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The third edition of Allen Taflove’s and
Susan Hagness’s FDTD book is a thousand
pages providing a comprehensive treat-
ment of the method from fundamental
principles and formulation to the latest
developments and applications. As the
development and application of the FDTD
method has grown, so has the scope of the
material in this book. Four new Chapters
have been added that relate to new devel-
opments in the field since the second edi-
tion, and revisions and/or material have
been added to existing Chapters to
enhance clarity or expand the treatment.
Overall, it is a wonderful text for a new-
comer to the method suitable to practicing
engineers and scientists, as well as a uni-
versity course for senior level undergradu-
ates or beginning graduate students. Fur-
ther, it is sufficiently comprehensive and
provides a good reference on aspects of the
latest developments in the FDTD method.
The fundamental material comprises
Chapters 2-10, and applications and more
recent developments in FDTD are given in
Chapters 11-20. The preface to the Third
Edition provides a very nice overview of
the new material added.

The FDTD method in the past 40 years
has grown from an academic endeavor,
kept alive by a handful of people, includ-
ing the senior author of this book, for at
least the first 20 of these, to being widely
applied across a wide range of engineering
and scientific problems. The list of appli-
cations 1s long and includes antennas, EM
and acoustic propagation, shielding, pack-
aging, signal integrity, power distribution
design 1n printed circuits, RF and
microwave circuits, photonics, and many
more. The primary attributes of the

leview

method are that it is easy to understand
and can be formulated directly from the
integral form of the Maxwell equations, is
simple to implement, can handle all types
of media, and electrodynamic phenomena

that can be incorporated into the Maxwell
equations, and can be, and is typically
robust and accurate, for a very wide class of
problems and range of applications. It is
not without its “warts”’, however, includ-
ing the computational resources required
to model practical problem spaces, and the
numerical rate of the problem solution
assoclated with marching the wave in time
throughout the computational domain.
This can be typically onerous for problems
where the mesh dimension is dictated by
geometry feature sizes. As the cost of
FLOPs and RAM continues to decrease, so
does this problem. Further, FDTD lends
itself very well to parallel implementation.
With a Linux cluster, and public domain
MPI routines, developing a parallel imple-
mentation of FDTD is cheap and easy.
Chapter 1 begins with an overview of
the FDTD method. Part of the Chapter is
“gee-whiz” examples of applications that
show the power of the method with com-
plex applications. The examples chosen are
complex and diverse to give the reader a
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notion of the span of applications. A time-
line of the FDTD development is also
given that provides some perspective on
the history and exploding interest in, and
applications of, the method. Chapter 1
also gives an overview of the nature of
space-grid time-domain methods that is
very helpful for newcomers to the FDTD
method. The extensive references in Chap-
ter 1 are also very nice. It 1s easy for one to
skip the introductory Chapter in a book,
however, this 1s one well worth reading!
Chapters 2-5 present fundamental
material of the FDTD method that begins
with a 1D formulation in Chapter 2 by
finite differencing the wave equation, and

proceeding with a discussion of stability
and dispersion. Stability and dispersion are
at the heart of whether a result is achieved
or the merits of the result with FDTD, and
an insighttul choice of treatment is pro-
vided here that gives the reader new to the
method a good perspective on numerical
stability and dispersion. Well-chosen
examples are illustrative. Proceeding to
Chapter 3, it is worth jumping to Section
3.0.8 -3.6.9, after reading Section 3.2,
which gives a formulation of the explicit
implementation that begins with the

Maxwell equations in integral form, and
shows the divergence less nature of the
method. Seeing the formulation begin-
ning from the integral equations gives a
very clear picture on the implementation
in space and time of the circulation inte-
grals. The preservation of the zero diver-
gence inherent in the Ampere and Faraday
laws as written in the Maxwell equations is
a critical aspect, and well worth noting.
The basic Yee algorithm (rectangular grid)
and the explicit difference equations for
the FDTD method are given in Chapter 3
as well. Chapter 3 concludes with an
application of alternate gridding options
within the method as applied to ELF wave
propagation around the earth. The imple-
mentation of these alternate grids is very
clear if the method is considered from the
discretization of the Maxwell equation cir-

culation integrals, and any such grid
where the E and H circulation integrals are




at right angles to each other.

Chapter 4 provides a substantial treat-
ment and discussion of numerical disper-
sion and stability. Numerical dispersion
will limit the accuracy of the FDTD solu-
tion. The dispersion relation gives the
propagation constant for the wave as a
function of direction. For a traveling wave,
this 1s related to wave speed. Since the
FDTD method 1s a discretization of the
exact equations, the wave speed as com-
pared to the actual continuous value is

lower, and depends on the number of

mesh cells per wavelength, but does
approach the continuous value, as the
mesh 1s made finer. Further, the dispersion
1s direction dependent, i.e., propagating
along one of the grid axes, as opposed to at
an angle with them will result in different
numerical wave speeds. The treatment is
sufficiently detailed to give the reader a
good understanding of dispersion, yet very
readable. Stability 1is also discussed in
Chapter 4 and the CFL stability criterion
shown, which essentially states that the
explicit FDTD algorithm can not be
stepped 1n time any faster than the wave
should be moving out in space and time.
If a speed = distance/time calculation
yields a delay for the wave from one point
to another, the wave cannot be stepped in
time, given a specific grid, to arrive
numerically before this time. A cautionary
note 1S given in Section 4.8 that I greatly
appreciate, which indicates that augment-

ing algorithms introduced on the basis of

approximations into the Yee scheme can in
general lead to late time instabilities. This
1S not to say that in many engineering
applications good results cannot be
achieved prior to this occurrence. Chapter
4 concludes with an overview of the alter-
nating-direction-implicit FDTD (ADI-
FDTD) where the time integrations are
done implicitly (matrix solution) as
opposed to the usual explicit time-march-
1ng equations.

Implementing source conditions into
the FDTD method is presented in Chapter
5. Sources can be introduced in two ways
1n wave motion, either directly into the
equations of motion, here the Maxwell
equations, or the wave equation as a forc-
ing ftunction. Alternatively, the sources
can be introduced as forcing functions
through the boundary conditions. In the
first case, these sources do not cause any
scattering for waves incident on them, and
are referred to as “soft” sources. Any wave
incident on this type of source moves right

through it as if it was transparent, and the
local field is a superposition of any incom-
1ing waves and the soft source. Alternative-
ly, the electric or magnetic fields can be
specified at some location(s) in the grid,
referred to as “hard” sources, and consti-
tute a boundary condition that results in
wave scattering from those grid cells.
Local hard- and soft-sources are discussed
in the first portion of the Chapter. Plane
wave excitation through a total-field/scat-
tered-tield formulation is presented in the
last half of the Chapter. Plane wave excita-
tion arises in applications that include
shielding, radar cross-section, and antenna
reception on complex structures, and the
detailed discussion is helpful to under-
stand how a plane wave can be synthesized
within the FDTD method. _
Absorbing boundary conditions for ter-
minating the FDTD mesh are given in
Chapters 6-7. Analytical methods for ter-
minating the mesh are presented in Chap-
ter 6. In one sense, the Chapter is a histor-
1cal overview of these approaches. Since the
FDTD grid must be truncated at some
point outside the scattering region for the
problem of interest, early methods sought
to ensure the Sommertfeld radiation condi-
tion, or out-going waves, at the truncation
boundary. These conditions were typically
formulated analytically. Accuracy and sta-
bility were always issues with these meth-
ods, though the additional computational
burden imposed for these cases was mod-
est. The perfectly-matched-layer (PML)
absorbing boundary condition introduced
by Berenger is presented in Chapter 7.
Essentially these layers terminate the
FDTD grid by applying a set of layers such
that there 1s zero reflection at the interface
between the terminated computational
domain and the PML region over all angles
of incidence, while attenuating the wave as
it propagates in the PML layers. Then, a
conducting sheet with perfect electric con-
ductor boundary conditions terminates the
PML layers. An overview of Berenger’s
original split field formulation is given.
Another formulation for perfectly matched
layers, i.e., uniaxial PMLs is detailed in
Chapter 7, and a computationally efficient
approach is provided in detail. This mater-
1al 1s more than academic, since the origi-
nal Berenger formulation can consume an
inordinate portion of the computation
time 1n many practical problems.
Near-field-to-tar-field transformation
1s presented 1n Chapter 8. Equivalent cur-
rents on a virtual surface obtained from

the fields on that surface, which in the
FDTD method i1s a rectangular box
around the scatterers, can be used to trans-
torm the near fields to the far fields. This
can be done after the time-domain simula-
tion 1s concluded, and Fourier transform-
ing the time history of the equivalent cur-
rents, or by a direct time-domain transfor-
mation. Both are discussed in Chapter 8.

Incorporation of dispersive, non-linear,
and gain materials into the FDTD method
are discussed in Chapter 9. There are many
aspects of the FDTD method that distin-
guishes it from integral equation or finite
element formulations, and ease of han-
dling these kinds of materials is one. The
dispersive properties over frequency for
many materials can be described as Debye,
Lorentzian, or a linear combination of
these types of terms. The corresponding
circuit behaviors are RC, or RLC circuits —
both under damped and critically
damped. Since the material behavior satis-
fies the Kramers-Kronig relations (ensur-
ing causality), it can be incorporated into
the FDTD equations in a-self-consistent,
and stable manner. Two methods have
been developed for doing this, i.e., a recur-
sive convolution approach that is well
suited to FDTD, or an auxiliary differen-
tial equation (ADE) approach, and both
are detailed in Chapter 9. Modeling of
non-linear phenomena using an ADE is
demonstrated with optical solution propa-
gation, and the ADE approach for model-
ing lasing in a four-level, two-electron
atomic system 1s also presented.

Another distinguishing feature of the
FDTD method 1s the ease of developing
and 1ntegrating local sub-cell models,
which are presented in Chapter 10 for sev-
eral significant cases including slots,
curves on conducting surfaces, thin wires,
thin material sheets, and conductor skin-
etfect losses. With these models, feature
sizes smaller than the grid dimensions can
be modeled without having to mesh down
to fine dimensions. Section 10.5, which
presents a sub-cell model for a thin wire,
illustrates very well the manner in which
appropriate field behavior asymptotics can
be integrated into the FDTD method, as
long as the physics are self-consistent. The
examples given in Chapter 10 are impor-
tant, but the underlying methodology is
more widely applicable. A selected biogra-
phy at the end of the Chapter provides
wider reading in this regard.

The second half of the book in Chap-

ters 11-20 are devoted to applications,




recent developments, and more specialized
topics. Non-uniform, non-orthogonal
unstructured grids, and sub-grids are dis-
cussed in Chapter 11. A limitation 1n the
time-honored Yee FDTD algorithm 1s
accurate boundary fitting within a scatter-
ing problem. Because the algorithm 1s on
a structured mesh where the E and H cir-
culation integral loops are interleaved, and
in planes that are orthogonal to each other,
typically a rectangular coordinate system,
material boundaries are approximated in a
stair-step fashion. This leads to either
crudely approximated boundaries, or a
very fine mesh to approximate a boundary
that may have small radii of curvature, as
well as potential eleccromagnetic artifacts
of the stair casing itself, all of which are
undesirable. A generalized Yee algorithm
is discussed in Chapter 11 that allows for
non-orthogonal hexahedral cells used 1n a
general, unstructured mesh. These general
cells can then be used for boundary fitting
with a planar or linear approximation in a
similar fashion that is a strength of the
finite element method. Sub-gridding is
also discussed in Chapter 11, where a
locally reduced mesh is embedded in a
larger mesh dimension.

Chapter 12 and 13 are more specialized
Chapters that present FDTD applied to
bodies of revolution and periodic struc-
tures. The FDTD method for bodies of
revolution that are most naturally mod-
eled in a cylindrical coordinate system 1is
given in Chapter 12. The discussion pro-
ceeds by discretizing the Ampere and
Faraday laws in integral form of the
Maxwell equations. The discussion 1s
detailed and easy to follow for this class of
problems. Modeling of periodic structures
is presented in Chapter 13. Typical appli-
cations are frequency selective surfaces and
electromagnetic bandgap structures for
selective shielding and filtering applica-
tions, as well as large antenna arrays. Dif-
ferent approaches for modeling periodic
structures are presented, as well as discus-
sions of stability and dispersion. Again,
this Chapter is more specialized, but cov-
ers a class of problems of growing impot-
tance in a clear and concise fashion.

Modeling of antennas with FDTD 1is
presented in Chapter 14. The first portion of
the Chapter focuses on modeling the anten-
na feed and the temporal variation of the
source. The discussion and figures provide
good insight into modeling with FDTD 1n
general, though the application is specific to
antennas. The specific examples are probe-

fed bow-tie monopoles, and probe-fed wave-
guide horn antennas. Other specific antenna
examples are given, including a detailed
case-study for a tri-band cellular telephone
radiating near a human head model, which
gives not only an example of the power and
utility of the method, but how to apply it
for practical engineering.

Modeling of printed circuits with lin-
ear passive and non-linear active loads 1s
detailed in Chapter 15. Integrating
lumped circuit elements into the FDTD
formulation is shown in detail, including
general two terminal lumped networks.
Direct linking of FDTD and SPICE is also
discussed. Specific examples are given for
modeling of power distribution 1n a
multi-layer printed circuit board, and a 6

GHz MESFET amplifier. Extrapolation of

an FDTD time-history, and interpolation
of frequency spectra are also considered 1n
a section of this Chapter. '
Chapter 16 on photonics applications
of FDTD is the longest Chapter in the
book, with a very extensive set of refer-
ences. The Chapter focuses on FDTD
modeling and results for specific optical
devices including coupled micro cavity
ring and disk resonators, a coupled race-
track device, distributed Bragg reflector
devices, a VCSEL device, and photonic
bandgap structures. The FDTD method 1s
ideally suited to modeling the dispersive
nature of the optical materials either
through an auxiliary differential equation,
or using recursive convolution, methods

- given in Chapter 9. FDTD modeling, and

the results for the various structures are
presented and discussed with an emphasis
on extracting relevant physics and perfor-
mance analysis. Analysis and design of
optical components and devices has histor-
ically relied on analytical solutions. Chap-
ter 16 clearly details the suitability of
FDTD for these problems and the engi-
neering design discovery that it allows.
‘Chapter 17 and Chapter 18 are on top-
ics that are at the research boundary in the
time-domain solutions of the Maxwell
equations. Chapter 17 on advances of pseu-
do-spectral time domain techniques gives
an overview of other approaches besides
central differencing for approximating the
spatial derivatives in the differential form
of the Maxwell equations. The advantage 1s
a more rapid decrease in numerical disper-
sion error as the mesh dimension decreases.
An underlying framework for uncondition-
ally stable time-domain algorithms 1s
given in Chapter 18. The discussion 1s

entirely mathematical in nature, but pro-
vides a nice treatment on properties of
these algorithms in a concise manner.

A hybrid FDTD/time-domain finite
element approach is described in Chapter
19. One of the shortcomings of the classic
Yee algorithm is the need for a structured,
rectangular mesh. A significant advantage
of the finite element method is that 1t in
general is applied to an unstructured.
mesh, and a great deal of effort has been
invested over the years in developing suit-
able mesh generators. A hybrid FDTD-FE
method seeks to take advantage of the
suitability of finite elements for boundary
fitting in an unstructured mesh, while
using FDTD in all its simplicity in deal-
ing with the spatial derivatives, and
robustness in the larger volume of the
computational domain. An overview of
the chronology of attempts at a hybrid
FDTD-TDFEM approach is given. Typi-
cally these approaches have exhibited late-
time instabilities. A brief overview of the
FE method is given including a descrip-
tion of several element geometries. Treat-
ment of the FDTD-TDFEM interface is
discussed, and a proof of stability is given.

Implementing the Yee algorithm in
hardware is discussed in Chapter 20. A
brief overview of efforts in this area 1s
given, as well as a discussion of the hard-
ware implementation. The merits of
FPGA and graphical processing units as
the underlying hardware platforms are
presented. In short, the approach is to
exploit the inherent parallelism 1n the
FDTD method and to achieve gains over
paralleling on multiple PC platforms
using software by implementing the
method on silicon over several processors.
These ideas and the implementation are
still somewhat embryonic, however, the
importance of considering electromagnet-
ic interactions in the development and
design of high-speed and wireless elec-
tronics and the large computational bur-
den of such problems as one example will
continue to provide impetus in this area.

Overall, I find this to be a wonderful
book, both as a learning resource and a ref-
erence. The treatment of fundamental con-
cepts and historical developments 1n the
first half of the book are detailed and easy
to follow. The second half of the book
detailing applications and recent develop-
ments is a good ready reference, and in
general the references at the end of each
Chapter provide good guidance on explor-
ing a topic in more detail. EMC



