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Abstract: The auxiliary differential equation finite-difference &m
domain method for modeling electromagnetic wave propagatin

dispersive nonlinear materials is applied to problems witee electric field
is not constrained to a single vector component. A full-edilaxwell’s

equations solution incorporating multiple-pole linearrémtz, nonlinear
Kerr, and nonlinear Raman polarizations is presented. Pipdication is

illustrated by modeling a spatial soliton having two ortbogl electric
field components. To the best of our knowledge, the numetédinique
presented here is the first to model electromagnetic waveagation
with two or three orthogonal vector components in dispersionlinear
materials. This technique offers the possibility of modglsub-wavelength
interactions of vector spatial solitons.
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1. Introduction

Emerging applications in nanophotonics involve electrgnadic wave interactions with mate-
rials having frequency-dependent and intensity-depenpl@arizations. Auxiliary differential
equation (ADE) methods extend the finite-difference tinoeadin (FDTD) method to incor-
porate polarization by time-stepping auxiliary differi@hequations with Maxwell’s curl equa-
tions [1, 2]. Nakamurat al. validated experimentally an ADE FDTD model of nonlinear fem
tosecond ultrabroadband-pulse propagation in silica fef]. The Fujii ADE FDTD method
[5] is an efficient reformulation which eliminates the needoblve a system dfl equations at
each time-step, whei¥ is the number of poles of the chromatic dispersion.

In this paper, we provide details of how to apply Fujii's madito nonlinear optics problems
where the electric field has two or three orthogonal vectarmanents. We designate this tech-
nigue the general vector auxiliary differential equati@VADE) FDTD method. This method
reproduces published results for temporal soliton propagan a dispersive nonlinear mate-
rial [5]. The GVADE FDTD method is then used to model spat@iten propagation with two
orthogonal electric field components in fused silica. We tiesame chromatic dispersion,
nonlinear Kerr polarization, and nonlinear Raman poldidreused by Nakamuret al.,, which
models realistic physical effects in silica.

2. Electromagnetic wave propagation in dispersive nonlingr materials

To derive the GVADE method, we formulate Maxwell's equasarsing polarization current:

JH
OxE=—uy—— 1
X IJoat, @)
JE
OxH=¢g— 2
X €odt+J, (2)

whereE andH are the electric and magnetic field vectors dnslthe polarization curren%.

In materials with multiple-pole linear Lorentz polarizati instantaneous Kerr nonlinear po-
larization, and Raman nonlinear polarization, the po#itmn current is) = Jy orentz+ Jkerr +
Jraman The linear Lorentz polarization models the chromatic €lisfjpn and contains a contri-
bution from multiple resonances:

3
JLorentz= Z JLorentzpa (3)
p=1

where eacl| orentz, COrresponds to the polarization current due to a singleqfdhee Sellmeier
expansion where the phasor polarization is given by

~ = W,
PLorentz, = €0X E = 50w2 ) E, (4)
p

wheref, andwy are the strength and frequency, respectively, oftieresonance [6].
In general, the third-order nonlinear polarization is

PNL(r,t):so/ / / XO(t—ty,t —to,t —t3)E(r,t2)E(r,t2)E(r,t3)dtidtdts,  (5)

where x® is the third-order susceptibility tensor [7]. For a simpledsl of the electron re-
sponse accounting for nonresonant incoherent (intedgipendent) nonlinear effects, the third-
order nonlinear polarization can be described by the Bgopedheimer approximation,

P () = £0x VE [ glt—t))[E[)[2dY, ©6)

#72299 - $15.00 USD Received 26 June 2006; revised 22 August 2006; accepted 24 August 2006
(C) 2006 OSA 4 September 2006 / Val. 14, No. 18/ OPTICS EXPRESS 8306



whereg(t) is the causal response function and the induced polarizatiassumed to lie in the
same direction as the electric field [6]. To model the Kerr tiedRaman polarizations,

g(t) = ad(t) + (1 - a)gramardl), ()

wherea represents the relative strengths of the Kerr and Ramamipatians,d(t) is a Dirac
delta function that models the instantaneous Kerr nongsorirtual transitions, and
2, 12
T+T .
Oramar(t) = (1TlT22> exp(—t/T2)sin(t/11) U(t), (8)
2

wheregramar{t) is an approximation of the Raman response function withrpatersr; andt,
chosen to fit the Raman-gain spectrum [6], and)Uks the Heaviside step function. From Eq.
(6) and Eq. (7), the polarization and polarization curreoirf the Kerr nonlinearity are

Pren(t) = gox U E [ ad(t—t))|E(t)|2dt = agox’ [EI%E, )
0Pk 7 3
Iren(t) = =5 = Eaeoxg, ) |E|2E. (10)
Writing Eq. (6) as a convolution, the polarization from theniRen effect is
Pramat) = £0E | Xfsamadt) *[E?] (11)
where . .
Xlgezmar(t) - (1 - G)Xégmar{t)gRamar{t) (12)

3. General vector auxiliary differential equation FDTD method

To implement the Fujii ADE method for the general electriddfiieector case, we use the for-
mulation of Maxwell’'s equations which emphasizes the poédion current], instead of the
polarization,P, because this eliminates the need to store and update tidgetisplacement
field. The GVADE method can be used for any electric field hgwivo or three orthogonal vec-
tor components. However, for a concise derivation, we cmighe case where derivatives with
respect to the-coordinate are zero and the electromagnetic field is coathosEy, Ey, and
H.. Eq. (2) will be solved using FDTD combined with a semi-ingjilimethod in whichE™+1
will be updated in terms dfi"*1/2 andJ"*1/2, where the superscript indicates the time-step.

3.1. Linear Lorentz polarization
Expression of Eq. (4) in the form of an equivalent polari@atturrent phasor gives:

~ i ~
JLorentz, = 50[3pr <J> E. (13)

2 _ ()2
wpw

Multiplying both sides of Eq. (13) b{/wg — w?), and transforming to the time domain, yields

92JL JE
2 orentz 2
wyd — =5 = &oPpWy—- 14
hJLorentz, + o2 0Bpwp ot (14)
Finite-differencing Eq. (14) centered at time-steand solving forJ[grtmzp yields
En+1 _ En—l
1 -1

‘]Egrentzp = ap‘]Eorentzp - JEorentzp T o ) (15)
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where

ap=2—wh(A)%  yp = eoBpwd(At)?. (16)
Using Eq. (15), and averaging across stemdn+ 1, gives
1/2 1 _ 1% -
‘]Egre/ntzp = 2 (1+ ap)JEorentzp B ‘]Eor%entzp Zpt(EnJrl —E 1) : 17)

3.2. Nonlinear Kerr polarization

The nonlinear Kerr polarization at steﬂ—% is obtained from Eq. (10). The finite-difference
expression for the time derivative of the Kerr polarizatoemtered at step+ % is

(3)
172 O& 2
Teen? = == { (E™H)°E™ 1 — (E")°E" (18)

3.3. Nonlinear Raman polarization
Eq. (11) is solved by introducing a scalar auxiliary varéfar the convolution,

St) =x (1)« [E(t)[2 (19)
with Fourier transform 5
S(00) = Xfoamad @) Z {[E(D)?}, (20)
where

(3) 2
) (1- )Xo WRaman
w) = . , 21
XRamar( ) wl%aman"" 21095Raman— OJZ ( )

2 2
7+ 1
Wraman= || 152 > 22 ; Oraman= —- (22)
213 15

Inserting Eq. (21) into Eq. (20), multiplying t()wéamaﬁ 2j wORaman— w?), and transforming
to the time domain yields the auxiliary differential eqoatj

oS 09°S 3
WRamarS+ 25Ramarﬁ + 2 (1- G)X(() >wt-'2eamar4E|2~ (23)

Because Eqg. (23) contains a second derivative, it is firifferdnced, centered at step

S1+1 _ {2_ wéamar(At)z} gUr {5Ramanm - 1} 31—1

5RamarAt + 1 5RamarAt + 1 24
+ (1*a)X(()3>wI%amar(At)2 (|En|)2 ( )
6RamarAt + 1 .

Using Eqg. (11) and Eg. (19), the finite-difference exprasdimr the time derivative of the
Raman polarization centered at step 1 is

n1/2 €0 jentlantl  pEn
‘JRaman_ E(E S -E 31) (25)
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3.4. Solution for electric field
Now that all terms in Eq. (2) are known at step- % EM*1is determined from

Ox HML/2 = (En+1 En )+ z Jn+1/2 +Jn+l/2+Jn+l/2 (26)

Lorentz, T YKerr Raman
p=1

BecauseE is a vector quantity, solving Eq. (26) f&"*! requires solving a nonlinear system
of coupled equations. This is efficiently solved using a irdilnensional Newton’s method,
where zeroes of objective functions are determined bytiteraFor the field components
{Ex.Ey,H,} considered here, Eq. (26) is solved &}"! andE['*! by substituting Eq. (17),
Eq. (18), and Eq. (25). We then define the objective functiestar[X Y]T

E (En+l _ En)

X
— [ Hn+1/2
[ ] . Tt

Y

1 Yo et -1
+3 Z [1+(Xp Lorentz, — ‘]Eorentzp 2Nt (En+ —E" )} (27)

g &

+ OXO {(|En+1‘)2En+1_(|En|)2En}+70(En+1g1+1_EnSW).
At At

Next, we defines§ anng to be thegth guesses foEf ! andE{,‘*l. Newton’s method updates

the guesses until the objective functiofandyY are sufficiently close to zero. Each subsequent

guess is made from the current guess by:

Git|  [GY X
| = e~ ) (28)
whereJ is the Jacobian matrixd(X,Y)/d(Gy, Gy), with elements
_& 1 £ (3) (22, 2 +1
Jll—At+4At(V1+Vz+w)+At [axo (3GX+Gy)+§ },
2¢ 2¢
ho= S PGy, 1= S xP GGy, (29)
_ 1 =Y 2 2 +1
Jzz—A 4At(V1+Vz+y3)+ [axo (Gx+3Gy) + 3" },

and |g indicates evaluation using the values from gie guess.

4. GVADE FDTD simulation of temporal and spatial solitons

We applied the GVADE method to model temporal and spatidost in dispersive nonlinear
materials. First, we modeled temporal soliton propagaitican material with single pole linear
Lorentz dispersion and Kerr and Raman nonlinear poladmati The same pulse, grid, and
material from [5] were used; the results, shown in Fig. 1radpce those of [5].

Figure 2 illustrates the full-vector capability of the GVA&Dnethod. Here, we model thiex-
directed propagation of a higher-order spatial solitonifgthe electromagnetic field vector
componentsEy, Ey,H,}. We assume for the vector electric field the three-pole séineér
Sellmeier dispersions and the instantaneous Kerr andrdigp&kaman nonlinearities published
in [3, 4]. The strengths and resonant frequencies of thalfigéspersions from Sellmeier's
equation are given byB; = 0.69617,3, = 0.40794,33 = 0.89748,c0, = 2.7537x 10 rad/s,
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Fig. 1. GVADE simulation results for temporal soliton propagation in a dEpenonlinear
material. These results reproduce those of [5].

wp = 1.6205x 106 rad/s, andus = 1.90342x 10'* rad/s. The third-order electric susceptibility
scalar isxés) =1.89x%x 10*22m2/V2. The relative strengths of the Kerr and Raman polarizations
are given by the parameter= 0.7. The Raman polarization parameters are- 12.2 fs and

7, = 32 fs. The soliton was modeled on a modified Yee grid with @alted electric field
components [8]. The grid was 6000 by 2615 cells with a spatsdlution ofAx = Ay = 8nm

and a temporal resolution dft = 3.34 x 10 18s. The spatial and temporal resolutions were
chosen empirically based on convergence tests. The chivserstep was one quarter of the
time-step required by the Courant limit for standard FDTP The magnetic field was excited
by a hard source at the far-left side of the grid<0) having an initial transverse profile

Hz(t) = Hosin(wt) sechy/w), (30)

whereHg = 4.77 x 10’ A/m, w. = 4.35x 10 rad/s Qg = 433nm), andv = 667 nm. From
Fig. 2, we see that the calculated solution exhibits a pariexpansion and contraction that is
characteristic of higher-order solitons [9].

01 2

10ttt OO
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£

20
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Fig. 2. GVADE simulation results of a-x-directed higher-order spatial soliton with field

components{Ey, Ey,H;} in a material with a three-pole Sellmeier linear dispersion, an
instantaneous Kerr nonlinearity, and a dispersive Raman nonlineagatynitnde oH,.

5. Conclusion

The importance of modeling electromagnetic wave propeagati dispersive nonlinear materi-
als will increase with modern engineering of nanophotomeicks. In this paper, we showed
how the Fujii ADE FDTD method can be applied to nonlinear epproblems where the elec-
tric field has two or three orthogonal vector components. GWADE method is, to the best of
our knowledge, the first numerical technique to model ebestignetic wave propagation with
two or three orthogonal electric field vector componentsispersive nonlinear materials.

We are currently exploring the relationships of predicsionade by nonlinear Sdbdinger
(NLS) equation theory and the GVADE technique for a varidtyaalar and vector spatial soli-
tons. Our initial aim is to determine the transition betwéenthe two approacheisg., where a
computation based upon the full-vector Maxwell’s equagienrequired to properly model the
vector wave physics. Furthermore, we intend to explore amegvhere the NLS equation is
arguably inapplicable — the scattering of a spatial solitpa sub-wavelength particle.
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