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■■ Who were the most important 
contributors to Maxwell’s equations?
Clearly, the work of Faraday and Ampere 
was essential for Maxwell to achieve his 
unification. Had their experiments not 
taken place, Maxwell would have had no 
physical basis. Their results founded the 
very thought that there was a missing term, 
the displacement current.

However, there should be no question 
that the laws of classical electrodynamics 
are really Maxwell’s discovery. Not only did 
he add the displacement current term, he 
really put everything together, albeit with 
20 equations and 20 unknowns. To this 
day his achievement remains the physical 
basis of much of the electro-technology 
that separates our society from that of the 
nineteenth century.

■■ Did they realize the impact at that time?
Scientists of Maxwell’s era could have 
no idea of the impact of his synthesis. 
They didn’t even understand the 
fundamental concept of electromagnetic 
wave propagation, requiring a 
‘luminiferous aether’ for this function. 
Commonplace modern technology 
dependent on Maxwell’s equations, such as 
smartphones, would absolutely mystify the 
scientists of Maxwell’s time.

■■ Up to the 1950s, what types of problems 
were tackled?
There was fundamental work related to 
plane electromagnetic wave propagation 
and reflection/refraction at material 
interfaces, as well as foundational 
work on radiation from electric and 
magnetic dipoles.

Notably, the Sommerfeld half-plane 
problem was arguably the first solved 
problem in diffraction theory. Subsequently, 
this led to advances in integral equation 
techniques and the Wiener–Hopf 
method — powerful techniques in applied 
mathematics that persist to this day.

Sommerfeld and Brillouin precursors 
were theoretically predicted in the first 
decade or two of the twentieth century. 
Other important results include Mie 
(eigenfunction) solutions of time-
harmonic plane-wave interactions with 
spheres and infinite cylinders of circular 
cross-section, eigenfunction solutions 

of time-harmonic propagation in metal 
waveguides, Schelkunoff ’s field equivalence 
theorems and Bethe’s theory of diffraction 
by small holes.

■■ Tell us about Kane Yee and his 
pioneering work on the numerical solution 
of Maxwell’s equations.
Yee’s paper published in May 1966 
represented a complete paradigm shift 
in how to solve Maxwell’s equations 
(IEEE Trans. Antennas Propag. 14, 302–307; 
1966). Essentially all previous solution 
techniques were based on Fourier-domain 
concepts in the broadest sense. By this, 
I mean an a priori assumption of one or 
more of the following: a time-harmonic 
(sinusoidal steady-state) variation of 
all field quantities; a particular set of 
spatial modes; a particular geometry-
appropriate Green’s function; a particular 
integral equation projected to a particular 
abstract function space; and perhaps a 
particular short-wavelength asymptotic 
field behaviour.

In essence, Yee’s technique advanced 
the electromagnetic field directly in space 
and time, just as occurs in nature, with 
no fundamental assumptions other than a 
particular space-time discretization. If any 

spatial modes were present, they would 
evolve from the background as an emergent 
property of the system. The same could be 
said for the Green’s function.

Not many people know that Kane Yee 
was simply learning how to program in 
Fortran, as he told me 20 years later. He 
chose Maxwell’s time-dependent curl 
equations as the basis of his self-study 
because he wanted an initial-value problem 
that had both time and space derivatives.

Yee’s technique required dimensionally 
less computer storage and running time 
for modelling electromagnetic wave 
interactions with material structures 
of volumetric complexity greater than 
anything previously reported in the 
literature. Furthermore, it allowed 
the solution of impulsive, broadband 
electromagnetic wave interactions 
using just a single modelling run, and 
permitted a natural, direct incorporation of 
material nonlinearities.

However, Yee’s paper had several 
deficiencies including an incorrect 
numerical stability condition and a 
computationally inefficient means to 
generate the incident electromagnetic 
wave as an initial condition. Furthermore, 
Yee’s use of perfectly reflecting walls as 
the outer boundaries of his computation 
space prevented the modelling of important 
open-region problems involving radiation 
and scattering. Finally, he reported no 
confidence-building validations.

■■ How did you get involved with 
numerically solving the equations?
In 1972, during a seminar course at 
Northwestern University, my graduate 
adviser, Professor Morris Brodwin (who 
sadly passed away in November 2014), 
asked me to look at the problem of assessing 
microwave exposure levels causing 
human ocular cataracts, which had been 
reported during the Second World War by 
radar technicians. I initially thought that 
Brodwin’s problem was intractable as it 
seemed to require the solution of around 
100,000 E- and H-field vector components. 
In 1972, the best computers could solve 
for only a few hundred field components 
using the available time-harmonic integral-
equation techniques, which required 
generating and inverting large matrices.

Numerical solution
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Having almost given up on Brodwin’s 
problem, I spotted Yee’s 1966 paper by 
accident while randomly leafing through 
back issues of journals. I had seen no 
citations to Yee. The thought occurred 
that, using Yee’s technique, I could cram 
the volumetric human eye model into 
Northwestern’s Control Data CDC-6400 
computer. Yee’s incorrect numerical 
stability bound caused me considerable 
grief for a while until I derived the correct 
limit, and proceeded to code simple 
two-dimensional grids.

To his credit, Brodwin agreed to let 
me pursue this topic for my PhD thesis, 
even though it was not in the mainstream 
of his research. By 1975, my algorithm 
development, coding and validations 
had progressed to the point where a fully 
three-dimensional model of the microwave-
irradiated human eye could be implemented. 
That year I published my results in two 
papers in IEEE Transactions on Microwave 
Theory and Techniques and earned my 
PhD. But, like Yee’s paper, my work 
remained uncited.

In the late 1970s the US Air Force Rome 
Air Development Center (RADC) was 
faced with a problem whereby radar beams 
emitted by ‘friendly’ aircraft caused one 
of its air-to-air missiles to go haywire. All 
attempts at modelling this problem had 
failed because the missile’s internal geometry 
was far too complex. In 1977, employed as 
a staff engineer at IIT Research Institute in 
Chicago (IITRI), I proposed that RADC 
allow me to tackle the problem. Given the 
go-ahead, I adapted the Fortran code used 
for my PhD thesis to run efficiently on the 
new Control Data STAR-100 supercomputer, 
which had enough fast memory to contain 
the required 800,000 field-vector unknowns. 
I subsequently succeeded in determining the 
precise failure mechanism of the missile and 
the radar frequency at which the problem 
occurred. RADC was impressed. At this 
point, I was solving problems 1,000 times 
more complex (in terms of field-vector 
unknowns) than possible using Fourier-
domain techniques.

Based on my work for RADC, I coined 
the descriptor ‘finite-difference time-
domain’ and the acronym FDTD in a 1980 
paper (IEEE Trans. Electromagn. Compat. 
EMC-22, 191–202; 1980). (Google Scholar 
currently shows 75,000 results for the search 
term ‘finite-difference time-domain’). I knew 
that I had found a powerful tool. Unlike 
Yee, I didn’t drop the subject for 20 years — 
I ran with it, determined to convince 
the community! 

To this end, in the 1980s my IITRI 
colleague, Korada Umashankar, and I 
published the first rigorous validations 

of FDTD for the surface currents and far 
fields of 2D and 3D scattering objects, 
and electromagnetic coupling to wires 
and wire bundles located in free space 
or in multi-resonant cavities. After I 
joined Northwestern University in 1984, 
Evans Harrigan at Cray Research kindly 
arranged free access to Cray’s corporate 
supercomputers, enabling the solution 
of ultralarge problems that no one 
could ignore.

■■ It seems like it took decades for the 
technique to become widespread.
During most of the twentieth century, the 
engineering electromagnetics community 
was wedded to Fourier-domain concepts 
in the broadest sense, as mentioned earlier. 
FDTD was ignored, and at times even 
ridiculed. One such episode remains burned 
into my memory. In 1986, an internationally 
known professor actually laughed at me 
in an open meeting that had been called 
to consider the future of computational 
electromagnetics, because of my use of 
supercomputers. Pointing directly at me, he 
joked: “Look at Taflove over there. When 
he wakes up in the morning, he gets down 
on his knees, bows his head, and says, 
‘And now, let us Cray’.” I was speechless 
and terrified — not yet being tenured at 
Northwestern University.

Nevertheless, I was granted tenure — and 
my research group continued to advance 
FDTD theory, algorithms and applications. 
These included the treatment of linear and 
nonlinear lumped circuit elements coupled 
to the electromagnetic field, curved surfaces 
in the context of Yee’s Cartesian grid, and 
linear and nonlinear frequency-dispersive 
media. Our latter advance resulted in 
the first solutions directly from the time-
dependent Maxwell’s curl equations of the 
Sommerfeld and Brillouin precursors, as 
well as temporal and spatial optical solitons. 

With advances in supercomputing, by 
the 1990s and early 2000s we were time-
marching tens of millions to hundreds of 
millions of field-vector components to 
model entire aircraft for radar cross-section, 
to design complex phased-array antennas, 
to detect and image early-stage breast 
cancers using ultrawideband microwave 
radar, and to investigate ultra-low frequency 
geophysical phenomena within the global 
Earth-ionosphere waveguide.

A crucial event that helped popularize 
FDTD internationally was J-P. Berenger’s 
1994 publication of his split-field 
perfectly matched layer (PML) absorbing 
boundary condition (ABC) technique 
(J. Comput. Phys. 114, 185–200; 1994). Now, 
the computational dynamic range of FDTD 
modelling for open-region problems was no 

longer limited by the ~1% reflection error of 
previous ABCs. With PML, such errors were 
reduced to mere parts per million.

Subsequently, Berenger’s nonphysical 
split-field PML was reformulated to 
allow a potential physical realization 
via a stretched-coordinate mapping of 
Maxwell’s curl equations. This work 
arguably motivated subsequent research in 
transformation electromagnetics/optics that 
has achieved acclaim with its promise of 
‘invisibility cloaks’. Concurrently, we have 
seen a tremendous expansion of FDTD 
modelling efforts involving metamaterials, 
nanophotonics and plasmonics.

Most recently, collaborating with 
my Northwestern University colleague, 
Professor Vadim Backman, we applied 
FDTD to create a ‘microscope in a 
computer’. This tool solves Maxwell’s curl 
equations with nanometre resolution 
within a biological specimen. Then, it 
rigorously transforms the computed 
near-fields through various apertures and 
lenses all the way to the image plane, where 
individual colour pixels are synthesized. 
Using this tool, we deduced the physical 
basis of Vadim’s promising spectroscopic 
microscopy technique for early-stage cancer 
detection. Exciting!

■■ What is the big electromagnetics 
problem for the future?
I’m excited by the prospect of 
self-consistently linking the time-
domain Maxwell’s equations to 
quantum electrodynamics (QED) in a 
computationally efficient manner. Nature 
does this every attosecond — can we 
emulate that?

Some small steps are already being 
made in this direction. For example, recent 
publications reported FDTD models of 
nonlocal dielectric functions, and an FDTD 
treatment of the coupling of classical 
electrodynamics for a nanoparticle with 
electronic structure theory for a nearby 
molecule, as described using real-time time-
dependent density functional theory.

I foresee FDTD models of individual 
photons and vacuum fluctuations leading 
to the evolution of the Casimir effect 
directly in the time domain, models of the 
temporal dynamics of a variety of tunnelling 
phenomena and a deep investigation of 
quantum plasmonics.

Overall, I see the development of 
rigorous computational models of the 
time-dependent physics of nanometre-scale 
structures communicating their QED-based 
physical phenomena to the macroscopic 
world via Maxwell’s equations.
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