071922 0.0082885 

a b

c d

a b

c d
 

Fig. 6. Evaluation of P(r/ls*) predictive model accuracy. (a) PΔ model for P(r/ls*) (lines) 

compared to Monte Carlo data (points) for varying values of m and g = 0.9. (b) PCA model for 

P(r/ls*) (lines) compared to Monte Carlo data (points) for varying values of m and g = 0.9. (c) 

Average error of PΔ model as a function of g for r/ls*<1. (d) Average error of PCA model as a 

function of g for r/ls*<1. 

It is important to point out that the presented model does not incorporate absorption. 

However, the absorption is expected to be much smaller at small radial distances because the 

path length and the exit radius of a ray traversing a turbid medium are known to be well 

correlated. To estimate the range of absorption under which the presented models are 

accurate, we performed three Monte Carlo simulations with identical optical properties but a 

varying absorption coefficient. In this case, each of the backscattering distributions was 

normalized by the total backscattering reflectance that would be present in the absence of 

absorption. The resulting reflectance distributions are shown in Fig. 7. Absorption primarily 

alters the intensity of backscattering at larger radial distances and has a minimal effect at r << 

la, where la = 1/µa. This can be reasoned from the Beer-Lambert law and the fact that the path 

lengths contributing to backscattering at small radial distances are small. For larger radial 

distances, the path length becomes longer and the effect of absorption becomes substantial. 

Therefore, one can also incorporate traditional diffusion approximation models of absorption 

in order to quantify the backscattering contribution. In this case, the isotropic scattering 
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portion [Pg = 0 from Eq. (7) to (9)] can be modeled with standard diffusion approximation 

equations for reflectance [18,19]. 
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Fig. 7. P(r) for varying µa. The scattering properties of all three simulations were maintained at 

µs* = 100 cm1, g = 0.9, and m = 1.6. Absorption has a minimal effect at small radial distances 

because of the short path lengths involved. 

4. Experimental Measurement of P(r) from Tissue Phantom 

As an illustrative example of an application of the presented models, we utilized Low-

Coherence Enhanced Backscattering (LEBS) to measure P(r) for r<ls*. The experimental 

system used for the measurements has been described elsewhere and validated with P(r) 

measurements and simulations of mono-dispersed polystyrene microspheres in water [20]. A 

phantom was constructed from a mixture of polystyrene microsphere suspensions in order to 

mimic the Whittle-Matérn phase function. The proportions of microsphere sizes were 

determined by fitting three commonly available sizes such that the final phase function 

matched closely to the Whittle-Matérn phase function. Microspheres that were sized 0.26, 

0.52, and 1.0µm were mixed in respective volume proportions of 1:0.2:0.7. When the 

suspension is dilute and the scattering is weak, the weighted average of the phase functions 

(with the weights being proportional to the concentration and the scattering cross section of 

the microspheres) results in the effective phase function of the scattering medium. The phase 

functions for microsphere particles and their scattering cross sections were calculated with 

Mie theory. The phase function fit was further improved by raising the refractive index of the 

medium to 1.34 with glycerol. A Whittle-Matérn phase function with an m of 1.6 and g of 0.8 

is compared to the resulting phase function obtained from the microsphere mixture in  

Fig. 8(a). In principle, the agreement may further be improved by using a larger variety of 

sphere sizes. We then obtained measurements for the unpolarized P(r) by measuring the 

unpolarized LEBS signal and dividing the Fourier transform of the signal by the coherence 

function [20]. In this example, we approximated the coherence function to be the shape of an 

idealized first order Bessel function of the first kind with a spatial coherence length of 110µm, 

as calculated from the van-Cittert-Zernike theorem. We accounted for the decrease in the 

enhancement factor due to the contribution of orthogonally polarized light by assuming that 

unpolarized light is an equal mixture of the two orthogonal polarization states. This results in 

an enhancement of 1.75 when dividing by the incoherent baseline, or 0.75 when the baseline 

is subtracted [21]. We also accounted for the discrepancy between Monte Carlo and 

experimental measurement that was observed in earlier work with a factor of 0.5 [20]. These 

constants were determined to be accurate by measuring P(r) from mono-disperse microsphere 

suspensions with varying sizes and comparing to Monte Carlo simulations that track 

polarization and utilized the Mie phase function. The experimentally measured P(r) and the 

P(r) obtained from the PCA model were in excellent agreement for r << ls* [Fig. 8(b)], with 

an average error of 7.1% for the range shown. It is interesting to note that the noise level from 
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the experimental measurement in Fig. 8(b) varies with the radial position. The LEBS method 

measures the two-dimensional quantity p(x,y) via a two-dimensional Fourier transform. The 

higher noise level at small radii is a result of the decreased number of pixel elements that 

contribute to the summation over the polar angle. As r increases, the noise level decreases 

until the coherence function begins to approach small values, at which point the noise level 

quickly rises due to the division of two numbers that have values near 0. 
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Fig. 8. Tissue phantom for experimental measurement of P(r). (a) Comparison of the Whittle-

Matérn phase function (m = 1.6 and g = 0.8) with the fit obtained from a mixture of 

microspheres of three sizes. (b) Resulting P(r) experimentally measured with LEBS, compared 

with P(r) obtained with the PCA based model and a Monte Carlo simulation. An ls* of 800μm, 

determined from the Mie theory calculation, was used for the model and Monte Carlo curve. 

The experimental LEBS measurement was scaled by the 0.75 factor to account for unpolarized 

light and the empirical 0.5 factor, determined from microsphere studies in prior work [20], to 

account for the difference observed between LEBS and Monte Carlo (see text). The average 

error between the experimentally measured P(r) and the model was 7.1%. 

5. Conclusions 

We have presented two models capable of predicting P(r/ls*) for the entire range of r/ls*. 

Each model was applied to predicting reflectance from random media with a Henyey-

Greenstein phase function and a generalized phase function that is derived from the Whittle-

Matérn correlation function. The presented models consist of an empirical equation that 

quantifies the difference between the isotropic case of g = 0 and non-isotropic cases of g>0. 

This difference is predicted with two methods: the PΔ method and the PCA method. The PΔ 

method is based on the observation that these differences only scale in amplitude as g is 

varied [Fig. 2(c)] and do not change their shape. Although the shape of the radial dependence 

of this anisotropy contribution depends on m, it can be predicted with a linear combination of 

two difference terms [Eq. (9)]. The PΔ model results in accurate prediction for the Henyey-

Greenstein case [Fig. 3(c)] and the generalized Whittle-Matérn phase case [Fig. 6(a)]. The 

PΔ(r/ls*) terms used in this model can be thought of as the anisotropic contribution to 

P(r/ls*), with the amplitude of these terms being related to the anisotropy factor. 

The PCA method uses a similar idea as the PΔ method in that the anisotropy contribution 

is quantified. The advantage of the PCA method is that it decomposes the radial contributions 

into orthogonal principle components that explain the largest variations in the Monte Carlo 

data. Although, in principle, using more principle components results in a more accurate 

prediction of the data, in practice, accurate prediction also relies on being able to model the 

coefficients associated with the principle components. The dependence of these coefficients 

with the phase function properties become increasingly complicated for higher principle 

components [Fig. 4(d)], and therefore the model that fits these coefficients requires increasing 

complexity. We used a polynomial model for the Henyey-Greenstein phase function, and a 

two-dimensional cubic [Eq. (10)] for the Whittle-Matérn phase function. This resulted in 

excellent agreement for the biological tissue regime where g>0.6 [Fig. 4(a) and Fig. 6(d)]. 

The results of the fits can potentially be improved by implementing more principle 
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components, increasing the accuracy of the model fit to the coefficients, or fitting to a smaller 

range of optical properties. That said, the error for the model applied to biologically relevant 

optical properties (g≥0.6 and 1<m<2) was less than 1%. The same procedure that was 

presented here can be used for modeling other ranges of g and m in order to obtain improved 

accuracy. 

As mentioned in section 3, absorption is not included in the models described in this 

manuscript. However, in biological tissue, absorption varies dramatically with wavelength 

and is typically small for λ>600nm. Therefore, the technique described here can be utilized to 

measure scattering properties in the non-absorbing wavelength regions. Absorption can then 

be characterized by understanding the path length distribution for varying optical properties 

and measuring the backscattering for varying wavelengths. From Fig. 7, we can conclude that 

absorption primarily alters the intensity of backscattering at larger radial distances and has a 

minimal effect at r << la. This is due to shorter path lengths at smaller radial distances 

resulting in less attenuation of the scattered rays (The Beer-Lambert law). In cases where 

absorption cannot be neglected, a traditional diffusion approximation model of absorption in 

order to quantify the backscattering contribution can be used. In this case, the isotropic 

scattering portion [Pg = 0 from Eq. (7) to (9)] can be modeled with standard diffusion 

approximation equations for reflectance [18,19]. 

In conclusion, the models presented in this work allow for accurate prediction of the 

impulse response function, P(r), to a random medium with a tissue-relevant range of optical 

properties and without the need for performing a large number of Monte Carlo simulations. 

Only three simulations are required including a simulation for isotropic scattering and two 

simulations for anisotropic scattering (g = 0.9 with m of 1.5 and 1.01). A Henyey-Greenstein 

based P(r) model is simpler in that it only requires two Monte Carlo simulations; however, it 

may not be as comprehensive of a model for tissue characterization. Finally, we presented a 

methodology for obtaining phantoms that have the potential to closely mimic optical 

properties of tissue, including the backscattering at small length-scales. The ability to predict 

the backscattering distribution at subdiffusion length scales holds promise for using 

techniques such as LEBS to measure optical properties of tissue (such as g, m and ls*) by 

measuring P(r). These results may also allow for faster, simpler and more accurate solutions 

to the inverse problem of measuring optical properties from tissue by providing an alternative 

for existing inverse Monte Carlo methods [5,6,11,22,23]. The three simulation and coefficient 

equations necessary for predicting P(r) will be made available online for public use. 

Furthermore, there are currently no existing empirical or theoretical models that allow for the 

prediction of the backscattered light at subdiffusion length scales without the need for 

performing repetitive and time intensive Monte Carlo simulations. The high degree of 

accuracy of the presented models and experimental illustration of a P(r) measurement from 

the Whittle-Matérn phase function at r<ls* indicate that the presented models and 

experimental phantom will be useful for characterizing the optical properties of biological 

samples. 
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