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Abstract: A straightforward procedure is described for accurately creating
an incident focused light pulse in the 3-D finite-difference time-domain
(FDTD) electromagnetic simulation of the image space of an aplanatic
converging lens. In this procedure, the focused light pulse is approximated
by a finite sum of plane waves, and each plane wave is introduced into
the FDTD simulation grid using the total-field/scattered-field (TF/SF)
approach. The accuracy of our results is demonstrated by comparison with
exact theoretical formulas.
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1. Introduction

The finite-difference time-domain method (or simply FDTD) is a numerical electromagnetic
simulation technique that is commonly used in a wide variety of applications. The main advan-
tage of FDTD is its ability to solve Maxwell’s equations directly in the time domain, thereby
providing accurate broadband solutions to electromagnetic wave propagation and scattering
problems. In this method, the electric and magnetic fields are placed in discrete positions in
space, and conventionally arranged in a 3-D rectangular mesh called the FDTD grid.The field
components are also evaluated at discrete instants in time. The staggered positioning of the
electric and magnetic fields in both space and time provides second-order accuracy, and allows
for an explicit leap-frogging scheme for obtaining the fields directly in time domain [1].

There are several situations where the analysis of a focused light pulse in the time domain
might convey more direct and useful information than that of a monochromatic focused light
beam. A straightforward example is the modeling of an ultrafast optical system that generates a
laser light pulse with duration comparable to the mean wavelength. This “ultrashort pulse” has
a broadband spectrum; and when focused by a converging lens, constitutes a direct example of
a focused light pulse. Another case in which a focused light pulse is of interest is the modeling
of a white-light optical illumination system, such as a regular bright-field microscope. The
broadband character of this system makes the focused light pulse an ideal tool for obtaining
information in a wide spectral range. Some promising experimental results obtained using a
spectroscopic microscopy technique for cancer research [2] has motivated our efforts toward
the FDTD modeling of a broadband imaging system, which produced the results in this paper.

FDTD has been successfully applied to the electromagnetic analysis of many optical systems
in which the effects of a nonzero wavelength are significant. The most important limiting factor
in the FDTD simulation of optical systems is the need to discretize the spatial domain by a
fraction of the smallest wavelength in the illumination or the smallest spatial feature in the
geometry. This usually limits the size of the FDTD simulation space to a small portion of the
optical system that is comparable in size to the wavelength of the light. In many cases, this
portion covers the area over which the most important interactions between light and matter
take place, such as the focal area of a lens. In this paper, we describe a technique that can be
applied to such a problem. Specifically, we show how to create an incident focused light pulse
in the FDTD simulation of the focal area of an aplanatic (aberration-free) converging lens. The
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geometry of this setting is illustrated in Fig. 1(a).
The method that we use to create the focused light pulse is known as the total-field/scattered-

field boundary (TF/SF) method. In this method, a special boundary is constructed in the FDTD
grid, and field corrections (or consistency conditions) [1] are applied on the field components
on the boundary to maintain a perpetual contrast between the fields on the interior (the total-
field region) and those on the exterior (the scattered-field region) of the boundary. The creation
of an incident field using this method is often referred to as injection, because the incident field
has the appearance of being injected into the total-field region as a result of the mentioned field
corrections. If no scatterer is present within a theoretically perfect TF/SF boundary, the incident
field is strictly confined within the boundary. If there are scatterers within the boundary, the field
inside the boundary is the total field, and the field outside the boundary is the scattered field.

Although the TF/SF method is theoretically capable of injecting any incident field, it is
mostly used to inject plane waves, owing to the simplicity of the required theory and implemen-
tation [1]. The TF/SF plane-wave source is now a standard feature in any commercial FDTD
software package. Therefore, it would be advantageous to express the electromagnetic field of
a focused light pulse as a linear combination of plane waves, for the problem of injecting a
focused light pulse then reduces to the well-studied problem of injecting a plane wave. Such
a linear decomposition is not only theoretically possible, but unique as well; and is explicitly
manifested in the plane-wave spectrum of the electromagnetic field, which is a 2-D integral
representation of the field in terms of plane waves [3, 4]. We will present the plane-wave de-
composition of the electric field in the image region of the lens in Section 3. The practical
concern in the implementation of this decomposition in FDTD is to approximate this plane-
wave spectrum by a finite collection of plane waves, each of which is to be introduced into the
FDTD grid by a TF/SF plane-wave source.

The rest of the paper is organized as follows. In Section 2, we present a review of the literature
on the problem. In Section 3, we describe the theoretical basis for our approach, and discuss its
relationship with previous studies. In Section 4, we apply the theoretical results to the FDTD
method, and elaborate on some implementation details. In Section 5, we present an example of
the mentioned FDTD implementation, and provide some field snapshots for the visualization
of the focusing mechanism. In Section 6, we demonstrate the validity and accuracy of our
results by comparison to exact theoretical formulas in the literature, and present a rigorous
error analysis. Finally, we summarize our work in Section 7.

2. History

There have been a number of studies on the FDTD simulation of the focal area of a converg-
ing lens; although a direct time-domain implementation of a focused pulse has not yet been
introduced. Some indirect approaches that utilize Gaussian beams with time profiles have been
developed [5, 6]. However, these approaches rely on the fact that the exponential beam profile
of a Gaussian beam at the focal plane is known a priori, and is frequency-independent. In the
focal area of a converging lens, however, the shape of the beam profile is usually frequency-
dependent, and not completely known in advance. It is determined by the properties of the
incident and focused wavefronts, and some additional factors pertaining to the diffraction of
the wavefront at the exit pupil. These have to be included as a whole in the solution for a
focused light pulse created by a converging lens.

A comprehensive theoretical account of the behavior of the electromagnetic fields around the
focus of an aplanatic converging lens has been given by Richards and Wolf [7]. They assume
that a linearly-polarized monochromatic plane wave is incident on a converging aplanatic lens,
and the resulting spherical wavefront satisfies the Kirchhoff boundary conditions at the circular
exit pupil. The electromagnetic field in the image space of the lens then follows from vector dif-
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fraction theory. Because their results are given for monochromatic excitation, they have formed
the basis for the time-harmonic FDTD simulation of a number of optical focusing systems,
where both the pure-scattered-field approach and a variation of the total-field/scattered-field
(TF/SF) approach has been employed for introducing the incident monochromatic focused
beam. In the pure-scattered-field approach [8–10], the vector diffraction integrals for the in-
cident focused light beam are evaluated numerically at each point within a 3-D volume in the
FDTD grid, and added to the fields at those points at each time step. This is the most straightfor-
ward way in which the results in [7] can be translated into FDTD modeling; however, this is also
the most computationally intensive. Some authors have preferred a simplified variation of the
TF/SF approach [11, 12], which requires that the vector diffraction integrals be calculated and
applied as field corrections only on a 2-D rectangular region over the focal area. Although less
computationally intensive, this method lacks some key advantages offered by the full TF/SF
method. First, the scattered fields can be observed only above the rectangular region, which
limits the use of the conventional near-field-to-far-field transformer (NFFFT) [1] because the
total-field region cannot be bounded by a closed surface. This might impose a severe limitation
on the FDTD modeling of some light scattering problems in which the conventional NFFFT
is a crucial element. Second, the planar rectangular region over which the corrections are ap-
plied cannot have an arbitrary lateral extent, because it needs to cover the waist of the incident
focused beam at that position.

The Gaussian focused beam has drawn considerable attention in the FDTD literature, ow-
ing to the simple analytical expressions for the time-harmonic fields around the focal re-
gion [4]. Due to this simplicity, the electromagnetic fields belonging to the time-harmonic
Gaussian beam can be easily computed and introduced into the FDTD grid using either the
pure-scattered-field approach [13–15] or the TF/SF approach [16–20]. However, the adoption
of a time-harmonic Gaussian beam suffers from the same disadvantages as those summarized
above for a pulsed Gaussian beam.

In this paper, we demonstrate a direct time-domain application of the results in [7] in the
context of FDTD modeling. We neither employ the simplistic Gaussian beam assumption, nor
incorporate any frequency-domain calculation followed by inverse Fourier transform. In this
regard, our results constitute the first FDTD implementation of a full TF/SF source for a light
pulse focused by a converging lens.

3. Theory

The geometry of the optical system and the simulation space is shown in Fig. 1(a). The origin
of the rectangular coordinates (x,y,z) is centered at the focal point F of the converging lens,
and the z axis is chosen so as to coincide with the optical axis of the system. The spherical
coordinates r̄ = (r,θ ,φ) are also defined with origin F as shown. (We use the overbar sign
for vectors, and the hat sign for unit vectors throughout the paper.) The refractive indices of
both the object and image spaces are assumed to be unity. An x̂-polarized pulsed plane wave
whose electric field is denoted by E i(t) in time is incident in the −z direction on the aplanatic
converging lens, which creates a perfectly spherical converging pulsed wavefront W with focus
F . The spherical wavefront W is diffracted by the circular aperture A that represents the exit
pupil of the lens system. The FDTD simulation space, denoted by S, comprises a region around
the focus F , which is in the far field of the pupil plane. The TF/SF boundary T , placed inside
S as shown in Fig. 1(a), injects the focused light pulse into the FDTD grid. This procedure will
be explained in more detail in Section 4. The time-domain electric and magnetic fields around
F are denoted by Ē(r̄,t) and H̄(r̄,t), respectively.

In Fig. 1(b), the passage of a typical incident ray AP through the converging lens is shown
in more detail. The electric field on the incident ray AP is polarized in the direction of the unit
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(a) (b)

Fig. 1. The geometry of the problem. (a) The optical system and the simulation space. (b)
The polarization of the electric field on an incident ray (AP) and the corresponding ray in
the image space after refraction through the lens (PF).

vector êi = x̂. Assuming that the converging wavefront W is perfectly spherical and geometrical
optics is valid [3,21], the electric field along the corresponding ray PF on the wavefront W can
be written as

Ēw(r̄ ′,t) = êw(θ ′,φ ′)
a(θ ′,φ ′,t + r ′/c)

r ′
, (1)

in which (θ ′,φ ′) are the angles of incidence of the ray PF, r̄ ′ = (r ′,θ ′,φ ′) denotes the coordi-
nates on PF , the unit vector êw(θ ′,φ ′) determines the polarization of the electric field on PF ,
and a(θ ′,φ ′,t) is the strength factor of the same ray [7]. In the realm of geometrical optics,
the polarization of the electric field êw(θ ′,φ ′) and the time waveform of the strength factor
a(θ ′,φ ′,t) do not vary along a ray, except a time advance by r ′/c in the latter. The attenuation
of the fields by the distance r ′ on the ray is a result of the intensity law in geometrical optics.

The relation between the waveforms E i(t) and a(θ ′,φ ′,t) is determined by the effect of
the converging lens on the incident plane wave. It can be shown from the intensity law of
geometrical optics that for a thin aplanatic lens [7],

a(θ ′,φ ′,t) = f cos
1
2 (θ ′)Ei(t) , (2)

in which f is the focal length of the lens. Furthermore, if the incidence angles at each surface
in the lens system are small, each ray stays on the same side of the meridional plane (the plane
containing the ray and the optical axis) during its passage from the lens system, and the angle
that the electric field vector on a ray makes with the meridional plane is unchanged by refraction
[7]. This is a very important result from the perspective of our derivation, since it furnishes a
very convenient way to evaluate the electric field polarization vector ê w(θ ′,φ ′). If we define
the polarization angle ψ(θ ′,φ ′) of a ray as the angle that the electric vector on this ray makes
with the meridional plane as shown in Fig. 1(b), it follows from the mentioned invariance of
polarization angles that ψ(θ ′,φ ′) is given by the simple expression

ψ(θ ′,φ ′) = φ ′ . (3)

This is because the polarization angle of the corresponding ray AP in the x̂-polarized incident
plane wave is equal to φ ′, as seen in Fig. 1(b). The simple formula (3) expresses a very impor-
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tant and convenient result that greatly facilitates the FDTD implementation, as will be seen in
Section 4.

The diffraction of the spherical wavefront W defined by (1) with (2)–(3) at the exit pupil A
is simplified considerably by the approximate Kirchhoff boundary condition [3], which asserts
that the total electric field at each point on the plane of A is equal to the unperturbed electric
field of the spherical wavefront W . The plane-wave spectral decomposition of the electric field
belonging to W on the exit pupil A, along with the Kirchhoff boundary condition on A, yields
the following solution for the electric field in the image region of the aplanatic lens [3, 7]:

Ē(r̄,t) =
1

2πc

∫ 2π

φ ′=0

∫ θmax

θ ′=0
êw(θ ′,φ ′) ȧ(θ ′,φ ′,t ′)sin(θ ′)dθ ′dφ ′

=
f

2πc

∫ 2π

φ ′=0

∫ θmax

θ ′=0
êw(θ ′,φ ′)Ėi(t ′)cos

1
2 (θ ′)sin(θ ′)dθ ′dφ ′ ,

(4)

in which (2) is used for the second equation. Here, the dot sign above a quantity denotes differ-
entiation in time, θmax is the half angular range of the aperture A [see Fig. 1(a)], t ′ = t + r̂ ′ · r̄/c
is the advanced (or retarded) time, and r̂ ′ is the unit vector in the direction of r̄ ′. The ex-
pression in (4) is merely the time-domain version of the equations (2.2) and (2.13) in [7],
with the frequency-domain factor (−ik) translated into the time-domain derivative operator
(1/c)d/dt. This is the reason for the appearance of the time derivative Ėi(t) in (4). A similar
time-differentiation effect has been documented in other studies [5,6] on Gaussian beam pulses.

The key observation here is that the expression (4) is a decomposition of the electric field in
the image region of the lens in terms of plane waves incident from a range of directions (θ ′,φ ′).
The plane wave from (θ ′,φ ′) has polarization êw(θ ′,φ ′), incidence vector k̂w(θ ′,φ ′) =−r̂ ′ [see
Fig. 1(b)], and infinitesimal amplitude waveform (referred to the origin r̄ = 0)

dE(0,t) =
sin(θ ′)dθ ′dφ ′

2πc
ȧ(θ ′,φ ′,t) =

f cos
1
2 (θ ′)sin(θ ′)dθ ′dφ ′

2πc
Ėi(t) . (5)

The exciting feature of this plane-wave decomposition from our point of view is the fact that it
is given directly in the time domain. This property permits the application of the decomposition
in (4) directly to FDTD analysis, as explained in the following section.

4. FDTD implementation

We had mentioned in Section 1 that, from the FDTD perspective, the most important advantage
of expressing the electric field as a superposition of plane waves as in (4) is the simplicity and
well-established nature of TF/SF plane-wave sources. However, we had also noted that some
degree of approximation is inescapable in the FDTD implementation of such a superposition,
because only a finite number of TF/SF plane-wave sources can be included in an FDTD simu-
lation. Therefore, the practical problem at hand is to approximate the integral in (4) accurately
by a finite collection of plane waves:

Ēd(r̄,t) =
f

2πc ∑
n,m

αnm êw(θ ′
n,φ

′
m) Ėi(t ′nm)cos

1
2 (θ ′

n)sin(θ ′
n) , n = 1 . . .N, m = 1 . . .M , (6)

in which 0 < θ ′
n < θmax, 0 < φ ′

m < 2π are the incidence angles of the plane waves, and
t ′nm = t + r̂ ′nm · r̄/c are the retarded times for these incidence angles. The amplitude factors
αnm can be viewed as the numerical integration (or quadrature) factors for the double integral
(4) in θ ′ and φ ′. Multidimensional quadrature problems are usually much harder than single-
dimensional ones, because of the additional complexities introduced by the shape of the domain
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Fig. 2. Quadrature positions for the two-dimensional numerical integral in (7), for N = 5,
M = 7. One-dimensional quadrature rules are used for both θ′ and φ ′, regarding the other
as constant.

and other factors [22]. Our double-quadrature problem is further complicated by the presence
of the additional parameters r̄ and t that determine the observation point and time, which mod-
ify the integrand of the double integral. If the waveform Ėi(t) is an oscillating function (as is
the case for sine-modulated signals, for instance) the integrand also becomes oscillatory for
large |r̄| (see the definition of t ′nm above), which introduces an additional difficulty. Because of
these complexities, developing a specific strategy for approximating this double integral with
controlled accuracy seems to be a challenging task. It might be a topic for future study to de-
velop better quadrature schemes suited to this particular integral, but here we adopt a simpler,
more heuristic approach to the problem. Specifically, we make use of the fact that the region of
integration in (4) is rectangular, and perform one-dimensional quadratures along both θ ′ and φ ′
dimensions. In other words, we regard the θ ′ integral in (4) for fixed φ ′ as a one-dimensional
integral (and vice versa), and utilize well-known one-dimensional quadrature rules for each of
these integrals:

Ēd(r̄,t) =
f

2πc ∑
m

bm ∑
n

an êw(θ ′
n,φ

′
m) Ėi(t ′nm)cos

1
2 (θ ′

n)sin(θ ′
n) , n = 1 . . .N, m = 1 . . .M ,

(7)
where (θ ′

n,an) and (φ ′
m,bm) are now regarded separately as one-dimensional quadrature posi-

tions and factors in their respective regions 0 < θ ′
n < θmax and 0 < φ ′

m < 2π . This method has
the advantage of simplicity, but lacks global optimality in the two-dimensional (θ ′,φ ′) region.

In Fig. 2, an example of this quadrature scheme is presented for N = 5, M = 7. The incidence
angles θ ′

n, φ ′
m are determined by the specific quadrature rules used for each one-dimensional

integral. In the following, we consider two prevalent one-dimensional quadrature schemes,
namely, the extended midpoint and Gauss-Legendre quadrature rules [22]. In the extended
midpoint quadrature rule, the incidence angles θ ′

n, φ ′
m are equally-spaced in their respective

intervals, and the amplitude factors an, bm are simply the angular spacing widths:

θ ′
n = (n−1/2)θmax/N , n = 1 . . .N

φ ′
m = (m−1/2)2π/M , m = 1 . . .M

an = θmax/N ,

bm = 2π/M .

(8)

The Gauss-Legendre quadrature rule uses a more sophisticated algorithm for computing the
incidence angles θ ′

n, φ ′
m and the amplitude factors an, bm. The purpose of the algorithm is to
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render the integral exact when the integrand is a polynomial of order 2N − 1 or 2M − 1. The
algorithm is usually carried out for the standard interval [−1,1], and the results are then scaled
to the desired interval. Computational routines for implementing the Gauss-Legendre quadra-
ture rule are available both in print and online [22,23]. Once the quadrature points and weights
x j, wj for the standart interval [−1,1] are found, they can be scaled to give the incidence angles
θ ′

n, φ ′
m and the amplitude factors an, bm for our original sum (7):

θ ′
n = (xn + 1)θmax/2 , n = 1 . . .N

φ ′
m = (xm + 1)π , m = 1 . . .M

an = wn θmax/2 , n = 1 . . .N

bm = wm π , m = 1 . . .M

(9)

In the example presented in the next section, we use the Gauss-Legendre quadrature rule for
both sums in (7), and demonstrate its advantages over the extended midpoint rule by an error
analysis in Section 6.

It is crucial to note that the injection of N ×M plane waves into the FDTD grid is done in
a single FDTD run. The linear character of the TF/SF correction procedure allows consecutive
application of N ×M TF/SF correction operations for N ×M different plane waves in each
main-grid time step. Therefore, the computational intensity involved in the TF/SF formulation
is increased by a factor of N ×M. The caveat is that this does not mean that the entire FDTD
computational load goes up by the same amount. It is only the computational load resulting
from the field-correction operations on the TF/SF boundary that increase by this factor. The
percentage increase in the entire FDTD computational load due to this procedure gets smaller
as the number of field components on the TF/SF boundary becomes less significant compared
to the total number of the field components in the entire FDTD grid. Specifically, this happens
when the average dimension d (in grid cells) of the FDTD grid is increased. Even if the average
dimension of the TF/SF boundary is also kept proportional to d, the surface area of the boundary
increases by d2, whereas the volume of the entire grid increases by d 3. The resulting ratio 1/d
between the number of field components on the boundary and in the entire grid still decreases as
d is increased. In conclusion, it can be stated that the relative efficiency of the TF/SF focused-
pulse source increases with increased grid size, for a fixed number of plane waves in (7).

It is worthwhile to mention in passing that the above linear combination operation is also
valid in the presence of a nonlinear scatterer inside the TF/SF boundary, since it is not the
scattered fields resulting from individual incident plane waves but the incident plane waves
themselves that are being added in the above TF/SF formulation. The main grid only sees the
focused pulse as the incident field, which is constructed as a linear combination of plane waves.
The nonlinearity of the scattered field resulting from the incident focused pulse has no effect
on the initial computation of the incident focused pulse, which is described here.

It should be emphasized that the time waveform Ėi(t) in (7) is referenced to the origin r̄ = 0,
namely, the focus F . However, TF/SF plane-wave sources are usually constructed such that the
time waveform of the plane wave is referenced to one of the corners of the TF/SF boundary.
Therefore, the plane waves should be advanced in time carefully to satisfy (5). In doing so, it is
important to remember the velocity anisotropy property of the FDTD grid, especially for large
grids where it might introduce a significant delay in the desired waveform. The effects of these
technical details are discussed more quantitatively in Section 6.

The polarization of each plane wave in (7) can be easily determined using (3). The advantage
of this vectorial view as opposed to the detailed consideration of all the field components (as
in the formulas (2.26)–(2.27) in [7]) can be explained as follows. In many TF/SF plane-wave
source implementations, the polarization of the electric field is specified by some kind of polar-
ization angle that the electric vector makes with a reference plane that includes the incident ray.
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Since the z axis is the optical axis of our lens system, it would make sense to include this axis
in the reference plane of the TF/SF plane-wave source. With this definition, the reference plane
becomes identical to the meridional plane of the incident ray (see Section 3), and the definition
of the polarization angle ψ(θ ′,φ ′) in (3) can be used directly in the TF/SF plane-wave source
implementation.

5. Example

In this section, we consider an example that demonstrates the functionality and accuracy of
the proposed technique for injecting a focused light pulse into an FDTD grid. In our example
geometry [see Fig. 1(a)], the focal length of the lens is f = 10 mm, and θ max = 23.58◦, which
corresponds to a numerical aperture (N.A.) of sinθ max = 0.4. The electric field of the plane
wave incident on the lens is polarized in the x̂ direction, and is a unit-amplitude sine-modulated
Gaussian pulse in time:

Ei(t) = exp(−((t − t0)/τ)2/2)sin(2π f0(t − t0)) , (10)

with τ = 3 fs, f0 = 5.889×1014 Hz, and t0 = 13τ . The amplitude of the wavelength spectrum
of this broadband pulse is within −40dB of its maximum between 400 nm and 700 nm, which
corresponds to the visible range of the electromagnetic spectrum. As discussed in Section 1,
this pulse can either represent the actual physical excitation as in the case of ultrashort pulses,
or can be used as an auxiliary tool for analyzing the broadband behavior of the system as in the
case of broadband illumination.

The boundary of the FDTD grid used for our example simulation is represented by the solid
rectangle S in Fig. 1(a). The TF/SF boundary T , shown in Fig. 1(a) as the dashed rectangle, is
1μm from the FDTD grid boundary S. The FDTD simulation parameters are grid size 10μm
×10μm ×12μm, grid spacing Δx = Δy = Δz = Δ = 20nm (resulting in a 500× 500× 600
grid), and time step Δt = (0.98/

√
3)Δ/c. The computation domain is not truncated by any

absorbing boundary, since the TF/SF boundary T contains the incident field to an accuracy
greater than that of our example. The approximate electric field in (7) is constructed using
324 plane waves, with N = 9, M = 36. The plane wave component incident from direction
(θ ′

n,φ ′
m) has polarization êw(θ ′

n,φ ′
m) and amplitude anbm( f/2πc)cos1/2(θ ′

n)sin(θ ′
n)Ėi(t) where

Ėi(t) is the time derivative of the sine-modulated Gaussian pulse above. The incidence angles
(θ ′

n,φ ′
m) and the quadrature factors an, bm are determined by the preferred quadrature rule for

the numerical integral (7). An error analysis of different quadrature rules will be presented
shortly; but we first assume that both the θ ′ and φ ′ sums in (7) are evaluated using the Gauss-
Legendre quadrature rule (see Section 4.) Several field snapshots from the FDTD simulation
taken between time instants t = 7τ and 17τ with 2τ intervals are shown in Fig. 3 (Movie 1), in
which the x̂ component of the electric field on the yz plane is plotted in dB on a gray scale, with
black representing −40 dB and white representing 0 dB. The electric field is normalized by its
maximum Emax

x = Ex(0,t0) at the focus, given by [see (12)–(13) in the following section]

Emax
x = (2π f0)

f
2c

[
2
3

(
1− cosθ 3/2

max

)
+

2
5

(
1− cosθ 5/2

max

)]
. (11)

6. Error analysis

In this section, we present an error analysis of the example FDTD simulation in the previous
section. We consider the x̂ component of the electric field, for which exact theoretical formulas
are given by Richards&Wolf [7] for time-harmonic dependence:

Ẽx(r̄) = −iω
f

2c
(I0 + I2 cos2φ) Ẽi , (12)
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Fig. 3. Grayscale plots of the x̂ component of the electric field (in dB) belonging to the
focused light pulse evaluated in the x = 0 plane at different time instants. (a) – (f) t = 7τ to
t = 17τ in 2τ intervals. (Media 1)

where the tilde sign (∼) over the variables denotes time-harmonic quantities with time depen-
dence exp(iωt), and the auxiliary variables I0 and I2 are given by

I0(kr,θ ) =
∫ θmax

0
cos

1
2 θ ′ sinθ ′(1+ cosθ ′)J0(kr sinθ ′ sinθ )exp(ikr cosθ ′ cosθ )dθ ′ , (13)

I2(kr,θ ) =
∫ θmax

0
cos

1
2 θ ′ sinθ ′(1− cosθ ′)J2(kr sinθ ′ sinθ )exp(ikr cosθ ′ cosθ )dθ ′ , (14)

in which J0(·) and J2(·) are the Bessel functions of the first kind and order zero and two,
respectively.

For the purposes of error analysis, we need to attain a high degree of accuracy in computing
the θ ′ integrals in (13)–(14) numerically. This can be achieved by using a more sophisticated
but time-consuming integration method, e.g., the adaptive Gauss-Kronrod quadrature rule [22].
Since these integrals are for time-harmonic dependence, inverse temporal Fourier transforma-
tion into the time domain is also necessary for comparison with the FDTD results. It should be
emphasized strongly that the aforementioned direct steps cannot be performed efficiently for
practical use in FDTD, but they provide a highly-accurate reference for the error analysis of our
approximate method.

The geometry of our error analysis is shown in Fig. 4(a). We consider the x̂ component of
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Fig. 4. Normalized maximum dB-error for the numerical integral (7) describing the electric
field belonging to the focused light pulse. The Gauss-Legendre quadrature rule is used for
the numerical integral, and the error (15) is normalized globally by Emax

x . (a) The geometry
of the error analysis. The elliptical focal spot [see Fig. 3(d)] is denoted by the gray ellipse.
The error is calculated along line segments lx, ly, lz, and lxyz extending from the focus F
in different directions. (b) Normalized maximum dB-error ε(r̄) (15) in the x̂ component of
the electric field on the line segments lx, ly, lz, and lxyz.

the electric field in the FDTD simulation described in Section 5, recorded along line segments
lx, ly, lz, and lxyz stemming from the focus F . If no x̂ component exists at the exact position on
the line segment, we take the average of the two nearest x̂ components.

We define the normalized maximum dB-error ε(r̄) in the electric field waveform at a point r̄
in space as follows:

ε(r̄) = 20 log10

{
max|EFDTD

x (r̄,t)−E th
x (r̄,t)|

E ref
x

}
, (15)

where E th
x (r̄,t) and EFDTD

x (r̄,t) are the time waveforms for the x̂ component of the electric field
obtained from theory (12)–(14) and FDTD simulation, respectively, and E ref

x is the field value
by which the error is normalized. Depending on the value of E ref

x , we define two kinds of error
normalization. In global normalization, we define E ref

x as the maximum field value at the focus
F , namely, E ref

x = Emax
x in (11). In local normalization, we use the local maximum theoretical

field value to normalize the error, namely, E ref
x = max|E th

x (r̄,t)|.
In Fig. 4(b), we present the normalized maximum dB-error ε(r̄) on the line segments l x

(marked ◦), ly (marked ∗), lz (marked ·), lxyz (marked ×) with respect to the distance d from the
focus. For this data set, the Gauss-Legendre quadrature rule has been used in both the θ ′ and φ ′
sums, and the error has been normalized globally. It is seen that the normalized maximum error
is below−35dB for the entire range. It is also clear from Fig. 4(b) that the normalized maximum
error is larger on lz, which lies along the ẑ axis. We can explain this easily by inspecting Fig. 3:
The energy of the focused pulse is concentrated mostly within an ellipsoidal region around the
focus F with its major axis parallel to the ẑ direction. Because of the large amplitude of E th

x (r̄,t)
and EFDTD

x (r̄,t) in (15), the error in this region is also comparatively larger.
It is also of interest to investigate the impact of the quadrature rule and the error normalization

on the error ε(r̄) in (15). One would expect a priori that the error in the numerical integration
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Fig. 5. The effects of quadrature schemes and auxiliary FDTD techniques on the error
performance of the the numerical integral (7). The normalized maximum dB-error ε(r̄)
in (15) is calculated on the line segment lxyz. (a) Using the extended-midpoint (E-M) and
Gauss-Legendre (G-L) quadrature rules for the θ ′ integral, with both local and global error
normalization in (15). (b) With and without grid-velocity correction for the 4th dataset in
(a).

depend on both quadrature rules used in the θ ′ and φ ′ sums in (7). However, we have observed
in our numerical experiments that only the quadrature rule used in the θ ′ has an appreciable im-
pact on the integration error. Therefore, we only investigate the effects of different θ ′ quadrature
rules in the following, and adopt the Gauss-Legendre quadrature rule for all the φ ′ integrals. In
Fig. 5(a), the normalized maximum dB-error ε(r̄) is plotted on the line segment l xyz [see Fig.
4(a)] for the example simulation in Section 5, using different quadrature rules for the θ ′ sum
in (7) and different error normalizations in (15). The error for the Gauss-Legendre (G-L) and
extended-midpoint (E-M) quadrature rules are denoted by ∗ and ◦-lines, and the locally and
globally-normalized errors are denoted by dashed and solid lines, respectively.

One obvious fact apparent in Fig. 5(a) is that the Gauss-Legendre quadrature rule yields bet-
ter performance throughout most of the observed distance range. The small advantage of the
extended midpoint quadrature rule over the Gauss-Legendre quadrature rule near the focus can
be attributed to the fact that high order does not always translate to high accuracy in Gauss-
Legendre quadrature [22]. However, as the integrands become more oscillatory as the obser-
vation point moves away from the focus, the Gauss-Legendre quadrature rule starts showing
its superior qualities. Furthermore, the Gauss-Legendre quadrature rule offers −30dB maxi-
mum normalized error even with local normalization, unlike the extended-midpoint quadrature
rule. This is an important achievement, since local normalization tends to overemphasize the
errors in regions where the local field amplitude is small compared to the global maximum at
the focus. In overall, it is safe to conclude that the Gauss-Legendre quadrature rule is gener-
ally preferable to the extended midpoint quadrature rule, considering the fact that the choice
of neither method introduces any extra computational burden on the FDTD algorithm. Once
the incidence angles (θ ′

n,φ ′
m) and the quadrature factors (an,bm) are determined, the rest of the

FDTD simulation takes exactly the same amount of time for both quadrature rules.
There is another very important factor in the error performance of the numerical integral

in (7), and it is completely unrelated to the preferred quadrature rule. It is connected with the
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inherent velocity anisotropy of the FDTD grid [1], which is responsible for the dependence of
the propagation velocity ṽ p(θ ′

n,φ ′
m) on the direction of incidence and the excitation frequency.

Velocity anisotropy becomes a more serious problem for larger FDTD grids, such as the one
considered in Section 5. This can pose a serious problem for the FDTD implementation of the
plane-wave decomposition in (7), since it may cause considerable differences between the ex-
pected waveform E d

x (r̄,t) and the observed waveform E FDTD
x (r̄,t) at a point. This problem was

hinted at in Section 4, where velocity anisotropy was named as a potential source of error. The
effects of velocity anisotropy can be lessened by using ṽ p(θ ′

n,φ ′
m) instead of c while calculat-

ing propagation delays; see discussion regarding the TF/SF implementation in Section 4. For a
broadband excitation, the center frequency in the excitation waveform can be used to calculate
ṽp(θ ′

n,φ ′
m). For the error analysis presented so far, this grid-velocity correction technique has

been used. It is worthwhile to quantify the improvement that this correction offers in reducing
the error. For this purpose, we revisit the case in Fig. 5(a) for Gauss-Legendre quadrature rule
and global error normalization (4th dataset in legend), and investigate the effect of grid veloc-
ity correction on the error. In Fig. 5(b), the normalized error reproduced from Fig. 5(a) with
grid-velocity correction is denoted by the ∗-line, and the normalized error recalculated without
grid-velocity correction is denoted by the ◦-line. It is seen that grid-velocity correction offers
an improvement of up to ∼15dB. This proves that grid-velocity correction is a very crucial
component of the TF/SF-based implementation of the focused light pulse, especially for a large
grid such as the one considered in Section 5 (500×500×600 grid with ∼20 cells per smallest
wavelength).

7. Conclusion

In this paper, we introduced a new technique for creating an incident focused light pulse for the
finite-difference time-domain (FDTD) numerical analysis of the image space of an aberration-
free lens. The theory of the technique was based on the time-domain version of earlier results
by Richards&Wolf [7], and applied to the FDTD method using the total-field/scattered-field
(TF/SF) formalism. This was achieved by interpreting the expression (2.26) in [7] for the image
field as a plane-wave spectrum, and approximating this spectrum by a finite collection of plane
waves. The error analysis in Section 6 confirmed our assertion that the time-domain method
introduced in Sections 3–4 for creating a focused light pulse in FDTD offers a fairly accurate
and efficient alternative to the brute-force calculation of the integrals in (12)–(14) followed by
inverse Fourier transformation into the time domain.

The mentioned error analysis revealed several important aspects of the numerical integral
(7). In Fig. 4(b), it was shown that the Gauss-Legendre quadrature rule provides reasonable
accuracy for a large grid [see Section 5], with 10 degrees per quadrature point in both θ ′ and
φ ′. A comparison of the Gauss-Legendre and extended midpoint quadrature rules was presented
in Fig. 5(a), and the general superiority of the former was established. Grid-velocity correction
was introduced for alleviating the effects of velocity anisotropy in the FDTD implementation
of our method, and was shown to play a vital role in reducing the errors due to spatial and
temporal discretization [see Fig. 5(b)].
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