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Abstract: We report what we believe to be the first simulation of enhanced 
backscattering (EBS) of light by numerically solving Maxwell’s equations 
without heuristic approximations.  Our simulation employs the 
pseudospectral time-domain (PSTD) technique, which we have previously 
shown enables essentially exact numerical solutions of Maxwell’s equations 
for light scattering by millimeter-volume random media consisting of 
micrometer-scale inhomogeneities.  We show calculations of EBS peaks of 
random media in the presence of speckle; in addition, we demonstrate 
speckle reduction using a frequency-averaging technique.  More generally, 
this new technique is sufficiently robust to permit the study of EBS 
phenomena for random media of arbitrary geometry not amenable to 
simulation by other approaches, especially with regard to extension to full-
vector electrodynamics in three dimensions. 
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1. Introduction 

Recently, the phenomenon of enhanced backscattering (EBS) of light, also known as coherent 
backscattering (CBS), has attracted significant attention in the study of light propagation in 
random media [1-5].  This phenomenon is due to the interference effect of coherent light 
scattered by random media, where light interferes between time-reversed light paths, resulting 
in an enhanced intensity cone in the backscattering direction. 
       Conventionally, the EBS peak can be indirectly simulated using Monte Carlo models  
[6, 7] by statistically treating the problem of light interaction within random media as series of 
independent scattering events.  By approximating light propagation as a diffusion problem, 
the photon radial probability distribution is obtained, which can then be used to yield the EBS 
peak indirectly by means of a Fourier transform.  We note that Monte Carlo simulations are 
often performed beyond the diffusion approximation, and thus could have applicability to the 
vectorial case.    

An alternative technique presented in [8] investigated the multiple scattering of scalar 
waves in diffusive media by means of the radiative transfer equation.  This approach does not 
rely on the diffusion approximation, and becomes asymptotically exact when the scattering 
mean free path is much larger than the wavelength.  An important element discussed in detail 
in [8] was the solution of the Milne equation, which provides the coherent backscattering cone 
without relying on the diffusion approximation. 

A worthwhile goal is the development of predictive techniques for full-vector optical 
wave interactions with potentially dense, three-dimensional (3-D) random media.  Here, the 
constituent scatterers can be inhomogeneous, arbitrarily shaped, strongly coupled in the near 
field, and span size scales ranging from subwavelength to many wavelengths.  Existing 
analytical and numerical techniques may not be sufficiently robust to deal with this level of 
complexity [9-11].  Thus, a rigorous simulation technique based on first-principles 
electromagnetic theory (i.e., the full set of Maxwell’s equations) is preferred.   
       In pursuit of this goal, we report in this paper what we believe to be the first direct, 
numerical simulation of the EBS phenomenon by solving Maxwell’s equations for millimeter-
volume random media consisting of micrometer-scale inhomogeneities.  We employ the 
pseudospectral time-domain (PSTD) technique [12-14].  Furthermore, we present a 
frequency-averaging method that can significantly suppress speckles in EBS simulations.   

With the numerical methods reported in this paper, EBS phenomena can be simulated 
without heuristic approximations for two-dimensional random media having constituent 
scatterers of arbitrary shape, composition, size, and spacing.  While the specific results 
reported in this paper are for two-dimensional problems, it should be understood that our 
method is directly extendible and applicable to full-vector solutions of Maxwell’s equations in 
three dimensions.  In fact, we have developed computer programs for this purpose, and will 
report fully three-dimensional results in subsequent papers.   
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2. Methods 

With the PSTD technique, the spatial derivatives of the electric and magnetic fields that are 
required to implement Maxwell’s curl equations are obtained using the differentiation theorem 
for Fourier transforms: 
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where F  and - 1F  denote, respectively, the forward and inverse discrete Fourier transforms, 
and 

xk� is the Fourier transform variable representing the x-component of the numerical 
wavevector.  The spatial derivatives {(∂V/ ∂x)i } can be calculated in one step.  In multiple 
dimensions, this process is repeated for each cut parallel to the major axes of the space lattice.  
PSTD techniques have been shown to possess spectral accuracy; that is, errors due to spatial 
sampling decrease exponentially as the meshing density increases beyond the Nyquist rate.  
With trigonometric basis functions, this permits the PSTD meshing density to approach two 
samples per wavelength in each spatial dimension.   

Briefly summarizing key details of our algorithm, we eliminate the wraparound caused 
by the periodicity in the discrete Fourier transforms used to implement PSTD by using the 
anisotropic perfectly matched layer (APML) absorbing boundary condition [15].  Incident 
wave excitation is provided by the scattered-field technique [16].  The surfaces of the 
scattering shapes are approximated by staircasing at the grid resolution.  In this manner, we 
have demonstrated PSTD results for plane-wave scattering by canonical shapes that are 
accurate to better than 1 dB over dynamic ranges exceeding 50 dB.  This holds for the 
scattering intensity observed at all possible angles, including backscattering. 

By employing PSTD, the EBS phenomenon in random media can be solved without 
heuristic approximations, such as treating light as a diffusion problem or treating the random 
media as a cluster of point scatterers.  Further, in PSTD simulations, the scattered light 
intensity for a broadband spectrum of wavelengths (λ0 ranging from 1 μm up to 600 μm) can 
be obtained in a single simulation. 

3. PSTD Simulation of EBS 

We report the initial application of PSTD to model two-dimensional (2-D) transverse-
magnetic EBS scattering of light by an 800 × 400 μm rectangular cluster of scatterers.  As 
depicted in Fig. 1, the cluster consists of N randomly positioned, closely packed, infinitely 
long, dielectric cylinders with refractive index n = 1.25.  The cluster geometry is created by 
randomly positioning scatterers in free space, subject to the constraint of a minimum distance 
of 2.4 μm allowed between cylinders.   

For the incident wavelength λ0 = 1 μm, the transport mean free path, ls’, is 37.74 μm and 
5.59 μm, for N = 10,000 and N = 20,000, respectively.  We use a PSTD grid having a uniform 
spatial resolution of 0.33 μm, equivalent to 0.42λd  (λd: optical wavelength in dielectric 
material) at frequency 300 THz for a cylinder refractive index n = 1.25.  In each simulation, 
the cluster is illuminated by a coherent plane wave at a 15° incident angle to avoid specular 
reflection.  Both the incident light and backscattered light are polarized perpendicular to the 
plane of incidence, equivalent to collinear detection in EBS experiments.   

Due to the limitations of finite computer memory, we necessarily can model only a finite 
random medium region.  However, we have determined that we can efficiently account for the 
finite size of our modeling region via convolution of comparative benchmark analytical 
results with an appropriate windowing function (representing the finite aperture of the 
modeled region). 
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Fig. 1. PSTD simulation of the enhanced backscattering (EBS) numerical experiment.  With 
dimensions of 800 × 400 μm, the rectangular cluster consists of N randomly positioned, non-
contacting, infinitely long, dielectric cylinders with refractive index n = 1.25; Each cylinder 
had a diameter of 1.2 μm with an average spacing of s = 2.8 μm between cylinders (edge to 
edge).  The rectangular cluster is illuminated by a coherent plane wave that is incident at 15° 
relative to the normal.  Both the incident light and the backscattered light are polarized 
perpendicular to the plane of incidence, equivalent to collinear detection in EBS experiments.  
A standard anisotropic perfectly matched layer (APML) absorbing boundary condition is 
implemented to absorb outgoing waves, simulating a light scattering experiment in free space. 

 
 

       Figure 2(a) illustrates sample data for the scattered light intensity calculated in a single 
PSTD simulation.  Here, 0° corresponds to direct backscattering at 15° from the normal.  
Since the incident light source is coherent, the scattered light intensity contains considerable 
speckle.  In order to suppress the speckle, the scattered light intensity is ensemble-averaged 
over several simulations, each corresponding to a different random arrangement of cylinders 
within the rectangular cluster.  As shown in Fig. 2(b), after averaging over 40 PSTD 
simulations, the speckle contribution is significantly suppressed; and the formerly obscured 
EBS peak becomes visible.  
        Figure 2(c) illustrates how frequency-averaging can further suppress speckle.  Due to 
coherent interference effects, speckle occurs at different angular locations for different 
wavelengths.  Here, speckle is significantly reduced by averaging over 50 PSTD-computed 
scattered intensities corresponding to slightly different incident frequencies within a small 
frequency range centered at f0.  This is similar to experimental observations of EBS using 
non-monochromatic illumination with a temporal coherence length of 10 μm.  (The 50 PSTD-
computed scattered intensities correspond to 50 frequencies evenly spaced between 1.05*f0 
and 0.95*f0.  An estimated 16 modes are averaged in the process to suppress speckle.)  As 
shown in Fig. 2(c), following frequency-averaging, the EBS peak is clearly visible, showing a 
significant correlation with experimental results reported by Tomita and Ikari [17].  We 
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believe this to be the first report of direct observation of the EBS peak from numerical 
experiments based upon Maxwell’s equations, without employing indirect transformations or 
heuristic approximations. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2. PSTD-computed enhanced backscattered light (EBS) as a function of backscattering 
angle.   0° corresponds to direct backscattering at 15° from the normal.  (a) Two examples of 
scattered light intensities, corresponding to two different rectangular clusters each consisting of 
N = 10,000 cylinders, as shown in Fig. 1.  (b) Ensemble average of 40 different rectangular 
clusters, showing a significant amount of speckle that partially obscures the EBS peak.  (c) 
After averaging over 50 closely spaced frequencies, the speckle is significantly reduced and the 
EBS peak can be clearly seen. 

Figure 3 compares the angular distribution of the PSTD-computed EBS peak with that 
obtained using standard EBS theory based on the diffusion approximation [18]:  
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where l = transport mean free path length; 2q πθ λ= ; 0 2 3z l= ; * denotes a convolution; 

and SF(θ) is the far-field scattering function for a homogeneous slab of the same size 
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illuminated by a plane wave.  We observe a good agreement between the PSTD simulations 
and the benchmark EBS theory. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Comparison of PSTD-computed EBS peaks (solid lines) for three wavelengths with 
theoretical benchmark results (dash-dotted lines) for rectangular clusters consisting of N 
cylinders.  (a)-(c) correspond to N = 10,000 cylinders with ls’= 65.0 μm, 41.5 μm, and 37.7 μm, 
respectively; (d)-(e) correspond to N = 20,000 cylinders with ls’= 32.5 μm, 20.7 μm, and 18.9 
μm, respectively.  The PSTD calculations are in good agreement with the benchmark theory. 

6. Summary and discussion  

We have reported a new PSTD simulation technique for the EBS phenomenon which permits 
numerical solution of Maxwell’s equations for millimeter-volume random media consisting of 
micrometer-scale inhomogeneities of arbitrary shape, size, spacing, and composition.  In 
addition, we have shown that speckle arising from these simulations can be reduced 
significantly by a frequency-averaging method.  We believe this to be the first direct 
numerical simulation of the EBS phenomenon from Maxwell’s equations without employing 
indirect transformations or heuristic approximations.   

While the specific results reported in this paper are for two-dimensional problems that 
potentially can be solved using existing approaches, it should be understood that our method 
is directly extendible and applicable to full-vector solutions of Maxwell’s equations in three 
dimensions.  In fact, we have developed computer programs for this purpose, and will report 
fully three-dimensional results in subsequent papers utilizing the resources currently available 
on the NSF TeraGrid.  A broad implication of this work is the emerging feasibility of 
computational biophotonics based upon the full-vector Maxwell’s equations in three 
dimensions. 

Acknowledgments 

The authors thank Hariharan Subramanian for insightful comments.  In addition, the authors 
thank the NIH National Cancer Institute Contract Grants 5R01-CA085991 and 5R01-

−1 0 1
0.5

1

1.5

2

backscattering angle (deg)

S
ca

tte
re

d 
In

te
ns

ity

(a) λ= 2μm, N= 10000

ls′ = 65μm

−1 0 1
0.5

1

1.5

2

backscattering angle (deg)

S
ca

tte
re

d 
In

te
ns

ity

(d) λ= 2μm, N= 20000

ls′ = 32.5μm

−1 0 1
0.5

1

1.5

2

backscattering angle (deg)

(b) λ= 1.52μm, N= 10000

ls′ = 41.5μm

−1 0 1
0.5

1

1.5

2

backscattering angle (deg)

(e) λ= 1.52μm, N= 20000

ls′ = 20.7μm

−1 0 1
0.5

1

1.5

2

backscattering angle (deg)

(c) λ= 1μm, N= 10000

ls′ = 37.7μm

−1 0 1
0.5

1

1.5

2

backscattering angle (deg)

(f) λ= 1μm, N= 20000

ls′ = 18.9μm

(C) 2005 OSA 16 May 2005 / Vol. 13,  No. 10 / OPTICS EXPRESS  3671
#6959 - $15.00 US Received 25 March 2005; revised 18 April 2005; accepted 2 May 2005



HD044015, NSF Grant BES-0238903, and NSF TeraGrid Grant No. MCB040062N for their 
support of this research.  This work was performed in part under the auspices of the U.S. DOE 
by UC, LLNL under Contract W-7405-Eng-48.  Young L. Kim was supported in part by the 
cancer research and prevention foundation.  Snow H. Tseng’s email address is 
snow@ece.northwestern.edu. 

 
 

(C) 2005 OSA 16 May 2005 / Vol. 13,  No. 10 / OPTICS EXPRESS  3672
#6959 - $15.00 US Received 25 March 2005; revised 18 April 2005; accepted 2 May 2005


