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Electromagnetic  Scattering by Arbitrary Shaped 
Three-Dimensional  Homogeneous Lossy 

Dielectric  Objects 

Abstract-The  recent  development  and extension of the method of 
moments technique for analyzing electromagnetic  scattering by arbitrary 
shaped  three-dimensional homogeneous lossy dielectric objects is pre- 
sented based on the combined field integral equations.  The surfaces of the 
homogeneous three-dimensional  arbitrary  geometrical  shapes  are mod- 
eled  using  surface  triangular patches, similar to the case of arbitrary 
shaped  conducting objects. Further, the development  and extensions 
required to treat efficiently three-dimensional lossy dielectric objects are 
reported.  Numerical results and  their  comparisons  are also presented for 
two canonical  dielectric  scatterers-a  sphere  and  a finite circular  cylinder. 

T 
I. INTRODUCTION 

HIS PAPER DEALS with the use of  analytical  and 
numerical  methods to analyze electromagnetic scattering 

and corresponding radar cross section of  three-dimensional 
arbitrary shaped homogeneous lossy dielectric objects. There 
is, in fact, a variety of frequency domain analytical andlor 
numerical methods applied for studying electromagnetic scat- 
tering by homogeneous dielectric objects. For those objects 
whose  boundary surface just coincides with  a  given coordinate 
system, separation of variables [l] can be applied. For these 
cases, analytically exact solutions have been obtained  only for 
simple scatterers, such as a sphere [2]  and circular and 
elliptical cylinders [3]-[5]. For an object  not  much different 
from the sphere, namely  a prolate spheroid, the perturbation 
technique [6] has been applied. 

Also for objects which are arbitrary in shape, either the 
volume or the surface integral equation has been  applied. The 
volume integral equation [7], [8] is  principally  based  on 
relating the induced polarization currents to the corresponding 
total fields consisting of the scattering and  incident fields. By 
associating an unknown polarization current coefficient either 
with  a cubic cell or with  a tetrahedral cell inside the scatterer 
181, the operator form of the integral equation is converted into 
an equivalent matrix equation. To a limited extent, the  recent 
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advancements [9], [ 101  in the area of the fast Fourier 
transform and also iterative methods have extended the 
usefulness  of the volume integral equation approaches. Em- 
ploying the volume equivalence principle and  method  of 
moments, scattering results are reported for dielectric 131, [7] 
cylinders and also for  plane  slabs  and  biological  tissue 
cylinders [ 111. Some work is also reported in the area of the 
extended  boundary  condition approach [12] and also in the 
area of the  unimoment  method [ 13 J , [ 141 related to scattering 
by inhomogeneous objects. These approaches express fields in 
terms of integrals over surfaces separating one or more 
homogeneous regions surrounding a  given scatterer [ 151, [ 161. 
For detailed  discussion  on the various techniques  and their 
limitations, the reader may refer to the recent  technical report 
[17] by the authors of the present paper. 

The surface integral equation approach is very  well  suited to 
analyzing  homogeneous dielectric objects or to objects mod- 
eled by or made  up of homogeneous layers [ 131, [ 181. The 
usual procedure in this method is to set up coupled integral 
equations in terms of equivalent electric and  magnetic currents 
on the surfaces of the homogeneous  regions. For an object 
made up of a large number of layers, fields induced in any 
region are expressed in terms of the equivalent currents on the 
adjacent interfaces. An iterative procedure [ 181 has been 
utilized for solving currents on the outermost surface in terms 
of the currents on inner interfaces. Particularly, for the case of 
simple objects such as dielectric cylinders [5] and  bodies of 
revolution [ 191, the surface coupled integral equations 
method has been  extensively applied. But,  when the surface of 
the scatterer takes on arbitrary shape, an efficient modeling of 
the surface geometry and also the surface electric and 
magnetic fields become complicated. A simple  and  an  efficient 
modeling scheme is presented here and  is the subject of 
discussion in this paper in the  context of scattering by 
arbitrarily shaped objects [ 171, [20]. 

II. TIUANGULAR SURFACE PATCH MODELING 
General arbitrarily shaped scattering objects can  be  ana- 

lyzed  based  on integral equations and the method  of  moments 
(MM) approach [ 171. This method is suited for low-frequency 
scattering problems, but can be extended to bodies spanning 
approximately one to two wavelengths in three dimensions, 
Fig. 1. The following formulations of the MM have been 
found to be generally suited for certain scattering problems 
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Fig. 1. Geometry of a  homogeneous lossy dielectric scatterer in an isotropic 
free space medium. 

based  upon their geometry and material characteristics: 

1) Conducting Scatterers (homogeneous,  isotropic) 
a) Electric field integration formulation @FIE) for 

b)  Magnetic  field integral equation  formulation 
closed and  open  bodies 

(MFIE) for closed bodies 
2)  Dielectric Scatterers (homogeneous, isotropic) 

3) Anisotropic Scatterers (homogeneous) 
Combined field integral equation  formulation (CFIE) 

Combined  field integral equation formulation (CFIE) 
modified for material characteristics. 

Recent work has concentrated on case 1,  especially in the 
development  of the triangular patch  model for arbitrary 
scatterers [20]. Recent further work is reported [ 171, using the 
combined  field formulation for cases 2 and 3; only case 2 is 
discussed  in this paper. There are several approaches by  which 
one can efficiently  model a given arbitrary shaped surface. For 
planar surface, one can  conveniently  use either rectangular or 

validity, numerical results and their comparisons are presented 
for two canonical dielectric scatterers, namely a homogeneous 
dielectric sphere and a finite circular cylinder. 

m. SUMMARY OF COMBINED  FIELD INTEGRAL EQUATIONS 

The detail derivation of the combined  field integral equa- 
tions can be  found  in [17] and [22], but for completeness and 
further numerical  development  only a summary of the CFIE 
equations is given below. Referring to Fig. 1, S denotes the 
surface of a homogeneous, lossy dielectiic scatterer having a 
volume V contained in region 2 and  bounded by the surface S.  
The scatterer is located in  region 1 representing an isotropic, 
lossless free space medium. Let 

(E; ,  q) 

(e, 
=scattered electric and  magnetic fields in region 1 

=scattered electric and  magnetic fields in region 2. 

Then, referring to the electromagnetic equivalent principle, 
various scattered electric and  magnetic fields in regions 1 and 
2 are given by 

1 

€ 1  

1 

Pl 

for 7 on or outside S (lb) 

E;m= -jwA,(7)-vV,(7)-7vx~~(7) (la) 

R;(F)= -juF,(7)-VU*(7)+- V x A , ( 7 ) ,  

1 

€ 2  

1 

P2 

~~(7)=j~A2(7)+vV2(F)+~vx~2(7)  (2a) 

~ 2 ( 7 ) = j 0 F 2 ( 7 ) + v u , ( 7 ) - -   V X A , ( 7 ) ,  

for 7 on or inside S (2b) 

where the various vector potentials Ai and  and the scalar 
potentials vi and Ui, for i = 1 ,  2 are given by 

square patches [ 191. Difficulties arise in case of nonplanar 
surfaces and  even in case of planar surfaces with irregular 
boundary edges. An elaborate discussion on the triangular S 

surface patch techniques, orientation of patches  and their 
applicabilities to various types of integrodifferential equations €f 

is  well  discussed  in [2 11. Since the analysis of both EFIE and 
MFIE are already studied for conducting  bodies [21], neces- 
sary analytical and  numerical  developments  can be conven- 
iently  developed  and  extended [ 171 to surface patch  model  any K(7)=- pe(7')Gi(Z 7 ' )  dS(7') 
arbitrary shaped dielectric objects, for any  given  excitation. 4 m  ' S  ! 
Using MM to solve these equations, the  equivalent electric and 
magnetic surface currents are expanded in terms of triangular 
surface patch currents; and  tested on both sides with  respect to 
the same surface patch  basis  functions to yield  an efficient 
matrix expression. Once the surface equivalent currents are 
known, the near scattered fields, scattered far fields, and  even €;=ei [l-j:] 
penetrated fields are directly evaluated. To demonstrate 

Ai(F)=F 11 7(7')Gi(Z 7') dS(7') 
47r 

4 ( 7 ) = ~  { j  Ii?(F')Gi(Z 7') dS(7 ' )  
S 

1 

&(7)=- pm(7')Gi(Z 7') dS(7') 
47rPi 
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and 

In obtaining the above expressions, ejut time dependence  is 
assumed for various field  quantities i d  w is the  frequency  in 
radians per second. The Green’s function  defined in  (3a)-(3d) 
for i = 1, 2 is  given by 

e - j k i R  

Gi(Z P)=- 
R (54 

l ? = l i - i ‘ \  (5b) 

and the propagation constant  is 

kj={w2pj€;]1/2* (6) 

In (3a)  and (3b), Tis the equivalent electric current and  is 
the equivalent magnetic current on  the surface of  the dielectric 
scatterer. The equivalent electric and  magnetic currents are, in 
fact, related to the surface total  magnetic  and electric fields 
tangential to the surface S: 

f(7’) = ii x R(i ’ )  (74 

2 ( i ’ ) = E ( T )  X A ,  7’ on  the surface s (7b) 

where ii is an outward unit normal on S shown in Fig. 1. 
Further, in the above expressions, (e1, eel, u1 = 0) and  (e2, p2, 
uz) are the permittivity, permeability, and  conductivity for the 
regions 1 and 2. 

On enforcing the boundary  condition  that the total tangential 
electric field  and the total tangential  magnetic  field  should be 
continuous across the surface of the arbitrary dielectric 
scatterer, the following  combined  field integral equations are 
obtained in terms of the unknown surface equivalent electric 
and  magnetic currents: 

+- , i on surface S (8b) 
P2 tan 

where @ and i!f‘ are the incident electric and  magnetic fields in 
the region 1 and the subscript “tan” refers to tangential 
component only. A detailed numerical approach is discussed 
in the  following  based on the method of moment  technique to 
reduce the coupled integrodifferential equations (8a) and  (8b) 
to the corresponding partitioned matrix equation for the 

scatterer. Especially to treat arbitrary shaped bodies, the 
surface S of the dielectric scatterer should  be  efficiently 
modeled as proposed  [21] by dividing the surface of  the 
scatterer into a number  of triangular shaped surface patches. 
An  example is shown in Fig. 2 indicating  how one can  use 
triangles to patch  model scatterer surfaces efficiently. Fig. 2 
shows the case of a finite circular dielectric cylinder scatterer 
modeled  in terms of triangular surface patches. In each of the 
triangular surface patch, the electric and magnetic currents are 
represented in terms of a known triangular basis function. The 
complete  development  of current expansion or basis functions 
for triangular surface patches suitable for homogeneous 
dielectric objects  is  discussed  in detail in  [17]. 

IV. BASIS FUNCTIONS AND CURRENT REPRESENTATION 

Given a closed surface S the surface is first approximated by 
a number of triangles, Fig. 2. Each triangle is defined by  an 
appropriate set of faces, edges, and vertices. Fig. 3(a) shows 
two triangles T,’ and T; with the nth common edge. The 
electric and  magnetic currents flow  along  radial direction 6; 
in triangle T,‘ and similarly flow  along  radial direction 6; in 
triangle T i .  Referring to Fig. 3(b), if I, is the base  length  of 
common edge, then  height  lengths of the  two triangles T,’ and 
T; are, respectively, given by 2A ; / in  and 2A ; / I , , ,  where 
A ;  represents the area of T,‘. Any  point in triangles T,’ can 
be defined either with  respect to global origin, 0, or with 
respect to the triangle vertices 0;. In Fig. 3, the superscripts 
plus  and minus signs designation  of  the triangles is  determined 
by choice of a positive current reference direction [Zl]  for the 
nth edge, which is always assumed to be from T,’ to T;. 
Hence, a vector basis  function  associated  with nth edge  is 

The vector basis function stated in  (9)  is  ideally  suited for 
representing surface electric current 7 and the surface mag- 
netic current 2 on  the triangulated surface S of  the  given 
dielectric scatterer. The reader may refer to [17]  and  [21] for 
the detailed  discussion on various mathematical properties of 
the vector basis functions. In fact the surface integral of basis 
function over adjacent triangles represents moment  given  by 

j j  2 ds=- [ P  -;+ + +Z-] (loa) 

= rn<7f+ - 7f- ) (lob) 

In 

2 
T i +  T i  

Z+ =vector between 0; and centroid of T,’ 

p’f,- =vector between centroid T; and 0; 

and referring to Fig. 4, 7?c,+ and 7?c,- are the distances to 
centroids of triangles from the arbitrary reference point. 

unknown electric and  magnetic currents on  the surface of  the Referring to the dielectric scatterer- shown  in Fig. 2 ,  the 
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Fig. 2. Finite  circular  cylinder  dielectric  scatterer. 

Constant Vectors 

0 

(b) 
Fig. 4. (a) Coordinate for calculating  centroids  and  moment of basis  vectors. 

(b) Three edge  currents  associated with a  triangle. 

T,' and T i  is unity, each coefficient of I, and M, can be 
interpreted as the normal components of the electric and 
magnetic current density flowing past the nth common edge. 

(a) (b) Further, we note, for a  given triangular face, that there are 
Fig. 3. (a)  Coordinates of common edge  associated with two triangles. (b) three edges and correspondingly there exists three vector basis 

Geometry for normal component of basis  function at  c0-On edge. functions, Fig. 4. It is also clearly pointed  out in basis vectors 
development [ 171,  [21] that the superposition of the basis 
functions  with a triangle conveniently represent a  constant 

surface electric and  magnetic current, gand G, distributions current flowing in an arbitrary direction within the triangle. 
are expanded  in terms of vector basis functions defined  in (9). 
Let N represents the total  number of edges. Then, V. TESTING OF CFIE 

In order to find the current coefficients, the combined  field 
integral equations (Sa)  and (8b) are tested  with respect to 

n = l  ('la) testing functions. One suitable choice is to pick  testing 
functions  identically same as basis functions, given by (9a)- 

7(7)= IJn(F') 

G(i.")= M J , ( 7 )  (1lb) product to reduce the operator type integral equations to the 

N 

N (Sc),  and test the equations based  on the following symmetric 

n =  I corresponding functional type, 

where I, and M,, are constants yet to be determined. Since the (3 3) = 3 d S .  (12) 
normal  component of x at the nth common edge connecting S 
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21 A2 
- ( V x  (-+-) , ym), on surface S (13b) 

PI P2 

where the subscript rn denotes  an edge formed  by two triangles 
TL and Tm-. The  first-term  in  (13a)  and  (13b) can be simplified 
by  evaluating the vector  potentials  at centroids of  respective 
triangles. Further, the second-term  with  gradient  in  (13a)  and 
(13b)  can be simplified  as 

( v ~ ,  .Em)= - 11 ~ ( v  * T m )  ds (144 
S 

= I m  [' 11 V d S - A ;  11 V dS] (14b) 
1 

A ,  TA 

= I m [  V(rL-)- V ( r 3 1 .  (14c) 

We note that the integrals in  (14b)  have  been  approximated  by 
evaluating the scalar potentials  at the respective centroids of 
the two T i  triangles. Similarly, the third-term  with  "curl"  in 
the above  tested  equations  (13a)  and  (13b)  can  be  simplified as 

(VXA, T*)= 5s ( V x A )  - Tm dS (15a) 
S 

m 

On substituting the relationships  (14)  and  (1 5 )  into the tested 
form of (13a)  and (13b), the following  functional  form of 
equations are obtained: 

on  scatter surface S,  rn = 1, 2, 3, - * e ,  N edges 

( 16a) 

4+ 4- 

= I m  [F. E7't(ic,t)+F. p-(c-)] , 

on scatter surface S,  m =  1, 2, 3, - .  ., N edges 

where in the above  tested equations, 

In the above  functional  equations  (16a)  and  (16b), the vector 
and the scalar  potentials xi , R , 6,  we gjven by  (3a)-(3d). 
The and Qi terms containing the curl operations ca~-.be.' 
further simplified as, for i = 1 , 2  regions, 

e- - .- 

[VxR(~]=lfflii(T')xV'G,(~ 7 )  d S ( i ' )  (1%) 
47r s 

[V XAi(?)] =c"i ff S'C- r ) x V ' G i ( E  7 )  dS(TT') (19b) 
4n s 

where the symbol fs represents Cauchy  principle  value of the 
integral. In the numerical  development, the integrals  defined 
in  (17a)  and (Ha) will be evaluated numeridly [17],  [21] 
using  seven  point  integration  method principaly applicable  to 
triangular distributions. 

VI. MATRIX EQUATION (CFIE) 
The electric current and the magnetic current expansion 

terms  defined  in (1 la) and (1 lb) are now  substituted  into the 
CFIE tested (16a)  and  (16b)  to  reduce  the  functional  form of the 
equation to a corresponding partitioned  matrix  equation [ 171, 
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[21]: 
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and 

where the various matrix elements are given by the following, 
form = 1,2 ,3 ,   * . . ,Nedgesandn = 1,2 ,3 ,   - - - ,Nedges .  

Elements of diagonal submatrix for electric current: 

Elements of  diagonal submatrix for magnetic current: 

Elements of off-diagonal  submatrix: 

Elements  of electric and  magnetic  field excitation: 

E (rm +- - E .  (rm ) (21e) - j +  *+ E- I -  *-] 
2 2 

-. ~- . 

e-jkiR' 

Gi(7;, 7')=- R' (23c) 

R'=17;-71  (23d) 

e-jkiR' 

V'Gi(72, 7')=(7;-7')(1 +jkiR') - 
(R ' )3  

. (23e) 

W. EFFICIENT NUMERICAL ALmm DEVELOPMENT 
The integrals (22a), (22c)  and  (23a) are in a convenient 

form for numerical evaluation. The simplification  of these 
integrals are discussed  in detail in [21], which are useful for 
numerical algorithm development. The matrix equation (20) 
can be inverted to ob& the electric and  magnetic current 
coefficients, I, and M,,. 

We note  that the various matrix elements can be easily 
generated  by considering faces rather than edges. This cuts 
down by approximately ninefold, computer time required to 
generate matrix elements [2 11. We further note  that the matrix 
elements Z,, and Ym, are similar except for floating constants 
which can be conveniently incorporated while filling matrix 
elements; so that one has to generate only Z,, matrix elements 
and the Y,,,, elements are obtained by changing multiplying 
constants while tilling in matrix elements. Similarly C,, and 
Dm, matrix elements differ by just a multiplying constant; so 
that one is to generate just C,, elements only  and  the Dm, 
elements are obtained directly from the C,, elements. Also 
referring to the expression (2 l),  the elements of  the  subma- 
trices contain terms belonging to both regions one and  two. 
The various potential integral expressions for the  regions 1 and 
2 are in  fact  identical  except for the electrical characteristics 
which appear in the propagation constants and in the multipli- 
cation  constants. For an efficient numerical algorithm devel- 
opment  and to save computer time, same subroutines are 
Simultaneously  utilized for calculating region 1 and region 2 
integral terms which  principally  make  up various matrix 
elements. 

To obtain  the electric and  the  magnetic current distributions 
one  can either directly invert the matrix equation (20), or the 
matrix  equation  (20) can be r k a n g e d  so as to eliminate one 
unknown, and resubstituted back to obtain the second  un- 
known. This takes less computer time  than directly inverting a 
large composite matrix equation. Another possible method 
seems to be application of the iterative methods [lo]. Detail 
studies are still underway in this specific area to utilize 
iterative schemes. 

VIII. NUMERICAL  RESULTS-HOMOGENEOUS DIELECTRIC SPHERE 
AND FINITE CIRCULAR CYLINDER 

To demonstrate applicability of the above formulation  and 
to validate computer algorithms, numerical results are pre- 
sented for the case of a homogeneous dielectric sphere and for 
the case of a homogeneous dielectric finite circular cylinder 
located  in free space and  excited  by a plane wave. 

The surface of the sphere is first modeled  in terms of 
triangles having arbitrary edges and vertices arranged to depict 
the shape of a sphere. Fig. 5(a) shows the plan  view (top 
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Fig. 5. (a) Triangular surface patching for top half of sphere  (plan  view). (b) 
Equivalent surface  electric  current distribution on a  homogeneous dielectric 
sphere.  (c)  Equivalent surface magnetic current distribution on a  homoge- 
neous  dielectric sphere. 

2.0 r 

8 

Fig. 6 .  Bistatic radar cross section of homogeneous dielectric  sphere. 

hemisphere only) of the triangular scheme adopted. There are 
in  total 60 triangular faces consisting of 90 edges at which the 
unknown normal components 03 the electric and  magnetic 
currents solved. The matrix size adopted to check the accuracy 
is 180 X 180. The electrical size of the sphere is kla = 1 
where the free space propagation constant kl = 2~//xo and the 
radius of the sphere- is a. The relative dielectric constant  of the 
sphere is E ,  = 4. The sphere is located in free space and is 
excited by an axial incident plane wave. In Figs. 5(b) and 
5(c) are shown the induced electric and the induced  magnetic 
currents on the surface of the sphere along a circumferential 
arc in xz plane. Along the arc, there are two components  of the 
electric currents Jt and JQ; and  magnetic currents M, and M4. 
The results of the induced electric currents are shown 
normalized  with  respect  incident  magnetic  field  and  similarly 
the induced magnetic currents are shown  normalized  with 
respect to incident electric field. The induced surface fields for 
a sphere problem can also be obtained by the eigenfunction 
analysis using spherical harmonic functions. The results of this’ 
approach are also shown in Figs. 513) and 5(c). The CFE/ 
MM solution  based on triangular surface patching has good 
agreement with the eigenfunction series solution [2]. 

Fig. 6 gives the computed bistatic radar cross section for the 
homogeneous dielectric sphere based on the  equivalent surface 
electric and magnetic currents. The radar cross section results 
are shown as a function of 0 in the vertical plane cut 4 = 0 for 
two different angles of incidence; one along  axial excitation 
and  the other along broad excitation. The results check very 
well  with  the results based on body  of  revolution treatment [SI. 

Figs. 7(a) and 7 0 )  show the distribution of surface electric 
and magnetic currents for the case of  homogeneous dielectric 
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Fig. 7. (a) Electric  surface  current distribution on a dielectric  finite circular 
cylinder  due  to  axially  incident  plane  wave. (b) Magnetic surface current 
distribution on a  dielectric finite circular cylinder  due to axially  incident 
plane  wave. 

finite circular cylinder located  in free space and externally 
excited by a plane wave. The results  of the surface induced 
currents agree very well  with  those  obtained  based on the body 
of revolution [ 191 treatment. 

E. CONCLUSION 
Based on the method of moments  technique and the 

combined  field integral equations, this paper reported recent 
developments  and extensions to analyze electromagnetic scat- 
tering by arbitrary shaped three dimensional  homogeneous 
lossy  and lossless objects. Similar to the case of conducting 
objects, the arbitrary geometrical shapes  have  been  modeled 
using surface triangular patches. Efficient  and  simple  numeri- 
cal algorithms are also developed; and  validations  reported 
here for two canonical dielectric scatterers namely  a sphere 
and  a finite circular cylinder. The numerical  technique 
discussed here can be conveniently  extended to analyze 
electromagnetic scattering by objects which are homogeneous, 
lossy, but  having diagonizable tensor material characteristics 
[ l q .  The results of this study  and their verifications will be 
reported in an  upcoming paper. 
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