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Abstract: The auxiliary differential equation finite-difference time-
domain method for modeling electromagnetic wave propagation in
dispersive nonlinear materials is applied to problems where the electric field
is not constrained to a single vector component. A full-vector Maxwell’s
equations solution incorporating multiple-pole linear Lorentz, nonlinear
Kerr, and nonlinear Raman polarizations is presented. The application is
illustrated by modeling a spatial soliton having two orthogonal electric
field components. To the best of our knowledge, the numericaltechnique
presented here is the first to model electromagnetic wave propagation
with two or three orthogonal vector components in dispersive nonlinear
materials. This technique offers the possibility of modeling sub-wavelength
interactions of vector spatial solitons.
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1. Introduction

Emerging applications in nanophotonics involve electromagnetic wave interactions with mate-
rials having frequency-dependent and intensity-dependent polarizations. Auxiliary differential
equation (ADE) methods extend the finite-difference time-domain (FDTD) method to incor-
porate polarization by time-stepping auxiliary differential equations with Maxwell’s curl equa-
tions [1, 2]. Nakamuraet al.validated experimentally an ADE FDTD model of nonlinear fem-
tosecond ultrabroadband-pulse propagation in silica fiber[3, 4]. The Fujii ADE FDTD method
[5] is an efficient reformulation which eliminates the need to solve a system ofN equations at
each time-step, whereN is the number of poles of the chromatic dispersion.

In this paper, we provide details of how to apply Fujii’s method to nonlinear optics problems
where the electric field has two or three orthogonal vector components. We designate this tech-
nique the general vector auxiliary differential equation (GVADE) FDTD method. This method
reproduces published results for temporal soliton propagation in a dispersive nonlinear mate-
rial [5]. The GVADE FDTD method is then used to model spatial soliton propagation with two
orthogonal electric field components in fused silica. We usethe same chromatic dispersion,
nonlinear Kerr polarization, and nonlinear Raman polarization used by Nakamuraet al., which
models realistic physical effects in silica.

2. Electromagnetic wave propagation in dispersive nonlinear materials

To derive the GVADE method, we formulate Maxwell’s equations using polarization current:

∇×E = −µ0
∂H
∂ t

, (1)

∇×H = ε0
∂E
∂ t

+J, (2)

whereE andH are the electric and magnetic field vectors andJ is the polarization current,∂P
∂ t .

In materials with multiple-pole linear Lorentz polarization, instantaneous Kerr nonlinear po-
larization, and Raman nonlinear polarization, the polarization current isJ = JLorentz+ JKerr +
JRaman. The linear Lorentz polarization models the chromatic dispersion and contains a contri-
bution from multiple resonances:

JLorentz=
3

∑
p=1

JLorentzp, (3)

where eachJLorentzp corresponds to the polarization current due to a single poleof the Sellmeier
expansion where the phasor polarization is given by

P̃Lorentzp = ε0χ(1)Ẽ = ε0
βpω2

p

ω2
p−ω2 Ẽ, (4)

whereβp andωp are the strength and frequency, respectively, of thepth resonance [6].
In general, the third-order nonlinear polarization is

PNL(r , t) = ε0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ(3)(t − t1, t − t2, t − t3)E(r , t1)E(r , t2)E(r , t3)dt1dt2dt3, (5)

whereχ(3) is the third-order susceptibility tensor [7]. For a simple model of the electron re-
sponse accounting for nonresonant incoherent (intensity-dependent) nonlinear effects, the third-
order nonlinear polarization can be described by the Born-Oppenheimer approximation,

PNL(t) = ε0χ(3)
0 E

∫ ∞

−∞
g(t − t ′)|E(t ′)|2dt′, (6)
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whereg(t) is the causal response function and the induced polarization is assumed to lie in the
same direction as the electric field [6]. To model the Kerr andthe Raman polarizations,

g(t) = αδ (t)+(1−α)gRaman(t), (7)

whereα represents the relative strengths of the Kerr and Raman polarizations,δ (t) is a Dirac
delta function that models the instantaneous Kerr nonresonant virtual transitions, and

gRaman(t) =

(
τ2

1 + τ2
2

τ1τ2
2

)
exp(−t/τ2)sin(t/τ1)U(t), (8)

wheregRaman(t) is an approximation of the Raman response function with parametersτ1 andτ2

chosen to fit the Raman-gain spectrum [6], and U(t) is the Heaviside step function. From Eq.
(6) and Eq. (7), the polarization and polarization current from the Kerr nonlinearity are

PKerr(t) = ε0χ(3)
0 E

∫ ∞

−∞
αδ (t − t ′)|E(t ′)|2dt′ = αε0χ(3)

0 |E|2E, (9)

JKerr(t) =
∂PKerr

∂ t
=

∂
∂ t

αε0χ(3)
0 |E|2E. (10)

Writing Eq. (6) as a convolution, the polarization from the Raman effect is

PRaman(t) = ε0E
[
χ(3)

Raman(t)∗ |E|
2
]
, (11)

where
χ(3)

Raman(t) = (1−α)χ(3)
Raman(t)gRaman(t). (12)

3. General vector auxiliary differential equation FDTD method

To implement the Fujii ADE method for the general electric field vector case, we use the for-
mulation of Maxwell’s equations which emphasizes the polarization current,J, instead of the
polarization,P, because this eliminates the need to store and update the electric displacement
field. The GVADE method can be used for any electric field having two or three orthogonal vec-
tor components. However, for a concise derivation, we consider the case where derivatives with
respect to thez-coordinate are zero and the electromagnetic field is composed of Ex, Ey, and
Hz. Eq. (2) will be solved using FDTD combined with a semi-implicit method in whichEn+1

will be updated in terms ofHn+1/2 andJn+1/2, where the superscript indicates the time-step.

3.1. Linear Lorentz polarization

Expression of Eq. (4) in the form of an equivalent polarization current phasor gives:

J̃Lorentzp = ε0βpω2
p

(
jω

ω2
p−ω2

)
Ẽ. (13)

Multiplying both sides of Eq. (13) by(ω2
p−ω2), and transforming to the time domain, yields

ω2
pJLorentzp +

∂ 2JLorentzp

∂ t2 = ε0βpω2
p

∂E
∂ t

. (14)

Finite-differencing Eq. (14) centered at time-stepn and solving forJn+1
Lorentzp

yields

Jn+1
Lorentzp = αpJn

Lorentzp −Jn−1
Lorentzp

+ γp
En+1−En−1

2∆t
, (15)
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where
αp = 2−ω2

p(∆t)2; γp = ε0βpω2
p(∆t)2. (16)

Using Eq. (15), and averaging across stepn andn+1, gives

Jn+1/2
Lorentzp

=
1
2

[
(1+αp)Jn

Lorentzp −Jn−1
Lorentzp

+
γp

2∆t
(En+1−En−1)

]
. (17)

3.2. Nonlinear Kerr polarization

The nonlinear Kerr polarization at stepn+ 1
2 is obtained from Eq. (10). The finite-difference

expression for the time derivative of the Kerr polarizationcentered at stepn+ 1
2 is

Jn+1/2
Kerr =

αε0χ(3)
0

∆t

{(
|En+1|

)2
En+1− (|En|)2En

}
. (18)

3.3. Nonlinear Raman polarization

Eq. (11) is solved by introducing a scalar auxiliary variable for the convolution,

S(t) ≡ χ(3)
Raman(t)∗ |E(t)|2 (19)

with Fourier transform
S(ω) ≡ χ(3)

Raman(ω) ·F
{
|E(t)|2

}
, (20)

where

χ(3)
Raman(ω) =

(1−α)χ(3)
0 ω2

Raman

ω2
Raman+2 jωδRaman−ω2

, (21)

ωRaman≡

√
τ2

1 + τ2
2

τ2
1τ2

2

; δRaman=
1
τ2

. (22)

Inserting Eq. (21) into Eq. (20), multiplying by(ω2
Raman+2 jωδRaman−ω2), and transforming

to the time domain yields the auxiliary differential equation,

ω2
RamanS+2δRaman

∂S
∂ t

+
∂ 2S
∂ t2 = (1−α)χ(3)

0 ω2
Raman|E|

2. (23)

Because Eq. (23) contains a second derivative, it is finite-differenced, centered at stepn:

Sn+1 =

[
2−ω2

Raman(∆t)2

δRaman∆t +1

]
Sn +

[
δRaman∆t −1
δRaman∆t +1

]
Sn−1

+

[
(1−α)χ(3)

0 ω2
Raman(∆t)2

δRaman∆t +1

]
(|En|)2 .

(24)

Using Eq. (11) and Eq. (19), the finite-difference expression for the time derivative of the
Raman polarization centered at stepn+ 1

2 is

Jn+1/2
Raman=

ε0

∆t
(En+1Sn+1−EnSn). (25)
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3.4. Solution for electric field

Now that all terms in Eq. (2) are known at stepn+ 1
2, En+1 is determined from

∇×Hn+1/2 =
ε0

∆t
(En+1−En)+

3

∑
p=1

Jn+1/2
Lorentzp

+Jn+1/2
Kerr +Jn+1/2

Raman. (26)

BecauseE is a vector quantity, solving Eq. (26) forEn+1 requires solving a nonlinear system
of coupled equations. This is efficiently solved using a multi-dimensional Newton’s method,
where zeroes of objective functions are determined by iteration. For the field components
{Ex,Ey,Hz} considered here, Eq. (26) is solved forEn+1

x andEn+1
y by substituting Eq. (17),

Eq. (18), and Eq. (25). We then define the objective function vector[X Y]T as
[
X
Y

]
= −∇×Hn+1/2 +

ε0

∆t
(En+1−En)

+
1
2

3

∑
p=1

[
(1+αp)Jn

Lorentzp −Jn−1
Lorentzp

+
γp

2∆t
(En+1−En−1)

]

+
αε0χ(3)

0

∆t

{(
|En+1|

)2
En+1− (|En|)2En

}
+

ε0

∆t
(En+1Sn+1−EnSn).

(27)

Next, we defineGg
x andGg

y to be thegth guesses forEn+1
x andEn+1

y . Newton’s method updates
the guesses until the objective functionsX andY are sufficiently close to zero. Each subsequent
guess is made from the current guess by:

[
Gg+1

x

Gg+1
y

]
=

[
Gg

x

Gg
y

]
−

(
J−1

[
X
Y

])∣∣∣∣
g
, (28)

whereJ is the Jacobian matrix,∂ (X,Y)/∂ (Gx,Gy), with elements

J11 =
ε0

∆t
+

1
4∆t

(γ1 + γ2 + γ3)+
ε0

∆t

[
αχ(3)

0 (3G2
x +G2

y)+Sn+1
]
,

J12 =
2ε0

∆t
αχ(3)

0 GxGy, J21 =
2ε0

∆t
αχ(3)

0 GxGy,

J22 =
ε0

∆t
+

1
4∆t

(γ1 + γ2 + γ3)+
ε0

∆t

[
αχ(3)

0 (G2
x +3G2

y)+Sn+1
]
,

(29)

and |g indicates evaluation using the values from thegth guess.

4. GVADE FDTD simulation of temporal and spatial solitons

We applied the GVADE method to model temporal and spatial solitons in dispersive nonlinear
materials. First, we modeled temporal soliton propagationin a material with single pole linear
Lorentz dispersion and Kerr and Raman nonlinear polarizations. The same pulse, grid, and
material from [5] were used; the results, shown in Fig. 1, reproduce those of [5].

Figure 2 illustrates the full-vector capability of the GVADE method. Here, we model the+x-
directed propagation of a higher-order spatial soliton having the electromagnetic field vector
components{Ex,Ey,Hz}. We assume for the vector electric field the three-pole set oflinear
Sellmeier dispersions and the instantaneous Kerr and dispersive Raman nonlinearities published
in [3, 4]. The strengths and resonant frequencies of the linear dispersions from Sellmeier’s
equation are given by:β1 = 0.69617,β2 = 0.40794,β3 = 0.89748,ω1 = 2.7537×1016 rad/s,
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Fig. 1. GVADE simulation results for temporal soliton propagation in a dispersive nonlinear
material. These results reproduce those of [5].

ω2 = 1.6205×1016 rad/s, andω3 = 1.90342×1014 rad/s. The third-order electric susceptibility

scalar isχ(3)
0 = 1.89×10−22m2/V2. The relative strengths of the Kerr and Raman polarizations

are given by the parameterα = 0.7. The Raman polarization parameters areτ1 = 12.2 fs and
τ2 = 32 fs. The soliton was modeled on a modified Yee grid with collocated electric field
components [8]. The grid was 6000 by 2615 cells with a spatialresolution of∆x = ∆y = 8nm
and a temporal resolution of∆t = 3.34× 10−18s. The spatial and temporal resolutions were
chosen empirically based on convergence tests. The chosen time-step was one quarter of the
time-step required by the Courant limit for standard FDTD [8]. The magnetic field was excited
by a hard source at the far-left side of the grid (x = 0) having an initial transverse profile

Hz(t) = H0sin(ωct)sech(y/w), (30)

whereH0 = 4.77× 107 A/m, ωc = 4.35× 1015 rad/s (λ0 = 433nm), andw = 667 nm. From
Fig. 2, we see that the calculated solution exhibits a periodic expansion and contraction that is
characteristic of higher-order solitons [9].

Fig. 2. GVADE simulation results of a+x-directed higher-order spatial soliton with field
components{Ex,Ey,Hz} in a material with a three-pole Sellmeier linear dispersion, an
instantaneous Kerr nonlinearity, and a dispersive Raman nonlinearity: magnitude ofHz.

5. Conclusion

The importance of modeling electromagnetic wave propagation in dispersive nonlinear materi-
als will increase with modern engineering of nanophotonic devices. In this paper, we showed
how the Fujii ADE FDTD method can be applied to nonlinear optics problems where the elec-
tric field has two or three orthogonal vector components. TheGVADE method is, to the best of
our knowledge, the first numerical technique to model electromagnetic wave propagation with
two or three orthogonal electric field vector components in dispersive nonlinear materials.

We are currently exploring the relationships of predictions made by nonlinear Schrödinger
(NLS) equation theory and the GVADE technique for a variety of scalar and vector spatial soli-
tons. Our initial aim is to determine the transition betweenthe the two approaches,i.e., where a
computation based upon the full-vector Maxwell’s equations is required to properly model the
vector wave physics. Furthermore, we intend to explore a regime where the NLS equation is
arguably inapplicable – the scattering of a spatial solitonby a sub-wavelength particle.

#72299 - $15.00 USD Received 26 June 2006; revised 22 August 2006; accepted 24 August 2006

(C) 2006 OSA 4 September 2006 / Vol. 14,  No. 18 / OPTICS EXPRESS  8310


