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Accuracy of the Born approximation in calculating
the scattering coefficient of biological

continuous random media
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A rigorous error analysis is presented for the scattering coefficient of biological random continuous media in
the Born (or single-scattering) approximation. The analysis is done in two dimensions (2-D) for simplicity of
numerical computation. Scattering coefficients of various tissue-like random media are numerically calcu-
lated via statistical finite-difference-time-domain analysis. The results are then checked against analytical
formulas for the scattering coefficient in the Born approximation. The validity ranges for the correlation
length and the refractive index fluctuation strength of the medium are clearly identified. These 2-D results
show promise for future 3-D investigations. © 2009 Optical Society of America
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The scattering coefficient ��s� of a random medium is
defined as the total scattered power per unit volume
of the medium under unit incident parallel-beam
light intensity. It is a commonly used theoretical and
experimental parameter in many scattering prob-
lems in physics and engineering. It is well known
that �s plays an important role in the multiple-
scattering theory for discrete random media [1,2].
For continuous random media, the theoretical tools
are relatively less developed. Nevertheless, for
weakly scattering media such as biological tissue, a
perturbation (or Born) expansion of the scattered
wave proves to be valuable. Retaining only the first
term in this expansion is usually termed the Born (or
single-scattering) approximation [3]. In this approxi-
mation, the scattering coefficient �s as defined above
becomes an essential element in the multiple-
scattering theory of a continuous random medium
[4,5]. It is important to keep in mind, however, that
this approximation is valid only for weak refractive-
index fluctuations. For stronger fluctuations, the
very definition of �s (scattered power per unit vol-
ume) gradually loses its meaning, as other wave ef-
fects such as localization take effect [4]. In this Let-
ter, we investigate the accuracy of the Born
approximation in calculating �s in continuous ran-
dom media with refractive index (RI) properties re-
sembling biological tissue. Although we consider 2-D
random media for ease of numerical computation, our
results should be valuable for inferring approximate
criteria for the full 3-D case, for which a theoretical
model was presented in [6].

For the assessment of theoretical approximations,
one needs a rigorous numerical solution to the light-
scattering problem. One of these numerical tech-
niques is the finite-difference time-domain (FDTD)
method [7]. This method relies on the numerical so-
lution of full-vector Maxwell’s equations directly in

the time domain, thereby providing a broadband re-
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sponse in a single simulation. The tremendous effi-
ciency offered by FDTD in simulating very complex
media with arbitrary refractive index distributions is
an attractive feature for studying biological tissues.
Recently, it has become possible to obtain more de-
tailed and accurate data on the RI distributions of
biological tissue [8–10]. The information thus gath-
ered can be used to construct a random model for the
biological medium and fed as an input to such elec-
tromagnetic modeling tools as FDTD.

In the following, we first derive analytical equa-
tions for the scattering coefficient �s in the Born ap-
proximation. We then numerically calculate the scat-
tering coefficient �s of various 2-D continuous
random media using statistical FDTD analysis and
compare the results with theoretical values. We de-
fine a meaningful measure of the “error” in the scat-
tering coefficient and plot this error for a range of
random medium parameters.

The normalized RI fluctuation of a medium is de-
fined by �n��̄�= �n��̄�−n0� /n0, where n0 is the average
RI of the medium. In this Letter, we consider a spe-
cific random (or stochastic) model for the normalized
RI fluctuation and discuss the implications of this
model in detail. In this model, the normalized RI fluc-
tuation is represented by a 2-D statistically homoge-
neous Gaussian random field with correlation

Bn���� = �n
2

��

lc
K1���

lc
� , �1�

in which �� is the distance between two points, �n is
the fluctuation strength, lc is the correlation length,
and K1� · � is the modified Bessel function of second
kind and order 1. The specific choice for the correla-
tion function is of comparatively little concern, be-
cause the accuracy of the Born approximation is more
influenced by lc and �n than by the exact shape of the

correlation function.
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The random sample with correlation (1) is illumi-
nated by a plane wave from direction k̂i, and the ra-
diated scattered field is observed at direction k̂o. If
the electric-field polarization vector êi of the plane
wave lies along the axis of invariance, the excitation
is TM, or scalar. Otherwise, the excitation is TE, or
vector. In 3-D space, scattering parameters such as
the total or differential scattering cross section are
defined per unit volume [1]. Since we are concerned
with a 2-D geometry, the same parameters are de-
fined per unit area. The differential scattering cross
section per unit area ��k̂o , k̂i� is defined as [1]

��k̂o,k̂i� = ��f�k̂o,k̂i��2�/S, �2�

in which f�k̂o , k̂i� is the scattered wave amplitude at
direction k̂o, S is the differential surface area, and
the mean �·� is taken over the ensemble of differential
areas with correlation (1). Using methods similar to
those in [1], a closed-form expression for ��k̂o , k̂i� can
be obtained in the Born approximation. For TM (sca-
lar) excitation,

�TM�k̂o,k̂i� =
2�n

2k3lc
2

�1 + 4k2lc
2 sin2��/2��2

, �3�

in which k= �� /c�n0 is the wavenumber correspond-
ing to the average RI of the medium and � is the
angle between k̂i and k̂o. The corresponding result for
TE excitation is simply Eq. (3) multiplied by a dipole
factor cos2 �. Finally, the scattering coefficient �s is
found by integrating the differential scattering cross
section per unit area ��k̂o , k̂i� over 0���2�,

�sTM
=

4�n
2k3lc

2�1 + 2k2lc
2��

�1 + 4k2lc
2�3/2

, �4�

�sTE
= �n

2�− 1 − 4k4lc
4 + 8k6lc

6 + 	1 + 4k2lc
2 + 2k2lc

2�− 3

+ 2	1 + 4k2lc
2�
�/klc

2�1 + 4k2lc
2�3/2. �5�

In the following, we test the accuracy of Eqs. (4) and
(5) in tissuelike 2-D media by comparison with rigor-
ous numerical results obtained using statistical
FDTD analysis.

For the statistical FDTD analysis of scattering
from a random medium, averaging is needed over
many samples with the correlation specified in Eq.
(1). The random samples are generated using an
inverse-Fourier-transform approach, in which the
2-D spatial Fourier transform of the random medium
is generated first and inverse transformed to spatial
domain for the final result. The method is based on a
straightforward generalization of the principle that
the Fourier transform of a stationary random process
is nonstationary white noise with variance equal to
the power-spectral density of the random process.
Grayscale images of some random samples generated
using this method can be found in [11].

The RI distribution of biological media has been

the focus of many experimental investigations. Val-
ues ranging between 1.35 and 1.38 are encountered
in the literature for the average RI (or the cytoplasm
RI), n0, of biological cells [8,10]. Fluctuation
strengths ��n� ranging from 0.007 to 0.022 are also
reported in the mentioned studies. In the following
examples, we use the common value of n0=1.38 for
the average RI. We consider different values of �n
and lc, and calculate the error in the scattering coef-
ficient predicted by Eqs. (4) and (5).

The FDTD model applied in this Letter uses the
same techniques as described in [7]. This yields a
computed differential scattering cross section for ca-
nonical scatterers within ±1 dB of the exact solution
for all scattering angles over a dynamic range exceed-
ing 50 dB. Specifically, the FDTD simulations are
carried out as follows. A differential area of dimen-
sions L	L is placed in the center of a 2-D FDTD grid
with grid spacing �=13.3 nm and time step �t
=0.98�� /c� /	2. The grid is terminated by a convolu-
tion perfectly matched layer [7] of thickness 266 nm.
A plane wave with TE polarization is sourced into the
FDTD grid using the total-field/scattered-field ap-
proach [7]. The results for TM incidence are almost
identical and are omitted for brevity. The electric
field of the plane wave is a Gaussian-modulated sinu-
soidal pulse in time, the spectral amplitude of which
is above −20 dB of its maximum between 400 nm and
700 nm in vacuum, which corresponds to the visible
range of the electromagnetic spectrum. The radiated
far field obtained via the near-field-to-far-field trans-
former [7] is normalized by the spectrum of the plane
wave, numerically integrated over all angles, divided
by the differential area, and finally averaged over
200 realizations of the random medium to obtain the
scattering coefficient �sTE

.
In Fig. 1, the normalized scattering coefficient �s /k

is given for two different klc values and a range of
normalized differential-area dimensions, kL. In Figs.
1(a) and 1(b), the correlation lengths are lc=0.3
, and
lc=3.45
, respectively, which correspond to cellular-
scale fluctuations in the visible-light spectrum. The
value of �n is 0.02 for both figures. The solid horizon-
tal line denotes the �s value predicted by the Born
approximation [Eqs. (4) and (5)], and the dashed line
denotes the Rayleigh limit [12], where the scattering
coefficient is proportional to the sample area: �s
=�n

2k3L2 /2. It is seen that the Born approximation is
inaccurate at the two extremes of kL: For small kL,
there is not enough spatial averaging for the correla-
tion (1) to take effect. For large kL, multiple scatter-
ing effects become dominant. This latter case is sig-
nified by decreased mean-free path ls, which is
customarily defined in transport theory as ls=1/�s.
When ls becomes comparable with the sample dimen-
sion L, the Born approximation becomes less accu-
rate, as seen in the large-kL regions of Figs. 1(a) and
1(b). In summary, the Born approximation is valid for
sample sizes that are larger than lc (for adequate
spatial averaging) and smaller than ls (for single
scattering.) If no such range for L exists [as in Fig.
1(b)], the Born approximation ceases to be valid. The

sample size can thus be eliminated from the validity
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criterion by writing lc� ls=1/�s. Using Eqs. (4) and
(5), this can be rewritten as

�n
2�klc�3 � 1 for klc � 1

�n
2�klc�2 � 1 for klc � 1

. �6�

As a heuristic measure of the error in the Born ap-
proximation, we consider the minimum percentage
difference between the FDTD result and the Born ap-
proximation in Fig. 1. A third-order polynomial is fit-
ted to the FDTD plot to reduce the error caused by
spurious minima. In reference to expression (6), and
considering the fact that klc1 is frequently satisfied
in biological tissue, the error is plotted with respect
to �nklc in Fig. 2. The curves are seen to coincide for
different values of �n and klc, which lends more sup-
port to the criterion

�n
2�klc�2 � 1. �7�

An immediate consequence of Fig. 2 is that a maxi-
mum 20% error can be attained for the scattering co-
efficient in the Born approximation if �nklc�0.1.

Extrapolating the above method to 3-D, it follows
from [6] that the corresponding criterion for 3-D is
�n

2�klc�2�1, which is the same as expression (7) for

Fig. 1. Normalized TE scattering coefficient �sTE
/k as a

function of the normalized sample dimension kL: (a) small-
error case, (b) large-error case.
2-D.
In this Letter, we have presented a rigorous assess-
ment of the Born approximation in calculating the
scattering coefficient of biological random media us-
ing the FDTD method, which is a full-vector electro-
magnetic simulation tool widely used in the scatter-
ing analysis of complex media. A validity condition
�n

2�klc�2�1 was derived and numerically justified for
the specific correlation function (1). Although the re-
sults are for 2-D random media, they provide valu-
able information regarding the range of validity of
the Born approximation in a general 3-D setting,
which remains to be investigated in a future study.
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