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Scattering of Spatial Optical Solitons
by Subwavelength Air Holes

Jethro H. Greene and Allen Taflove, Fellow, IEEE

Abstract—Using the finite-difference time-domain method,
we model the propagation of spatial optical solitons having two
orthogonal electric field vector components, and the scattering
of such solitons by compact subwavelength air holes (i.e., abrupt
dielectric discontinuities in the direct paths of the solitons).
Our propagation and scattering studies assume a realistic glass
characterized by a three-pole Sellmeier linear dispersion, an
instantaneous Kerr nonlinearity, and a dispersive Raman nonlin-
earity. An unexpected spatial soliton scattering phenomenon is
observed: the coalescence of the scattered electromagnetic field
into a propagating lower-energy spatial soliton at a point many
tens of wavelengths beyond the scattering air hole. Overall, our
computational technique is general, and should permit future
investigations and design of devices exploiting spatial soliton
interactions in background media having submicrometer air holes
and dielectric and metal inclusions.

Index Terms—Finite-difference time-domain (FDTD), nonlinear
Schrödinger (NLS), unidirectional pulse propagation equation
(UPPE).

I. INTRODUCTION

THE integrable cubic nonlinear Schrödinger (NLS) equa-
tion is a proper model for temporal soliton propagation in

optical fibers, but can be inappropriate for spatial solitons, in
which much higher power is required [1]. Integrable models ap-
proximate physical systems, but it is often necessary to account
for the effects produced by the nonintegrability of the under-
lying nonlinear equations [1]. The generalized NLS equation
extends to more than cubic media, but cannot be solved using the
inverse scattering method, because the model is not integrable
[2]–[4]. Analysis of spatial solitons in non-Kerr media requires
a model more general than the cubic NLS equation [5], which
requires the paraxial approximation and neglects both the vector
nature of the electromagnetic field and polarization effects [2].

Recently, Kolesik et al. developed a unidirectional pulse
propagation equation (UPPE) model, which provides a transi-
tion between envelope-based models and Maxwell’s equations
[6]. UPPE models can incorporate both linear and nonlinear
polarizations, and have been used to model pulse propagation
with arbitrary polarizations over distances of tens of meters.
However, the UPPE model requires the absence of sharp optical
interfaces intersecting the direction of propagation [6], and
is therefore unable to model the interactions of beams with
subwavelength material inhomogeneities. Also, Ciattoni et
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al. derived a perfect optical soliton (POS) solution for spatial
soliton propagation in Kerr nonlinear materials from Maxwell’s
equations [7]. The POS solution does not require the paraxial
approximation, but cannot describe nonintegrable models.

The finite-difference time-domain (FDTD) method [8] po-
tentially models all of the vector components of the electro-
magnetic field at the space-time scale of the carrier oscillation,
while including all relevant higher-order effects [2]. Further-
more, there are no restrictions on sharp interfaces and the in-
teraction of beams with arbitrary geometries can be modeled.
We recently reported the general vector auxiliary differential
equation (GVADE) formulation of FDTD [9], a general method
which we believe to be the first technique to model electromag-
netic wave propagation with two or three orthogonal electric
field vector components in dispersive nonlinear materials, that
can be applied to any geometry.

In this letter, we validate the GVADE FDTD method with
two test-cases: a wide NLS equation solution that propagates
as a fundamental soliton, and the propagation of a narrow NLS
equation solution which periodically focuses and defocuses. We
then apply the GVADE FDTD method to study the propagation
of spatial optical solitons having two orthogonal electric field
vector components, and the scattering of such solitons by com-
pact subwavelength air holes. Our propagation and scattering
studies assume a realistic glass background material character-
ized by a three-pole Sellmeier linear dispersion, an instanta-
neous Kerr nonlinearity, and a dispersive Raman nonlinearity.
An unexpected soliton scattering phenomenon is observed: the
coalescence of the scattered electromagnetic field into a propa-
gating lower-energy spatial soliton at a point many tens of wave-
lengths beyond the air hole.

II. GENERAL VECTOR AUXILIARY DIFFERENTIAL

EQUATION FDTD METHOD

This section briefly summarizes recent progress in auxiliary
differential equation (ADE) techniques, which extend the
FDTD method to incorporate linear and nonlinear polarization
by time-stepping auxiliary differential equations synchronously
with Maxwell’s curl equations [8]. Reformulated ADE FDTD
methods have been reported which eliminate the need to solve
a system of equations at each time-step, where is the
number of poles of the chromatic dispersion [10], [11]. In
[9], we reported in detail the GVADE FDTD method, which
extends this technique to nonlinear optics problems where the
electric field has two or three orthogonal vector components and
validated the GVADE FDTD method for the case of temporal
soliton propagation. This was an advance over previous FDTD
Maxwell’s equations models of optical solitons [12], which
included only the nonlinear Kerr polarization, and described
only a single electric field vector component.
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Fig. 1. Simulation results showing jEj for a wide spatial soliton with field com-
ponents fE ;E ;H g in a glass characterized by a three-pole Sellmeier linear
dispersion, an instantaneous Kerr nonlinearity, and a dispersive Raman nonlin-
earity. The beam is excited with a transverse profile of a fundamental soliton as
predicted by the NLS equation with a FWHM beamwidth of 3.99� .

III. VALIDATION OF GVADE FDTD MODELING OF

SPATIAL OPTICAL SOLITON PROPAGATION

We first report two new validations of the GVADE FDTD
Maxwell’s equations solution technique to model spatial op-
tical soliton propagation in a realistic glass characterized by
a three-pole Sellmeier linear dispersion, an instantaneous Kerr
nonlinearity, and a dispersive Raman nonlinearity.

We assume the -directed propagation of a beam with the
initial transverse profile of an NLS fundamental soliton with the
electromagnetic field vector components having
a carrier frequency of 4.35 10 rad/s ( 433 nm). We
assume a three-pole set of linear Sellmeier dispersions and the
instantaneous Kerr and dispersive Raman nonlinearities used by
Nakamura et al. [13]. The strengths and resonant frequencies of
the linear dispersions from Sellmeier’s equation are given by:

0.69617, 0.40794, 0.89748, 2.7537
rad/s, 1.62047 10 rad/s, and 1.90342

10 rad/s, which correspond to a linear index of refraction
at the carrier frequency, , of 1.47. From Nakamura
et al. [13], the nonlinear index coefficient is 2.48
10 m /W, which, at the carrier frequency , corresponds
to a nonlinear index of refraction of 4.83 10 m /V
and a third-order scalar electric susceptibility of 1.89
10 m /V . The relative strengths of the Kerr and Raman po-
larizations are given by the parameter 0.7. The Raman po-
larization parameters are 12.2 fs and 32 fs. We im-
plement the model on a modified Yee grid having collocated
electric field components [8]. For each simulation, the spatial
and temporal resolutions were determined by numerical con-
vergence tests.

A. Validation of Fundamental Soliton Propagation:
Beamwidth Significantly Greater Than the Carrier Wavelength

The first test case models a wide spatial soliton with a trans-
verse profile (as provided by a solution of the NLS equation)
having a full-width at half-maximum (FWHM) beamwidth of
3.99 dielectric wavelengths ( ). This soliton is excited by a
hard source at 0 having a transverse profile

, where 4.77 10 A/m,
4.35 10 rad/s ( 433 nm), and 667 nm. The
beam is sufficiently wide relative to to propagate as a fun-
damental soliton, as predicted by the NLS equation. The grid
for this simulation is 3600 by 2092 cells, with a spatial resolu-
tion of 10 nm and a temporal resolution of

4.17 10 s. The pseudocolor visualization of Fig. 1
shows that the soliton propagates without change to its trans-
verse profile, as predicted by the NLS equation [2]. (Note that
all visualizations utilize a common color scale.)

Fig. 2. Simulation results of soliton propagation as in Fig. 1, but for a narrow
soliton having a FWHM beamwidth of 1.28� : (a) visualization of the spatial
distribution of jEj and (b) phase difference betweenE andE along the white
dashed line of (a) located at y = 395 nm from the center.

B. Validation of Periodic Focusing and Defocusing:
Beamwidth Approximately Equal to the Carrier Wavelength

The second test case models a narrow spatial soliton
with a transverse profile (as provided by a solution of the
NLS equation) having a FWHM beamwidth of 1.28 . This
soliton is excited by a hard source having an initial trans-
verse profile , where

1.49 10 A/m, 4.35 10 rad/s (
433 nm), and 215 nm. Fig. 2 illustrates the GVADE
FDTD computed propagation of the spatial optical soliton
model summarized above. The grid for the simulation dis-
played in Fig. 2 is 5544 by 3451 cells with a spatial resolution
of 5.71 nm and a temporal resolution of

2.38 10 s. From Fig. 2(a), we see that the computed
solution exhibits a periodic defocusing and focusing, despite
its nominal fundamental-mode excitation. The narrow-soliton
results demonstrate behavior predicted in [3] and [4], and show
a defocusing perturbation that causes expansion followed by
focusing leading to periodic oscillations. Fig. 2(b) shows that
the phase difference between the longitudinal and trans-
verse field components varies significantly around 90 as
the beam expands and contracts. Fig. 2 illustrates the GVADE
FDTD computed propagation of the spatial optical soliton
model summarized above.

IV. GVADE FDTD SIMULATION OF WIDE, OVER-POWERED

SPATIAL SOLITON PROPAGATION

Having presented two validations of GVADE FDTD mod-
eling of spatial soliton propagation, we next explore the prop-
agation of wide, over-powered solitons with hyperbolic secant
transverse profiles, as determined by solution of the NLS equa-
tion, but with twice the amplitude. (Electromagnetic field com-
ponents and material properties are identical to
those described in Section III; grid 8 nm and 3.34
10 s.) Although the beamwidths are large relative to the car-
rier wavelength, the beams are found to propagate with a peri-
odic focusing and defocusing. Fig. 3 shows that the period of the
expansion-contraction cycle of the propagating spatial soliton
diminishes as the beamwidth is reduced.

V. GVADE FDTD SIMULATION OF WIDE, OVER-POWERED

SOLITON COLLISIONS WITH AIR HOLES

Finally, we investigate the scattering of spatial solitons by
abrupt, subwavelength, material discontinuities. Specifically,
we consider the collision of the wide, over-powered soliton
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Fig. 3. Simulation of spatial soliton propagation as in Figs. 1 and 2 but with
twice the amplitude indicated by the NLS equation. Visualization of jEj with
three excitation beamwidths: (a) 5:98� ; (b) 3.99� ; and (c) 3.26� .

Fig. 4. Simulation of the collision of the over-powered soliton of Fig. 3(b) with
a 250 by 250 nm air hole at x = 5 �m. Visualization of jEj showing the col-
lision, diffraction, and subsequent reformation of a lower-power spatial soliton
at a distance of approximately 30� beyond the air hole.

Fig. 5. Simulation of a soliton/air-hole collision as in Fig. 4, but with a larger
air hole of size 350 by 350 nm. The scattered electromagnetic field coalesces
into a lower-power fundamental spatial soliton at a distance of approximately
60� beyond the scattering air hole.

shown in Fig. 3(b) with 250 and 350 nm square air holes at
5 m in Fig. 3(b), at which point the soliton is at its average
width. (Here, 10 nm and 4.17 10 s.) Figs. 4
and 5 illustrate significant scattering of the soliton electromag-
netic field. We see that after each collision, the electromagnetic
field energy that does not escape, coalesces into relatively
lower-power solitons. In Fig. 4, a narrow soliton is reformed
after a distance of approximately 30 beyond the scattering
air hole. The reformed soliton exhibits periodic focusing and
defocusing similar to Fig. 3. In Fig. 5, more energy is lost
due to scattering by the larger air hole, and coalescence into a
reformed soliton occurs at a distance of approximately 60

beyond the air hole. Here, the lower-power reformed soliton
propagates as a fundamental soliton, i.e., without periodic
focusing and defocusing.

VI. CONCLUSION

In this letter, we applied the GVADE formulation of FDTD
to study the propagation of spatial optical solitons having two
orthogonal electric field vector components in a realistic glass,
and the scattering of such solitons by compact subwavelength
air holes. An unexpected spatial soliton scattering phenomenon
was observed: the coalescence of the scattered electromagnetic
field into a propagating lower-energy spatial soliton at a point
many tens of wavelengths beyond the scattering air hole.

The technique applied here is general, and can model the
multicomponent vector electric field of spatial solitons scat-
tering from abrupt, arbitrary-shaped, subwavelength dielectric
and metal discontinuities. This appears to be a novel capability
permitting future investigations and design of devices exploiting
spatial soliton interactions in background media having submi-
crometer air holes and dielectric and metal inclusions.
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