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Abstract- This article, based upon invited papers
at the XXII URSI Generail Assembly (Tel Aviv, August
1987) and the URSI National Radio Science Meeting
(Boulder, January 1988), reviews recent applications
of the finite-difference time-domain (FD-TD)} method
for numerical modeling of electromagnetic wave
scattering and interaction problems. One of the goals
of this article is to demonstrate that recent advances
in FD-TD modeling concepts and software implementa-
tion, combined with advances in computer technology,
have expanded the scope, accuracy, and speed of FD-TD
modeling to the point where it may be the preferred
choice for structures that cannot be easily treated by
conventional integral equation and asymptotic
approaches. As a class, such structures are electric-
ally large and have complex shapes, material composi-
tions, apertures, and interior cavities.

1. INTRODUCTION

Contemporary high-frequency electromagnetic
engineering problems can involve wave interactions
with complex, electrically-large three-dimensional

structures. These structures can have shapes,
material compositions, apertures, or cavities which
produce near fields that cannot be resolved into

finite sets of modes or rays. Proper numerical model-
ing of such near fields requires sampling at sub-
wavelength resolution to avoid aliasing of magnitude
anc¢ phase information. The goal is to provide a self-
consistent model of the mutual coupling of the
electrically small cells comprising the structure.

A candidate numerical modeling approach for this
purpose is the finite-difference time-domain (FD-TD)
solution of Maxwell's curl equations. This approach
is analogous to existing finite-difference solutions
of fluid flow problems encountered in computational
aerodynamics, in that the numerical model is based
upon a direct solution of the governing partial
differential equation. Pursuing this analogy, FD-TD
shares ‘the computational requirements of the fluids
codes (and other similar large-scale partial differ-
ential equation solvers) in terms of computer floating
point arithmetic rate, primary random access memory
size, and data bandwidth to secondary memory. Yet,
FD-TD is a non-traditional approach to numerical
electromagnetic  modeling, where  frequency-domain
approaches have dominated.

One of the goals of this article is to demonstrate
that recent advances in FD-TD modeling concepts and
software implementation, combined with advances in
computer technology, have expanded the scope, accuracy
and speed of FD-TD modeling to the point where it may
be the preferred choice for certain types of scatter-
ing and coupling problems. With this in mind, this
article will succinctly review the following recent
FD-TD modeling validations and research frontiers:
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1. Scattering models for three-dimensional reentrant
structures spanning up to 9 wavelengths;

Conformal models of curved surfaces;

Scattering models for two-dimensiona1’anisotropic
structures;

4, Penetration models for narrow slots and lapped
Joints in thick screens;

5. Coupling models for wires and wire bundles in
free space and in arbitrary metal cavities;

6. Penetration models for the electromagnetic fields
within detailed, inhomogeneous tissue approxima-
tions of the complete human body (at UHF
frequencies);

Microstrip and microwave circuit models;

8. Scattering models for relativistically vibrating
mirrors;
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9. - Inverse scattering reconstruction of one-
dimensional, = spatially coincident profiles of
electrical permittivity and conductivity;

10. Inverse scattering reconstruction of  two~
dimensijonal conducting, homogeneous, and inhomo-
geneous dielectric targets from minimal TM.

scattered field pulse response data; and
11, Large-scale computer software.

2. GENERAL CHARACTERISTICS OF FD-TD

As stated, FD-TD is a direct solution of Maxwell's
time-dependent curl equations. It employs no
potentials. Instead, it applies simple, second-order
accurate centrat-difference approximations [11 for the
space and time derivatives of the electric and
magnetic fields directly to the respective differen-
tial operators of the curl equations. This achieves a
sampled-data reduction of the continuous electro-
magnetic field in a volume of space, over a period of
time. Space and time discretizations are selected to
bound errors in the sampling process, and to insure
numerical stability of the algorithm [2]. Electric
and magnetic field components are interleaved in space
to permit a natural satisfaction of tangential field
continuity conditions at media interfaces. Overall,
FD-TD.is a marching-in-time procedure which simulates
the continuous actual waves by sampled-data numerical
analogs propagating in a data space stored in a
computer. At each time step, the system of equations
to update the field components is fully explicit, so
that there is no need to set up or solve a set of
Tinear equations, and the required computer storage
and running time is proporticnal to the electrical
size of the volume modeled.
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Figure 1. Time-Domain Wave-Tracking Concept of the FD-TD
Method

Fig. 1 illustrates the time-domain wave tracking
concept of the FD-TD method. . A region of space within
the dashed lines is selected for field sampling in
space and time. At time = 0, it is assumed that all
fields within the numerical sampling region are
identically zero. An incident plane wave is assumed
to enter the sampling region at this point. Propaga-
tion of the incident wave is modeled by. the commence-
ment of time stepping, which is simply the implementa-
tion of the finite-difference analog of the curl
equations. Time stepping continues as the numerical
analog of the incident wave strikes the modeled target
embedded within the sampling region. A1l outgoing

Continued on page 7
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scattered wave analogs ideally propagate through the
lattice truncation planes with negligible reflection
to exit the sampling region. Phenomena such as
induction of surface currents, scattering and multiple
scattering, penetration through apertures, and cavity
excitation are modeled time-step by time-step by the
action of the curl equations analog. Self-consistency
of these modeled phenomena is generally assured if
their spatial and temporal variations are well
resolved by the space and time sampling process.

Time stepping is continued until the desired late-
time pulse response or steady-state behavior is
achieved. An important example of the latter is the
sinuscidal steady state, wherein the incident wave is
assumed to have a sinusoidal dependence, and time
stepping is continued until all fields in the sampling
region exhibit sinusoidal repetition. This is a
consequence of the limiting amplitude principle [3].
Extensive numerical experimentation with FD-TD has
shown that the number of complete cycles of the
incident wave required to be time-stepped to achieve
the sinusoidal steady state is approximately equal to
the Q factor of the structure or phenomenon being
modeled.
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Fig. 2 1illustrates the positions of the electric
and magnetic field components about a unit cell of the
FD-TD lattice in Cartesian coordinates [1]. Note that
each magnetic field vector component is surrounded by
four circulating electric field vector components, and
vice versa. This arrangement permits not only a
centered-difference analog to the space derivatives of
the curl equations, but also a natural geometry for
impiementing the integral form of Faraday's Law and
Ampere's Law at the space-cell Tlevel. This integral
interpretation permits a simple but effective modeling
of the physics of smoothly curved target surfaces,
penetration through narrow slots having sub-cell gaps,
and coupling to thin wires having sub-cell diameters,
as will be seen later.

Fig. 3 illustrates how an arbitrary three-
dimensional scatterer is embedded in an FD-TD space
lattice comprised of the unit cells of Fig. 2.
Simply, desired values of electrical permittivity and
conductivity are assigned to each electric field
component of the lattice. Correspondingly, desired
values of magnetic permeability and equivalent
conductivity are assigned to each magnetir field
component of the lattice. The media parameters are
interpreted by the FD-TD program as local coefficients
for the time-stepping algorithm. Specification of
media properties in this component-by-component manner
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Figure 3. Arbitrary Three-Dimensional Scatterer Embedded in a
FD-TD Lattice

results in a stepped-edge, or staircase, approxima-
tion of curved surfaces. Continuity of tangential
fields is assured at the interface of dissimilar media
with this procedure. There is no need for special
field matching at media interface points. Stepped-
edge approximation of curved surfaces has been found
to be adequate in the FD-TD modeling problems studied
in the 1970's and early 1980's, including wave inter-
actions with biological tissues [4], penetration into
cavities [5], [6], and electromagnetic pulse (EMP)
interactions with complex structures [7]1-1[9].
However, recent interest in wide dynamic range models
of scattering by curved targets has prompted the
development of surface-conforming FD-TD approaches
which eliminate staircasing. These will be summarized
later in this article.

Region | :
interacting — | 'T:'oml
N ields
Structure | ™
-+4—Region 2 :
Connecting—}___] Scattered
Surfoce And Fields
Plane Wave
Source \
Lattice
Truncation
(a)
Region {: H
Total Fields . B - - -
Region 2: I A
Scottered *
Fields :
i:
(b)

Figure 4, Division of FD-TD Lattice into Total-Field and Scattered-
Field Regions. (a) Lattice division; (b) Field component
geometry at connecting plane y = jod [10], [11]

Fig. 4 1illustrates the division of the FD-TD
Tattice into total-field and scattered-field regions.
This division has been found to be very useful since
it permits the efficient simulation of an incident
plane wave in the total-field region with arbitrary

Continued on page 8



IEEE Antennas and Propagation Society Newsletter, April 1988

Feature Article—Continued from page 7

angle of incidence, polarization, time-domain
waveform, and duration [10], [11]. Three additional
important benefits arise from this lattice division.

a. A large near-field computational dynamic range
is achieved, since the scatterer of interest
is embedded in the total-field region. Thus,
Tow field levels in shadow regions or within
shielding enclosures are computed directly
without suffering subtraction noise (as would
be the case 1if scattered fields in such
regions were time-stepped via FD-TD, and then
added to a cancelling incident field to obtaiu
the low total-field levels).

b. Embedding the scatterer 1in the total-field
region permits a natural satisfaction of
tangential field continuity across media
interfaces, as discussed eariier, without
having to compute the incident field at
possibly numerous points along a complex locus
that is unique to each scatterer. The zoning
arrangement of Fig. 4 requires computation of
the incident field only along the rectangular
connecting surface between the total-field and
scattered~field regions. This surface is
‘fixed, i.e., independent of the shape or
composition of the enclosed scatterer being
modeled.

c. The provision of a well-defined scattered-
field region in the FD-TD lattice permits the
near-to-far field transformation illustrated
in Fig. 5. The dashed virtual surface shown
in Fig. 5 can be 1located along convenient
lattice planes in the scattered-field region
of Fig. 4. Tangential scattered E and H
fields computed via FD-TD at this virtual
surface can then be weighted by the free-space
Green's function and then integrated (summed)
to provide the far-field response and radar
cross section (full bistatic response for the
assumed illumination angle} [11]-[13]. The
near-field integration surface has a fixed
rectangular shape, and thus is independent of
the shape or composition of the enclosed
scattered being modeled.
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Figure 5. Near-to-Far Field Transformation Geometry
(a) Original problem; (b) Equivalent problem external to
the virtual surface, Sy [11]

Fig. 4 wuses the term "lattice truncation” to
designate the outermost lattice planes in the scat-
tered-field region. The fields at these planes cannot
be computed using the centered-differencing approach
discussed earlier because of the assumed absence of
known field data at points outside of the lattice
truncation. These data are needed to form the central
‘differences. Therefore, an auxiliary lattice trunca-
tion condition is necessary. This condition must be
consistent with Maxwell's equations in that an out-

going scattered-wave numerical analog striking the
lattice truncation must exit the Jattice without
appreciable non-physical reflection,. just as if the
lattice truncation was invisible. It has been shown
that the required lattice truncation condition 1is
really a radiation condition in the near field [10],
[14] - [17]. Further, it has been shown that
convenient local approximations of the exact radiation
condition can be generated and applied with good
results [10]-[17]. Based upon this -research, the
procedure for constructing more precise local approxi-
mations of the exact radiation condition is reasonably
well understood. These approximations are currently
under study for numerical implementation in the FD-TD
computer programs [18].

3. THREE-DIMENSIONAL FD-TD SCATTERING MODELS

Analytical and experimentail validations have been
obtained relative to FD-TD modeling of canonical
three-dimensional conducting targets spanning 1/3 to §
wavelengths [12], [13], [19], [20]. For brevity, only
one such validation will be reviewed here.
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Fig. 6. Geometry of Crossed-Plate Scatterer and Ilumination [13],

{191, {201

Fig. 6 depicts the geometry of a crossed-plate
scatterer comprised of two flat plates electrically
bonded together to form the shape of a "T". The main
plate has the dimensions 30 cm x 10 cm x 0.33 cm, and
the bisecting fin has the dimensions 10 cm x 10 cm X
0.33 cm. The iltumination is a plane wave at 0°
elevation angle and TE polarization relative to the
main plate, and at the frequency 9.0 GHz. Thus, the
main plate spans 9.0 wavelengths. Note that Tlook
angle azimuths between 90° and 180° provide substan-
tial corner refiector physics, in addition to the edge
diffraction, corner diffraction, and other effects
found for an isolated flat plate.

For the 9-GHz FD-TD model, the lattice cell size
is 0.3125 cm, approximately 1/11 wavelength. The main
plate is formed by 32 x 96 x 1 cells; the bisecting
fin is formed by 32 x 32 x 1 cells; and the overall
lattice is comprised of 48 x 112 x 48 celis (1,548,288
unknown field components) containing 212.6 cubic

Continved on page 9
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Fig. 7. Comparison of FD-TD Modeling with SRI Measurements of Monostatic Radar Cross Section for the Crossed-Plate
Scatterer at 9 GHZ (maximum scatterer size = 9 wavelengths) [13], {19], [20]

wavelengths. Note that the lattice truncations are
only 8 cells (0.75 wavelength) from the target's main
piate and fin edges. The siightly eccentric position-
ing of the bisecting fin is accounted for in the FD-TD
model .
661 time steps are used, equivalent to 31 cycles of
the incident wave at 9 GHz.

Measurements of the monostatic radar cross section
(RCS) vs. look angle azimuth were performed in the
anechoic chamber facility operated by SRI Internation-
al, Menlo Park, CA. Fig. 7 compares the FD-TD predic-
tions with the SRI measurements at 32 key look angles
which define the major features of the RCS response.
It is seen that the agreement is within about 1 dB
over a total RCS-pattern dynamic range of 40 dB.
Locations of peaks and nulls of the pattern are
accurately predicted to within 1° of azimuth. Note
especially the excellent agreement for 1lock angle
azimuths greater than 90°, where there is a pronounced
corner-reflector effect. As stated in [13], it
appears that this case (and similar three-dimensional
9-wavelength targets studied in [20]) represents the
largest detailed three-dimensional.numerical scatter-
ing models of any type ever verified wherein a
uniformly fine spatial resolution and the ability to
treat nonmetallic composition is incorporated in the
model.

4. TWO-DIMENSIONAL CONFORMAL MODELS
OF CURVED SURFACES

A key flaw in previous FD-TD models of conducting
structures with smooth curved surfaces has been the
need to use stepped-edge (staircase) approximations of
the actual structure surface. Although not a serious
problem for computing wave penetration and coupling
into low-Q metal cavities, recent FD-TD studies have
shown that stepped approximations of curved walls and
aperture surfaces can shift center frequencies of

Starting with zero-field initial conditions,

resonant responses-by 1% to 2% for Q factors of 30 to
80, and can possibly introduce spurious nulls. In the
area of scattering and RCS, the use of stepped
surfaces has prevented application of FD-TD for model-~
ing the important class of targets where surface
roughness, exact curvature, and dielectric or
permeable loading is crucial in determining RCS.

Recently, two different types of FD-TD conformal
surface models have been proposed and examined for
two-dimensional problems:

a. Faraday's Law _contour path models [21].
These preserve the basic Cartesian grid
arrangement of field components at all space
cells except those adjacent to the target
surface. Space cells adjacent to the surface
are deformed to conform with the surface
locus. S1ightly  modified time-stepping
expressions for the magnetic field components
adjacent to the surface are derived from the
integral form of Faraday's Law implemented
around the perimeters of the deformed cells.

b. Stretched, conforming mesh models {223, [23].
These employ available numerical mesh genera-
tion schemes to construct non-Cartesian grids
which are continuously stretched to conform
with smoothly shaped targets. Time-stepping
expressions are either adapted from the
Cartesian FD-TD case [22] or obtained via
analogy to the computational fluid dynamics
(CFD) case [23].

Research is ongoing for each of these types of
conformal surface models. Key questions include:
ease of mesh generation; suppression of numerical
artifacts such as instability, dispersion, and non-
physical wave reflections; coding complexity; and
modeling execution time.

Continued on page 10
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The accuracy of the Faraday's Law contour path
models for smoothly curved targets subjected to TE and
TM illumination is illustrated in Figs. 8 and 9,
respectively. Here, a moderate-resolution Cartesian
FD-TD grid {(having 1/20 wavelength cell size) is used
to compute the azimuthal or 1longitudinal current
distribution on the surface of a ka =5 circular
metal cylinder. For both polarizations, the contour
path FD-TD model achieves an accuracy of 1.5% or
better at most surface points relative to the exact
series solution. The worst-case error, only 3.5%,
occurs for the TE case at a point in the center-lit
region where contour deformation is maximum. Running
time for the conformal FD-TD model is essentially the
same as for the old staircase FD-TD model, since only
a few H components immediately adjacent to the target
surface require a slightly modified time-stepping
relation.

5. SCATTERING MODELS FOR TWO-DIMENSIONAL

ANISOTROPIC STRUCTURES

The ability to independently specify electrical
permittivity and conductivity for each £  vector
component in the FD-TD lattice, and magnetic permea-
bitity and eguivalent conductivity for each H vector
component, leads immediately to the possibility of

10

using FD-TD to model material targets having diagonal-
tensor electric and magnetic properties. No altera-

tion of the basic FD-TD algorithm is required. The

more complicated behavior associated with off-

diagonal tensor components can also be modeled, in

principal, with some algorithm complications [20].
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tudinal Surface Electric Current on A Kos = 5 Square
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Recent deveiopment of combined-field, coupled
surface integral equations for modeling scattering by
arbitrary shaped two-dimensional anisotropic targets
[24] has permitted detailed tests of the accuracy of
FD-TD anisotropic modeis. Fig. 10 illustrates one
such test. Here, the magnitude of the equivalent
surface electric current induced by TM illumination of
a square anisotropic cylinder is graphed as a function
of position along the cylinder surface for both the
FD-TD and combined-field integral egquation (CFIE)
models. The 1incident wave propagates in the +y
direction and has a +z-directed electric field. The
cylinder has an electrical size k s = 5, permittivity
e__ =2, and diagonal permeabi19ty tensor u__ =2
afid uyy = 4, From Fig. 10, we see that the FD2Tb and

CFIE results agree very well over almost everywhere on
the cylinder surface. Disagreement is noted at the
cylinder corners where CFIE predicts sharp local peaks
whereas FD-TD predicts local nulls. Studies are
continuing to resolve the corner physics issue.

6. PENETRATION MODELS FOR NARROW SLOTS

AND LAPPED JOINTS IMN THICK SCREENS

The physics of electromagnetic wave transmission
through narrow slots and lapped Jjoints in shielded
enclosures must be accurately understood to permit

Continved on page 11
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good engineering design of equipment to meet specifi-
cations for performance concerning electromagnetic
pulse (EMP), lightning, high-power microwaves (HPM),
electromagnetic interference and compatibility (EMI
and EMC), undesired radiated signals, and RCS. In
many cases, slots and joints may have very narrow gaps
filled by air, oxidation films, or layers of anodiza-
tion or paint. Joints can be simple (say, two metal
sheets butted together); more complex (a lapped or
“furniture" Jjoint); or even more complex (a threaded
screw-type connection with random points of metal-to-
metal contact, depending upon the tightening). Extra
complications arise from the possibility of electro-
magnetic resonances within the Jjoint, either in the
transverse or longitudinal (depth) direction.

Clearly, to make any headway with this complicated
group of problems using the FD-TD approach, it is
necessary to develop and validate FD-TD models which
can simulate the geometric features of generic slots
and joints. Since a key geometric feature is 1ikely
to be the narrow gap of the slot or joint relative to
one FD-TD space cell, it is important to understand
how sub-cell gaps can bé efficiently modeled.

Three different types of FD-TD sub-cell models
have been proposed and examined for modeling narrow
stots and joints:

a. Equivalent slot loading [25]. Here, rules
are set to define an equivalent permittivity
and permeability in a slot formed by a single-
cell gap to effectively narrow the gap to the
desired degree.

b. Subgridding [26]. Here, the region within the
slot or Joint is provided with a sufficiently
fine grid. This grid is properly connected to
the coarser grid outside of the slot.
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‘length.

¢. Faraday's Law contour path model [27]. Here,
space celis adjacent to and within the slot or
joint are deformed to conform with the surface
locus (in a manner similar to the conformal
curved surface model). Slightly modified
time-stepping expressions for the magnetic
field components in these cells are derived
from the integral form of Faraday's Law imple-
mented around the perimeters of the deformed

cells.
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Fig. 12a. Geometry of U-Shaped Lapped Joint For TE lllumination,
Shown to Scale [27]

The accuracy of the Faraday's Law contour path
model for narrow siots and joints is illustrated in
Figs. 11 and 12 by direct comparison of the computed
gap electric field against high-resolution numerical
benchmarks. Fig. 11 models a 0.1 wavelength thick
conducting screen which extends 0.5 wavelength to each
side of a straight slot which has a gap of 0.025 wave-
Broadside TE illumination: is assumed. Three
types of predictive data are compared: (1) The Tow-
resolution (0.1 wavelength) FD-TD model using the
contour path approach to treat the slot as a 1/4-cell
gap; (2) A high-resolution {(0.025 wavelength) FD-TD
model to treat the slot as a l-cell gap; and {3) A
high-resolution method of moments {(MOM) model (having
0.0025 wavelength sampling in the slot) which treats
the slotted screen as a pure scattering geometry.
From Fig. 11, we see that there is excellent agreement
between all .three sets of predictive data in both
magnitude and phase. Of particular interest is the
ability of the Tow-resolution FD-TD model, using the
contour path approach, to accurately compute the peak
electric field in the slot.

Continued on page 12
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Fig. 12b. FD-TD Computed Gap Electric Field Within the
0.45-Wavelength Path Length, U-Shaped Lapped Joint
(First Transmission Resonance):
(a) |Egap/Einc [5 (b) {Egap/H,(A) [27]

Fig. 12a shows the geometry of a U-shaped Tapped
joint which was selected for detailed study of path-
length (depth) power transmission resonances. The U
shape of the Jjoint permits adjustment of the overall
joint path length without disturbing the positions of
the input and output ports at A and F. A uniform gap
of 0.025 wavelength is assumed, as is a screen thick-
ness of 0.3 wavelength and width of 3 wavelengths.
Fig. 12b compares the gap electric field within the
joint as computed by: (1):A Jow-resolution, contour
path FD-TD model having 0.09 wavelength cell size and
treating the gap as 0.28 cell; and (2) A high-
resolution FD-TD model having 0.025 wavelength cell
size and treating the gap as 1 cell. The total path
length within the lapped joint is adjusted to equal
0.45 wavelength, which provides a sharp power trans-
mission peak to the shadow side of the screen. From
Fig. 12b, we see a very good agreement between the Tow
and high resolution FD-TD models, even though this is
a numerically stressful, resonant penetration case.
An implication of these results is that coarse (0.1
wavelength) FD-TD gridding can be effectively used to
model the fine-grained physics of wave penetration
through siots and Jjoints, if simple algorithm modifi-
cations are made in accordance with the contour path
approach. This can substantially reduce computer
resource requirements and coding complexity for FD-TD
models of complex structures, without sacrificing
appreciable accuracy in the modeling results.

7. COUPLING MODELS FOR WIRES AND WIRE BUNDLES

In equipment design for EMP, HPM, and EMI/EMC,
understanding electromagnetic wave coupling to wires
and cable bundles located within shielding enclosures
is a problem that is complementary to that of wave
penetration through apertures of the shield (such as
narrow slots and joints). Similar to the narrow slot
problem, a key dimension of the interacting structure,
in this case the wire or bundie diameter, may be small
relative to one FD-TD space cell. Thus, 1t is
important to understand how thin, sub-cell, wires and
bundies can be efficiently modeled if FD-TD is to have
much application to coupling problems.

Two different types of FD-TD sub-cell models have
been proposed and examined for modeling thin wires:

a. Eguivalent inductance [28]. Here, an eguiva-
Tent inductance is defined for a wire within a
space cell, permitting a lumped-circuit model
of the wire to be set up and computed.

b. Faraday's Law contour path model [29]. Here,
space cells adjacent to the wire are deformed
to conform with the surface locus (in a manner
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similar to the conformal curved surface
model).  1/r singularities of the azimuthal
magnetic field and radial electric field are
assumed to exist within the deformed cells.
Slightly modified time-stepping expressions
for the azimuthal magnetic field components in
these cells are derived from the integral form
of Faraday's Law implemented around the

perimeter of the deformed cells.
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Fig. 14. Comparison of FD-TD and MOM Solutions for the
Scattered Azimuthal Magnetic Field Distribution Along a
2.0-Wavelength Wire of Radius 1/300 Wavelength (Broad-
side TM illumination) {29]

The accuracy of the Faraday's Law contour path
model for thin wires in free space is illustrated in
Figs. 13 and 14. Fig. 13 graphs the scattered
azimuthal magnetic field at-a fixed distance of 1/20
wavelength from the center of an infinitely long wire
having a radius ranging between 1/30,000 and 1/30
wavelength. TM illumination is assumed. We see that
there is excellent agreement between the exact series
solution and the low-resolution (0.1 wavelength) FD-TD
contour path model over the entire 3-decade range of
wire radius. Fig. 14 graphs the scattered azimuthal
magnetic field distribution along a 2.0-wavelength
(antiresonant) wire of radius 1/300 wavelength.
Broadside TM illumination is assumed, and the field is
observed at a fixed distance of 1/20 wavelength from

Continued on page 13
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the wire center. We see that there 1is excellent
agreement between a MOM solution sampling the wire
current at 1/60 wavelength increments, and the low-
resolution (0.1 wavelength) FD-TD contour path model.

The FD-TD contour path model can be extended to
treat thin wire bundles, as well as single wires.
Fig. 15 shows the analytical validation results for
the induced currents on a bundle comprised of 4 wires,
where 3 are of equal length. Here, a wire of length
0.6 m (2.0 wavelengths) is assumed at the center of
the bundle, and three parallel wires of length:0.3 m
(1.0 wavelength) are assumed to be located at 120°
separations on a concentric circle of radius 6.005 m
(1/60 wavelength). The radii of all wires in the
bundle are equal and set to 0.001 m (1/300 wave-
length). The assumed excitation is in free space,
provided by a 1-GHz broadside TM plane wave. Follow-
ing the technique of [29], the bundle is replaced by a
single wire having varying equivalent radius corre-
sponding  to the three sections along the bundie axis.
The physics of the single wire of varying equivalent
radius is incorporated in a Tow-resolution (0.1 wave-
length) FD-TD contour path model, as discussed above.
The FD-TD model is then run to obtain the tangential
E and H fields at a virtual surface conveniently
Tocated at the cell boundary containing the equivalent
wire (shown as a dashed Tline in Fig. 15). These
fields are then utilized as excitation to obtain the
currents induced on the individual wires of the origi-
nal bundle. This last step is performed by setting up
an electric field integral equation (EFIE) and solving
via MOM. Fig. 15 shows an excellent correspondence
between the results of the hybrid FD-TD / MOM procedure
described above and the usual direct EFIE solution for
the induced current distribution on each wire of the
bundle.

The hybrid FD-TD / MOM procedure for modeling thin
wire bundles is most useful when the bundle is located
within a shielding enclosure. Fig. 17 shows the
experimental validation results for the variation of
induced load current with frequency for a single wire
and a wire-pair located at the center of the cylindri-
cal enclosure depicted in Fig. 16 [29]. The enclosure
is 1.0 m high, 0.2 m in diameter, and referenced to a
large metal ground plane. Approximate plane wave
excitation 1is provided by an electrically-large
conical monopole referenced to the same ground plane.
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Fig. 16. Geometry of the Cylindrical Shielding Enclosure and
Internal Wire or Wire-Pair [29]

Wave penetration inte the interior of the enclosure is
through a circumferential slot aperture (0.125 m arc
length, 0.0125 m gap) at the ground plane. For the
cases studied, an internal shorting plug is located
0.40 m above the ground plane. For the single-wire
test, a wire of length 0.30 m and radius 0.000495 m is
centered within the interior and connected to the
ground plane with a Tumped 5C-ohm load. For the wire-
pair test, paraliel wires of these dimensions are
Tocated 0.01 m apart, with one wire shorted to the
ground plane and the other connected to the ground
plane with a Tlumped 50-ohm load. A1l results are
normalized tc a 1 v/m incident wave electric field.
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Frequency (GHz)

Fig. 17(2)

From Fig. 17, we see that there is a good corre-
spondence between the measured and numerically modeled:
wire 1oad current for both test cases. The two-wire
test proved to be especially challenging since the:
observed Q factor of the coupling response (center

Continued on page 14
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Fig. 17. Comparison of Hybrid FD-TD / MOM Modeling Predic-
tions With Experimental Data For Induced Load Current:
(a) Single Wire in Shielding Enclosure; (b) Wire-Pair in
Shielding Enclosure [29]
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frequency divided by the half-power bandwidth) is
quite high, about 75. Indeed, it is found that the
FD-TD code has to be stepped through as many as 80
cycles to approximately reach the sinusoidal steady
state for excitation frequencies near the resonant
peak. However, substantially fewer cycles of time
stepping are needed away from the resonance, as
indicated in the figure.

8. PENETRATION MODELS FOR BIOLOGICAL TISSUES

Two characteristics of FD-TD cause it to be very
promising for modeling electromagnetic wave inter-
actions with biological tissues: (1) Electrical media
can be specified independently for each vector field
component, so tissues of enormous complexity can be
specified in principle; and (2) The required computer
resources for this type of detailed volumetric model-
ing are dimensionally low, only of order N, where N

is the number of space cells in the FD-TD lattice.
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Fig. 18. Comparison of FD-TD and Exact Solution for Penetrating
Electric Field Vector Components Within a Circular Muscle
- Fat Layered Cylinder, TE Polarization, 100 MHZ [30]
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Fig. 19a. FD-TD Computed Contour Map of the Specific Absorp-
tion Rate (SAR) Distribution Along a Horizontal Cut
Through the Head of the 3-D Inhomogeneous Man Model
(350 MHZ) [32]

In fact, one of the eariiest applications of FD-TD
involved the construction of detailed inhomogeneous
tissue models of the human eye to obtain predictive
data for UHF /microwave penetration and heating [4].

The emergence of supercomputers has recently
permitted FD-TD to be seriously applied to a number of
important bio-electromagnetic probliems. First, it was
shown that FD-TD provides excellent agreement with
series solutions for the penetrating field distribu-
tions within homogeneous and layered tissue cylinders
and spheres [30], [31]. Fig. 18, taken from [30],
shows the analytical vailidation results for the
penetrating electric field vector components within a
0.15 m radius muscle-fat layered cylinder. The inner
layer (radius = 0.079 m) is assumed to be comprised
of muscle having a relative permittivity of 72 and
conductivity of 0.9 S/m. The outer layer is assumed
to be comprised of fat having a relative permittivity
of 7.5 and conductivity of 0.048 S/m. TE illumination
at a frequency of 100 MHz is modeled. From Fig. 18,
we see that the FD-TD sotution for the internal fields
agrees very well with the exact solution, despite the
fact that a stepped-edge (staircase) approximation of
the circular tayer boundaries is used.

After validation of FD-TD models of penetrating
fields for canonical biological tissue shapes, atten-
tion ‘turned toward modeling highly realistic inhomo-
geneous tissue approximations of the human body.
Specific electrical parameters were assigned to each
of the electric field vector components at the 16,000
to 40,000 space cells comprising the body model.
Assignments were based upon cross-section tissue maps
of the body (at spacings of about one inch, as obtain-
ed via cadaver studies) available 1in the medical
literature, and cataloged measurements of tissue
dielectric properties. Space resolutions as fine as
0.013 m throughout the entire human body proved
possible using FD-TD. Figs. 19a and '19b, taken from
{32], show the computed contour maps of the specific
absorption rate (SAR) distribution along horizontal
cuts through the head and liver, respectively, of the
three-dimensional inhomogeneous man model. In Fig.
19a, the incident plane wave has a power density of
1 mW/cm® at 350 MHz, and each contour is 20 mW/Kg.

Continved on page 1.
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Fig. 19b. FD-TD Computed Contour Map of the Specific Absorption Rate (SAR) Distribution Along a Horizontal Cut
Through the Liver of the 3-D Inhomogeneous Man Model (100 MHZ) [32]
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In Fig. 19b, the incident wave has the same power
density but is at 100 MHz; contours in the arms are
at 20 mW/kg intervals, while contours in the body are
at 10 mW/kg intervals. These contour maps illustrate
the high level of detail of local features of the SAR
distribution that is possible via FD-TD modeling.

More recent work has departed from simulations of
plane wave illumination of the human body. Currently,
FD-TD is being used to model annular phased arrays of
aperture and dipole antennas used for hyperthermia
[33]. A 17,363 cell, 0.013 m resolution, anatomically
based model of the human torso surrounded by bolus
of deionized water is used for calculations of SARs.
Test runs on the calculation of fields in the water-
filled interaction space and with homogeneous circular
and elliptical cylinder phantoms correlate well with
the experimental data in the literature, lending
support to the accuracy of the FD-TD method for near-
field exposure conditions [33].

9. MICROSTRIP AND MICROWAVE CIRCUIT MODELS

Recently, FD-TD modeling has been extended to
provide detailed characterizations of microstrips,
resonators, finlines, and two-dimensional microwave
circuits. In [34], FD-TD is used to calculate the
dispersive characteristics of a typical microstrip on
a gallium arsenide substrate. A Gaussian pulse
excitation 1is used, and the effective dielectric
constant and characteristic impedance vs. frequency is
efficiently obtained over a broad frequency range via
Fourier transform of the time-domain field response.

13

In [35], FD-TD is first used to obtain resonant

frequencies of several three-dimensional cavities
loaded by dielectric blocks. Next, the resonant
frequency of a finline cavity is computed. Last, the

resonant frequencies of a microstrip cavity on aniso-
tropic substrate are obtained, and the dispersion
characteristics of the microstrip used in the cavity
are calculated. FD-TD modeling results are compared
primarily to those obtained using the transmission
line matrix (TLM) approach, and the two methods are
found to give practically the same results.

Continued on page 16
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Circuit: (a) Geometry and Gridding of Microstrip Circuit;
(b) Comparative Results Over 2 - 12 GHZ [36]

Feature Article—Continued from poge 15

In [36], a modified version of FD-TD is presented
which provides central-difference time-stepping
expressions for distributions of voltage and surface
current density along arbitrary-shaped two-dimensional
microwave circuits. This approach is quite different
from that of [34] and [35], which utilize the original
volumetric field sampling concept for FD-TD. As a
result, the method of [36] requires fewer unknowns to
be solved, and avoids the need for a radiation bound-
ary condition. However, an auxiliary condition is
required to . describe the 1loading effects of the
fringing fields at the edges of the microstrip
conducting paths. Fig. 20, taken from [36], shows the
FD-TD computed S parameter, |Sp3}., as a function of
frequency for a two-port microstrip ring circuit. The
ring circuit, gridded as shown in the figure, has an
inner radius of 4 mm, outer radius of 7 mm, substrate
relative permittivity of 10 and relative permeability
of 0.93 {simulating duroid), and is connected to two
50-ohm lines making a 90° angle. The broadband
response of the circuit is obtained using a single
FD-TD run for an appropriate pulse excitation,
followed by Fourier transformation of the desired
response time-domain waveform. From Fig. 20, we see
good agreement of the predicted and measured circuit
response over the freguency range 2 - 12 GHz and a
dynamic range of about 30-dB. [36] concludes that the
application of its FD-TD approach to arbitrarily-
shaped microstrip circuits is encouraging, but more
work is needed to determine the modeling limitations,
especially at higher frequencies where media disper-
sion can become important.

10. SCATTERING MODELS FOR RELATIVISTICALLY

MOVING SURFACES IN ONE AND TWO DIMENSIONS

Analytical validations have been recently cbtain-
ed for FD-TD models of reflection of a monochromatic
plane wave by a perfectly conducting surface either
moving at a uniform relativistic velocity or vibrating
at a frequency and amplitude large enough so that the
surface attains relativistic speeds [37]. The FD-TD
approach of [371 is novel in that it does not require
a system transformation where the conducting surface
is at rest. Instead, the FD~TD grid is at rest in the
laboratory frame, and the computed field solution is

16

given directly in the Jlaboratory frame. This 1is
accomplished by implementing the proper relativistic
boundary conditions for the fields at the surface of
the moving conductor.
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Fig. 21. Comparison of FD-TD and Analytical Results For the
Envelope of the Scattered E Field VS. Time For a
Monochromatic Plane Wave Illuminating a Vibrating
Mirror at 30° [37}

Fig. 21 shows results for one of the more inter-
esting problems of this type modeled so far, that of
oblique plane wave incidence on an infinite vibrating
mirror. This case is much more complicated than the
normal incidence case, in that it has no closed-form
solution. An analysis presented in the Titerature
[38] writes the solution in an infinite series form
using plane-wave expansions, where the unknown coef-
ficients in the series are solved numericaliy. This
analysis serves as the basis of comparison for the
FD-TD model results for the time variation of the
scattered field envelope at points near the mirror.

Since it is difficult to model exactly an
infinite plane mirror in a finite two-dimensional
grid, a long, thin, rectangular perfectly-conducting

slab is used as the mirror model, as shown in Fig.

2la. Relativistic boundary conditions for the fields
are 1impiemented on the front and back sides of the
slab. The other two sides, paraliel to the velocity

vector, are insensitive to the motion of the slab, and
therefore no relativistic boundary conditions are
required there. To minimize the impact of edge dif-
fraction, the slab length 1is carefully selected so

Continved on page 17
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that the slab appears to be infinite in extent at
observation point, P, during a well-defined early-
time response when the edge effect has not yet propa-
gated to P. Since the TM case does not provide
substantially different results than the TE case [38],
only the TE case is considered. Ffrom Fig. 21b, we see
good agreement between the FD-TD and analytical
results obtained from [38] for the envelope of the
scattered E field vs. time, for an incident angle of
30°, peak mirror speed 20% that of light, and observa-
tion points z/d = -5 and z/d = -50, where kd = 1.
Similar agreement is found for an even more obligue
angle, 60° [37]). This agreement is satisfying since
the action of the relativistically vibrating mirror is
so complicated, generating a reflected wave having a
spread both in frequency and spatial reflection angle,
as well as evanescent modes.

11. INVERSE SCATTERING RECONSTRUCTIONS
IN ONE AND TWO DIMENSIONS

Initial work has demonstrated the possibitity of
accurately reconstructing one-dimensional profiles of
permittivity and conductivity [39], and the shape and
dielectric composition of two-dimensional targets
[40], [41] from minima) scattered field pulse response
data. The general approach involves setting up a
numerical feedback loop which uses a one- or two-
dimensional FD-TD code as a forward-scattering
element, and a specially constructed nonlinear

optimization code as the feedback element. FD-TD

generates a test pulse response for a trial layering
or target shape/ composition. The test pulse: is
compared to the measured pulse, and an error signal is
developed. Working on this error signal, the non-
linear optimization element perturbs the trial layer-
ing or target shape / composition in a manner to drive
down the error. Upon repeated iterations, the pro-
posed layering or target ideally converges to the
actual one, a strategy similar to that of [42].

The advantage of working in the time domain is
that a Tayered medium or target shape can be recon-
structed sequentially in time as the wavefront of the
incident pulse sweeps through, taking. advantage of
causality. This reduces the complexity of recon-
struction since only a portion of the layering or
target shape is being generated at each iteration.
Advanced strategies for reconstruction in the presence
of additive noise may involve the use of prediction/
correction, where the trial layer or target shape
is considered to be a predictor of the actual case,
which is subsequently corrected by optimization of the
entire layered medium or target using the complete
scattered pulse.

Fig. 22 shows the application of the basic FD-TD
feedback strategy to a one-dimensional layered medium
in the absence of noise. Both the electrical permit-
tivity and conductivity of the medium vary in a
"sawtooth” manner with depth. The curves show
simulated measured data for the reflected pulse
for three cases defined by the peak values of the
conductivity (0.001 S/m, 0.01 S/m, and 0.1 S/m) and
the corresponding spatially coincident peak values of
relative permittivity (3, 2, and 4) of the medium.
In each case, the incident pulse is assumed to be a
half-sinusoid spanning 50 cm between zero crossings.
Noting that the dark dots superimposed on the
“sawtooth” represent the reconstructed values of
permittivity and conductivity, we see that the basic
FD-TD feedback strategy is quite successful in the
absence of noise [39].

Continued on page 18
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Fig. 23 shows the application of the FD-TD feed-
back strategy to reconstruct a two-dimensional lossy
dielectric target. The target is a 30 cm x 30 cm
square cylinder having a uniform conductivity of 0.01
S/m, and a tent-like relative permittivity profile
which starts at 2.0 at the front and left sides and
ﬁncreases Tinearly to a peak value of 4.0 at the back
icorner on the right side. These profiles are illus-
trated in a perspective manner at the top of Fig. 23.
The target is assumed to be illuminated by a TM polar-
ized plane wave that is directed toward the front of
the target (as visualized at the top of Fig. 23). The
incident waveform is a 3-cycle sinusoidal tone burst
having a 60-MHz carrier frequency. For the recon-
struction, the only data utilized is the time~domain
waveform of the scattered electric field as observed
at two points. These points are located 1 m from the
front of the target, and are positioned 15 c¢cm to
either side of the target center line. To simulate
measured data, the computed scattered field waveforms
are contaminated with additive Gaussian noise. In all
of the reconstructions, the target shape and location
is assumed to be known.

From Fig. 23, we see that for a signal/noise
ratio of 40 dB, the average error in the permittivity
and conductivity profiles is 1.5% and 2.3%, respect-
ively. If the signal/noise ratio is reduced to 20 dB,
the average errors increase to 6.9%2 and 10.4%,
respectively [41]. Research is ongoing to determine
means of improving the noise performance, especially
using predictor/corrector techniques briefly discussed
earlier. Given the relatively small amount of scat-
tered field data utilized, the FD-TD feedback strategy
appears promising for future development.

12. LARGE-SCALE COMPUTER SOF TWARE

The FD~TD method is naturally suited for large-
scale processing by state-of-the-art vector super-
computers and concurrent processors. This is because
essentially all of the arithmetic operations involved
in a typical FD-TD run can be vectorized or cast into
a highly concurrent format. Further, the O(N)
demand for computer memory and cleck cycles {where N
is the number of lattice space cells) is dimensionally
Tow, and permits three-dimensional FD-TD models span-—
ning 50 - 100 wavelengths to be anticipated by 1990.

Let us now consider computation times of present
FD-TD codes. Table 1 lists computation times (derived
either from benchmark runs or based on analysts' esti-
mates) for modeling one look angle of a 10-wavelength
three-dimensional scatterer using the present FD-TD
icode. Four computing systems are listed in the table.
{The first is the Digital Equipment VAX 11/780, without
ifloating point accelerator. The second and third are,
respectively, single-processor and four-processor
versions of the Cray-2. The fourth is a hypothetical
next-generation machine operating at an average rate
of 10 Gflops (10-biilion floating point operations per
second}. This last computer is generally expected to
be available about 1990 - 1992.

‘From Table 1, it is fairiy clear that steadily
ladvancing supercomputer technology will permit routine
engineering usage of FD-TD for modeling electrically-
targe problems by the early 1990's.

An interesting prospect that has recently arisen
is the reduction of tne O(N) computational burden of
FD-TD to O(N*“®). This possibility is a conseguence
of the appearance of the Connection Machine (CM),
which has tens of thousands of simple processors and
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Table 1. Computation Times

10-Wavelength Mode

Machine Present FD-TD Code

VAX 11/780 (no floating point

accelerator) 40.0 h
Cray-2 {single processor, using
the VAX Fortran) 12.0 min
Cray-2 (single processor, some
code optimization) 3.0 min

Cray-2 (four processors, some

code optimization) 1 min (est.)

True 10 Gflop machine 2 sec {est.)

*1.55 -106 unknown fieid components, 661 time steps

associated memories arranged in a highly efficient
manner for processor-to-procesor communication. With
the CM, a single processor can be assigned to store
and time-step a single row of vector field components
in a three-dimensional FD-TD space Tlattice. For
example, 1.5° 10° processors would be sufficient to
store the 6 Cartesian components of E and H for each
of the 500 x 500 rows of a cubic lattice spanning
50 wavelengths (assuming 10 cells/wavelength resolu-
tion). FD-TD time stepping would be performed via row
operations mapped onto the individual CM processors.:
These row operations would be performed concurrently.
Thus, for a fixed number of time steps, the total
running time would be proportional to the time needed
to perform a single row operation, which in turn
would be proportional to the number of vector field
components in the row, or O(N*?®). For the 50-
wavelength cubic lattice noted above, this would imply
a dimensional reduction of the computational burden
from 0(500°) to 0(500), a tremendous benefit. As a
result, it is conceivable that a suitably scaled CM
could model one look angle of a 50-wavelength three-
dimensional scatterer in only a few seconds, achieving
effective floating point rates 1in the order of
100 Gflops. For this reason, FD-TD algorithm develop-
ment for the CM is a promising area of research.

13. CONCLUSION

Recent advances
software

in FD-TD modeling concepts and
implementation, combined with advances in
computer technology, have expanded the scope,
accuracy, and speed of FD-TD modeling to the point
where it may be thre preferred choice for certain
types of electromagnetic wave scattering and coupling
probiems. This article has attempted to provide a
succinct state-of-the-art review of FD-TD modeling
applications. The reader is referred to the
journal papers and reports listed below for details
of the FD-TD algorithms and applications.
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managed, it has no reserve capacity. If even one of a
rather. large number of employees is ill or quits, the
result is a disproportionately large effect. The

contingency plans either don’t work or don’t exist.
One of the more frustrating experiences occurred with
the February issue. Because of the January URSI
meeting, everyone worked very hard to get the material
off to New York by the usual deadline. It "sat", with
nothing being done, for at least a week and one-half
after it arrived. This issue will serve as something
of a test. If New York can be responsive, great. If
not, we may have to examine other alternatives for
getting the Newsletter out on time. 1’11 be making a
full report at the June AdCom meeting. "Stay tuned”,
and I welcome any suggestions or comments.

.On a much brighter note,
turned 30! Actually, the February issue was issue 1
of the thirtieth volume, but I understand that
publication was not begun at the start of a year. I
have had the feeling that something should appear in
these pages to celebrate since I started thinking
about the significance of this, last Fall, but I can’t
come up with a good idea (any suggestions?). Perhaps
that is as it should be.. We’ll simply keep doing the
best job we can, and be pleased with the growth and
-vitality of our society. Please note that I never use

your Newsletter has

the so-called "editorial we". The "we" refers to the
Associate [Editors, officers, authors, and other
members and supporters of AP-S -- and our readers —-—

who put a great deal of time and effort into this
Newsletter. Thank you very much, one and all. I hope
to see as. many. of you as possible at Syracuse in June.
Best wishes until then.
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