ALLEN TAFLOVE • SUSAN C. HAGNESS

computational electrodynamics

THE FINITE-DIFFERENCE TIME-DOMAIN METHOD

THIRD EDITION

Contents

Pr	Preface to the Third Edition		
1	Electrodynamics Entering the 21st Century	1	
	1.1 Introduction	1	
	1.2 The Heritage of Military Defense Applications	1	
	1.3 Frequency-Domain Solution Techniques	2	
	1.4 Rise of Finite-Difference Time-Domain Methods	3	
	1.5 History of FDTD Techniques for Maxwell's Equations	4	
	1.6 Characteristics of FDTD and Related Space-Grid Time-Domain Techniques	6	
	1.6.1 Classes of Algorithms	6	
	1.6.2 Predictive Dynamic Range	7	
	1.6.3 Scaling to Very Large Problem Sizes	8	
	1.7 Examples of Applications	9	
	1.7.1 Impulsive Around-the-World Extremely Low-Frequency Propagation	10	
	1.7.2 Cellphone Radiation Interacting with the Human Head	11	
	1.7.3 Early-Stage Detection of Breast Cancer Using an Ultrawideband Microwave Radar	11	
	1.7.4 Homing Accuracy of a Radar-Guided Missile	12	
	1.7.5 Electromagnetic Wave Vulnerabilities of a Military Jet Plane	12	
	1.7.6 Millimeter-Wave Propagation in a Defect-Mode Electromagnetic Bandgap Structure	13	
	1.7.7 Photonic Crystal Microcavity Laser	14	
	1.7.8 Photonic Crystal Cross-Waveguide Switch	15	
	1.8 Conclusions	16	
	References	16	
2	The One-Dimensional Scalar Wave Equation	21	
	2.1 Introduction	21	
	2.2 Propagating-Wave Solutions	21	
	2.3 Dispersion Relation	22	
	2.4 Finite Differences	23	
	2.5 Finite-Difference Approximation of the Scalar Wave Equation	24	
	2.6 Numerical Dispersion Relation	27	
	2.6.1 Case 1: Very Fine Sampling in Time and Space	28	
	2.6.2 Case 2: Magic Time-Step	29	
	2.6.3 Case 3: Dispersive Wave Propagation	29	
	2.6.4 Example of Calculation of Numerical Phase Velocity and Attenuation	34	
	2.6.5 Examples of Calculations of Pulse Propagation	34	
	2.7 Numerical Stability	39	
	2.7.1 Complex-Frequency Analysis	40	
	2.7.2 Examples of Calculations Involving Numerical Instability	43	
	2.8 Summary	45	
	Appendix 2A: Order of Accuracy	47	
	2A.1 Lax-Richtmyer Equivalence Theorem	47	
	2A.2 Limitations	48	
	References	48	
	Selected Bibliography on Stability of Finite-Difference Methods	49	
	Problems	49	

	troduction to Maxwell's Equations and the Yee Algorithm	51
2 1	Introduction	51
2.1	Introduction Maywall's Equations in Three Dimensions	51
3.2	Maxwell's Equations in Three Dimensions	51
3.3	2.2.1 TM Mode	54
	$3.3.1 \text{ IM}_{z}$ Mode	55
2 1	3.3.2 IE _z Mode	33 56
5.4	2.4.1 x Directed - Delerized TEM Mede	56
	2.4.2 x Directed, z-Polarized TEM Mode	50
25	5.4.2 X-Directed, y-Polarized TEM Mode	57
3.3 2 4	The Vec A least three	50
5.0	2.6.1 Baria Idaa	
	3.0.1 Basic ideas	38 60
	3.6.2 Finite Difference Expressions for Maxwell's Equations in Three Dimensions	62
	3.6.5 Finite-Difference Expressions for Maxwell's Equations in Three Differences	67
	3.6.5 Space Region with a Einite Number of Distinct Media	60
	3.6.6 Space Region with Nonpermeable Media	71
	2.6.7 Beduation to the Two Dimensional TM and TE Medea	71
	3.6.7 Reduction to the 1wo-Dimensional 1 M_z and 1 E_z modes 3.6.8 Interpretation as Foredov's and Ampara's Laws in Integral Form	75
	3.6.0 Divergence Free Nature	75
37	Alternative Einite Difference Gride	70 80
5.1	3.7.1 Cortegion Gride	80
	3.7.2 Hexagonal Grids	80
38	5.7.2 Trexagonal Onus Emerging Application: Gridding the Planet Farth	85
5.0	3.8.1 Background	85
	3.8.2 The Latitude Longitude Space Lattice	86
	3.8.2 The Geodesic (Heyagon Pentagon) Grid	00
3 0	Summary	103
Re	ferences	103
Pro	blems	104
N	umarical Disparsion and Stability	107

Numerical Dispersion and Stability 4

107

4.1	Introduction	107
4.2	Derivation of the Numerical Dispersion Relation for Two-Dimensional Wave Propagation	107
4.3	Extension to Three Dimensions	110
4.4	Comparison with the Ideal Dispersion Case	111
4.5	Anisotropy of the Numerical Phase Velocity	111
	4.5.1 Sample Values of Numerical Phase Velocity	111
	4.5.2 Intrinsic Grid Velocity Anisotropy	116
4.6	Complex-Valued Numerical Wavenumbers	120
	4.6.1 Case 1: Numerical Wave Propagation Along the Principal Lattice Axes	121
	4.6.2 Case 2: Numerical Wave Propagation Along a Grid Diagonal	123
	4.6.3 Example of Calculation of Numerical Phase Velocity and Attenuation	126
	4.6.4 Example of Calculation of Wave Propagation	126
4.7	Numerical Stability	128
	4.7.1 Complex-Frequency Analysis	130
	4.7.2 Example of a Numerically Unstable Two-Dimensional FDTD Model	135
	4.7.3 Linear Growth Mode When the Normalized Courant Factor Equals 1	137
4.8	Generalized Stability Problem	137
	4.8.1 Absorbing and Impedance Boundary Conditions	137

	4.8.2 Variable and Unstructured Meshing	137
	4.8.3 Lossy, Dispersive, Nonlinear, and Gain Materials	138
4.9	Modified Yee-Based Algorithms for Mitigating Numerical Dispersion	138
	4.9.1 Strategy 1: Center a Specific Numerical Phase-Velocity Curve About c	138
	4.9.2 Strategy 2: Use Fourth-Order-Accurate Explicit Spatial Differences	139
	4.9.3 Strategy 3: Use a Hexagonal Grid, If Possible	146
	4.9.4 Strategy 4: Use Discrete Fourier Transforms to Calculate the Spatial Derivatives	150
4.10	Alternating-Direction-Implicit Time-Stepping Algorithm for Operation	
	Beyond the Courant Limit	154
	4.10.1 Numerical Formulation of the Zheng/Chen/Zhang Algorithm	155
	4.10.2 Sources	161
	4.10.3 Numerical Stability	161
	4.10.4 Numerical Dispersion	163
	4.10.5 Additional Accuracy Limitations and Their Implications	164
4.11	Summary	164
Refe	rences	165
Prob	lems	166
Proje	ects	167

5 Incident Wave Source Conditions

A 11		160
Aller	i Tajlove, Geoff Walaschmiat, Christopher Wagner, John Schneider, and Susan Hagness	109
5.1	Introduction	169
5.2	Pointwise <i>E</i> and <i>H</i> Hard Sources in One Dimension	169
5.3	Pointwise <i>E</i> and <i>H</i> Hard Sources in Two Dimensions	171
	5.3.1 Green Function for the Scalar Wave Equation in Two Dimensions	171
	5.3.2 Obtaining Comparative FDTD Data	172
	5.3.3 Results for Effective Action Radius of a Hard-Sourced Field Component	173
5.4	J and M Current Sources in Three Dimensions	175
	5.4.1 Sources and Charging	176
	5.4.2 Sinusoidal Sources	178
	5.4.3 Transient (Pulse) Sources	178
	5.4.4 Intrinsic Lattice Capacitance	179
	5.4.5 Intrinsic Lattice Inductance	183
	5.4.6 Impact upon FDTD Simulations of Lumped-Element Capacitors and Inductors	183
5.5	The Plane-Wave Source Condition	185
5.6	The Total-Field / Scattered-Field Technique: Ideas and One-Dimensional Formulation	186
	5.6.1 Ideas	186
	5.6.2 One-Dimensional Formulation	188
5.7	Two-Dimensional Formulation of the TF/SF Technique	193
	5.7.1 Consistency Conditions	193
	5.7.2 Calculation of the Incident Field	197
	5.7.3 Illustrative Example	201
5.8	Three-Dimensional Formulation of the TF/SF Technique	204
	5.8.1 Consistency Conditions	204
	5.8.2 Calculation of the Incident Field	210
5.9	Advanced Dispersion Compensation in the TF/SF Technique	213
	5.9.1 Matched Numerical Dispersion Technique	214
	5.9.2 Analytical Field Propagation	218
5.10	Scattered-Field Formulation	220
	5.10.1 Application to PEC Structures	220
	5.10.2 Application to Lossy Dielectric Structures	221
	5.10.3 Choice of Incident Plane-Wave Formulation	223

	5.11 Waveguide Source Conditions	223
	5.11.1 Pulsed Electric Field Modal Hard Source	223
	5.11.2 Total-Field / Reflected-Field Modal Formulation	225
	5.11.3 Resistive Source and Load Conditions	225
	5.12 Summary	226
	References	227
	Problems	227
	Projects	228
6	Analytical Absorbing Boundary Conditions	229
	6.1 Introduction	229
	6.2 Bayliss-Turkel Radiation Operators	230
	6.2.1 Spherical Coordinates	231
	6.2.2 Cylindrical Coordinates	234
	6.3 Engquist-Majda One-Way Wave Equations	236
	6.3.1 One-Term and Two-Term Taylor Series Approximations	237
	6.3.2 Mur Finite-Difference Scheme	240
	6.3.3 Trefethen-Halpern Generalized and Higher-Order ABCs	243
	6.3.4 Theoretical Reflection Coefficient Analysis	245
	6.3.5 Numerical Experiments	247
	6.4 Higdon Radiation Operators	252
	6.4.1 Formulation	252
	6.4.2 First Two Higdon Operators	253
	6.4.3 Discussion	254
	6.5 Liao Extrapolation in Space and Time	255
	6.5.1 Formulation	255
	6.5.2 Discussion	257
	6.6 Ramahi Complementary Operators	259
	6.6.1 Basic Idea	259
	6.6.2 Complementary Operators	260
	6.6.3 Effect of Multiple Wave Reflections	260
	6.6.4 Basis of the Concurrent Complementary Operator Method	261
	6.6.5 Illustrative FDTD Modeling Results Obtained Using the C-COM	267
	0.7 Summary	270
	Deckloses	270
	Problems	271
7	Perfectly Matched Layer Absorbing Boundary Conditions	5
	Stephen Gedney	273
	7.1 Introduction	273
	7.2 Plane Wave Incident upon a Lossy Half-Space	274
	7.3 Plane Wave Incident upon Berenger's PML Medium	276
	7.3.1 Two-Dimensional TE _z Case	276
	7.3.2 Two-Dimensional TM _z Case	281
	7.3.3 Three-Dimensional Case	281
	7.4 Stretched-Coordinate Formulation of Berenger's PML	282
	7.5 An Anisotropic PML Absorbing Medium	285
	7.5.1 Perfectly Matched Uniaxial Medium	285
	7.5.2 Relationship to Berenger's Split-Field PML	288
	7.5.3 A Generalized Three-Dimensional Formulation	289
	7.5.4 Inhomogeneous Media	290

7.6 Theoretical Performance of the PML	291
7.6.1 The Continuous Space	291
7.6.2 The Discrete Space	292
7.7 Complex Frequency-Shifted Tensor	294
7.7.1 Introduction	294
7.7.2 Strategy to Reduce Late-Time (Low-Frequency) Reflections	296
7.8 Efficient Implementation of UPML in FDTD	297
7.8.1 Derivation of the Finite-Difference Expressions	298
7.8.2 Computer Implementation of the UPML	301
7.9 Efficient Implementation of CPML in FDTD	302
7.9.1 Derivation of the Finite-Difference Expressions	302
7.9.2 Computer Implementation of the CPML	307
7.10 Application of CPML in FDTD to General Media	310
7.10.1 Introduction	310
7.10.2 Example: Application of CPML to the Debye Medium	310
7.11 Numerical Experiments with PML	313
7.11.1 Current Source Radiating in an Unbounded Two-Dimensional Region	313
7.11.2 Highly Elongated Domains and Edge Singularities	317
7.11.3 Microstrip Patch Antenna Array	320
7.11.4 Dispersive Media	322
7.12 Summary and Conclusions	324
References	324
Projects	327

8 Near-to-Far-Field Transformation Allen Taflove, Xu Li, and Susan Hagness

Alle	Allen Taflove, Xu Li, and Susan Hagness	
8.1	Introduction	329
8.2	Two-Dimensional Transformation, Phasor Domain	329
	8.2.1 Application of Green's Theorem	330
	8.2.2 Far-Field Limit	332
	8.2.3 Reduction to Standard Form	334
8.3	Obtaining Phasor Quantities Via Discrete Fourier Transformation	335
8.4	Surface Equivalence Theorem	338
8.5	Extension to Three Dimensions, Phasor Domain	340
8.6	Time-Domain Near-to-Far-Field Transformation	343
8.7	Modified NTFF Procedure to More Accurately Calculate Backscattering from	
	Strongly Forward-Scattering Objects	348
8.8	Summary	351
Ref	References	
Proj	Project	

9 Dispersive, Nonlinear, and Gain Materials

	spersive, nonineur, and Guin Materials	
Allen Taflove, Susan Hagness, Wojciech Gwarek, Masafumi Fujii, and Shih-Hui Chang		353
9.1	Introduction	353
9.2	Generic Isotropic Material Dispersions	354
	9.2.1 Debye Media	354
	9.2.2 Lorentz Media	354
	9.2.3 Drude Media	355
9.3	Piecewise-Linear Recursive-Convolution Method, Linear Material Case	355
	9.3.1 General Formulation	356
	9.3.2 Application to Debye Media	358

	9.3.3 Application to Lorentz Media	358
	9.3.4 Numerical Results	360
9.4	Auxiliary Differential Equation Method, Linear Material Case	361
	9.4.1 Formulation for Multiple Debye Poles	361
	9.4.2 Formulation for Multiple Lorentz Pole Pairs	363
	9.4.3 Formulation for Multiple Drude Poles	365
	9.4.4 Illustrative Numerical Results	367
9.5	Modeling of Linear Magnetized Ferrites	369
	9.5.1 Equivalent RLC Model	370
	9.5.2 Time-Stepping Algorithm	371
	9.5.3 Extension to the Three-Dimensional Case, Including Loss	373
	9.5.4 Illustrative Numerical Results	374
	9.5.5 Comparison of Computer Resources	375
9.6	Auxiliary Differential Equation Method, Nonlinear Dispersive Material Case	376
	9.6.1 Strategy	376
	9.6.2 Contribution of the Linear Debye Polarization	377
	9.6.3 Contribution of the Linear Lorentz Polarization	377
	9.6.4 Contributions of the Third-Order Nonlinear Polarization	378
	9.6.5 Electric Field Update	380
	9.6.6 Illustrative Numerical Results for Temporal Solitons	381
	9.6.7 Illustrative Numerical Results for Spatial Solitons	383
9.7	Auxiliary Differential Equation Method, Macroscopic Modeling of Saturable,	
	Dispersive Optical Gain Materials	387
	9.7.1 Theory	387
	9.7.2 Validation Studies	390
9.8	Auxiliary Differential Equation Method, Modeling of Lasing Action in a	
	Four-Level Two-Electron Atomic System	394
	9.8.1 Quantum Physics Basis	394
	9.8.2 Coupling to Maxwell's Equations	398
	9.8.3 Time-Stepping Algorithm	398
	9.8.4 Illustrative Results	400
9.9	Summary and Conclusions	402
Refe	erences	404
Prob	blems	405
Proj	ects	406

10 Local Subcell Models of Fine Geometrical Features

Local Subcon Mouchs of The Geometrical Teatares	
Allen Taflove, Malgorzata Celuch-Marcysiak, and Susan Hagness	407
10.1 Introduction	407
10.2 Basis of Contour-Path FDTD Modeling	408
10.3 The Simplest Contour-Path Subcell Models	408
10.3.1 Diagonal Split-Cell Model for PEC Surfaces	410
10.3.2 Average Properties Model for Material Surfaces	410
10.4 The Contour-Path Model of the Narrow Slot	411
10.5 The Contour-Path Model of the Thin Wire	415
10.6 Locally Conformal Models of Curved Surfaces	420
10.6.1 Yu-Mittra Technique for PEC Structures	420
10.6.2 Illustrative Results for PEC Structures	421
10.6.3 Yu-Mittra Technique for Material Structures	424
10.7 Maloney-Smith Technique for Thin Material Sheets	427
10.7.1 Basis	427
10.7.2 Illustrative Results	430

10.8 Surface Impedance	432
10.8.1 The Monochromatic SIBC	434
10.8.2 Convolution-Based Models of the Frequency-Dependent SIBC	436
10.8.3 Equivalent-Circuit Model of the Frequency-Dependent SIBC	442
10.8.4 Sources of Error	445
10.8.5 Discussion	446
10.9 Thin Coatings on a PEC Surface	447
10.9.1 Method of Lee et al.	447
10.9.2 Method of Kärkkäinen	450
10.10 Relativistic Motion of PEC Boundaries	450
10.10.1 Basis	451
10.10.2 Illustrative Results	454
10.11 Summary and Discussion	458
References	458
Selected Bibliography	460
Projects	461

11 Nonuniform Grids, Nonorthogonal Grids, Unstructured Grids, and Subgrids

Stephen Gedney, Faiza Lansing, and Nicolas Chavannes	463
11.1 Introduction	463
11.2 Nonuniform Orthogonal Grids	464
11.3 Locally Conformal Grids, Globally Orthogonal	471
11.4 Global Curvilinear Coordinates	471
11.4.1 Nonorthogonal Curvilinear FDTD Algorithm	471
11.4.2 Stability Criterion	477
11.5 Irregular Nonorthogonal Structured Grids	480
11.6 Irregular Nonorthogonal Unstructured Grids	486
11.6.1 Generalized Yee Algorithm	487
11.6.2 Inhomogeneous Media	491
11.6.3 Practical Implementation of the Generalized Yee Algorithm	493
11.7 A Planar Generalized Yee Algorithm	494
11.7.1 Time-Stepping Expressions	495
11.7.2 Projection Operators	496
11.7.3 Efficient Time-Stepping Implementation	498
11.7.4 Modeling Example: 32-GHz Wilkinson Power Divider	499
11.8 Cartesian Subgrids	501
11.8.1 Geometry	502
11.8.2 Time-Stepping Scheme	503
11.8.3 Spatial Interpolation	504
11.8.4 Numerical Stability Considerations	505
11.8.5 Reflection from the Interface of the Primary Grid and Subgrid	505
11.8.6 Illustrative Results: Helical Antenna on Generic Cellphone at 900 MHz	508
11.8.7 Computational Efficiency	510
11.9 Summary and Conclusions	510
References	
Problems	514
Projects	

12 Bodies of Revolution

Thomas Jurgens, Jeffrey Blaschak, and Gregory Saewert	517
12.1 Introduction	517
12.2 Field Expansion	517
12.3 Difference Equations for Off-Axis Cells	519
12.3.1 Ampere's Law Contour Path Integral to Calculate e_r	519
12.3.2 Ampere's Law Contour Path Integral to Calculate e_{ϕ}	521
12.3.3 Ampere's Law Contour Path Integral to Calculate e_{μ}	523
12.3.4 Difference Equations	525
12.3.5 Surface-Conforming Contour Path Integrals	528
12.4 Difference Equations for On-Axis Cells	529
12.4.1 Ampere's Law Contour Path Integral to Calculate e_ on the z-Axis	529
12.4.2 Ampere's Law Contour Path Integral to Calculate e_{ϕ} on the z-Axis	532
12.4.3 Faraday's Law Calculation of h_r on the z-Axis	534
12.5 Numerical Stability	535
12.6 PML Absorbing Boundary Condition	536
12.6.1 BOR-FDTD Background	536
12.6.2 Extension of PML to the General BOR Case	537
12.6.3 Examples	543
12.7 Application to Particle Accelerator Physics	543
12.7.1 Definitions and Concepts	545
12.7.2 Examples	547
12.8 Summary	550
References	550
Problems	551
Projects	552

13 Periodic Structures James Maloney and Morris Kesle

James Maloney and Morris Kesler	553
13.1 Introduction	553
13.2 Review of Scattering from Periodic Structures	555
13.3 Direct Field Methods	559
13.3.1 Normal Incidence Case	559
13.3.2 Multiple Unit Cells for Oblique Incidence	560
13.3.3 Sine-Cosine Method	562
13.3.4 Angled-Update Method	563
13.4 Introduction to the Field-Transformation Technique	567
13.5 Multiple-Grid Approach	571
13.5.1 Formulation	571
13.5.2 Numerical Stability Analysis	573
13.5.3 Numerical Dispersion Analysis	574
13.5.4 Lossy Materials	575
13.5.5 Lossy Screen Example	577
13.6 Split-Field Method, Two Dimensions	578
13.6.1 Formulation	578
13.6.2 Numerical Stability Analysis	580
13.6.3 Numerical Dispersion Analysis	581
13.6.4 Lossy Materials	582
13.6.5 Lossy Screen Example	583

13.7 Split-Field Method, Three Dimensions	583
13.7.1 Formulation	584
13.7.2 Numerical Stability Analysis	589
13.7.3 UPML Absorbing Boundary Condition	590
13.8 Application of the Periodic FDTD Method	594
13.8.1 Electromagnetic Bandgap Structures	595
13.8.2 Frequency-Selective Surfaces	597
13.8.3 Antenna Arrays	597
13.9 Summary and Conclusions	603
Acknowledgments	603
References	
Projects	

14 Antennas

James Maloney, Glenn Smith, Eric Thiele, Om Gandhi, Nicolas Chavannes, and Susan Hagness	607
14.1 Introduction	607
14.2 Formulation of the Antenna Problem	607
14.2.1 Transmitting Antenna	607
14.2.2 Receiving Antenna	609
14.2.3 Symmetry	610
14.2.4 Excitation	611
14.3 Antenna Feed Models	612
14.3.1 Detailed Modeling of the Feed	613
14.3.2 Simple Gap Feed Model for a Monopole Antenna	614
14.3.3 Improved Simple Feed Model	617
14.4 Near-to-Far-Field Transformations	621
14.4.1 Use of Symmetry	621
14.4.2 Time-Domain Near-to-Far-Field Transformation	622
14.4.3 Frequency-Domain Near-to-Far-Field Transformation	624
14.5 Plane-Wave Source	625
14.5.1 Effect of an Incremental Displacement of the Surface Currents	625
14.5.2 Effect of an Incremental Time Shift	627
14.5.3 Relation to Total-Field / Scattered-Field Lattice Zoning	628
14.6 Case Study I: The Standard-Gain Horn	628
14.7 Case Study II: The Vivaldi Slotline Array	634
14.7.1 Background	634
14.7.2 The Planar Element	635
14.7.3 The Vivaldi Pair	637
14.7.4 The Vivaldi Quad	639
14.7.5 The Linear Phased Array	640
14.7.6 Phased-Array Radiation Characteristics Indicated by the FDTD Modeling	641
14.7.7 Active Impedance of the Phased Array	644
14.8 Near-Field Simulations	647
14.8.1 Generic 900-MHz Cellphone Handset in Free Space	647
14.8.2 900-MHz Dipole Antenna Near a Layered Bone-Brain Half-Space	649
14.8.3 840-MHz Dipole Antenna Near a Rectangular Brain Phantom	650
14.8.4 900-MHz Infinitesimal Dipole Antenna Near a Spherical Brain Phantom	650
14.8.5 1.9-GHz Half-Wavelength Dipole Near a Spherical Brain Phantom	652
14.9 Case Study III: The Motorola T250 Tri-Band Phone	653
14.9.1 FDTD Phone Model	654
14.9.2 Measurement Procedures	656
14.9.3 Free-Space Near-Field Investigations and Assessment of Design Capabilities	656

14.9.4 Performance in Loaded Conditions (SAM and MRI-Based Human Head Model)	657
14.9.5 Radiation Performance in Free Space and Adjacent to the SAM Head	659
14.9.6 Computational Requirements	661
14.9.7 Overall Assessment	661
14.10 Selected Additional Applications	661
14.10.1 Use of Electromagnetic Bandgap Materials	662
14.10.2 Ground-Penetrating Radar	663
14.10.3 Antenna-Radome Interaction	667
14.10.4 Biomedical Applications of Antennas	669
14.11 Summary and Conclusions	671
References	671
Projects 67	

15 High-Speed Electronic Circuits with Active and Nonlinear Components Melinda Piket-May, Wojciech Gwarek, Tzong-Lin Wu, Bijan Houshmand, Tatsuo Itoh,

and Jamesina Simpson

and J	lamesina Simpson	677
15.1	Introduction	677
15.2	Basic Circuit Parameters for TEM Striplines and Microstrips	679
	15.2.1 Transmission Line Parameters	679
	15.2.2 Impedance	680
	15.2.3 S-Parameters	680
	15.2.4 Differential Capacitance	681
	15.2.5 Differential Inductance	682
15.3	Lumped Inductance Due to a Discontinuity	682
	15.3.1 Flux / Current Definition	684
	15.3.2 Fitting $Z(\omega)$ or $S(\omega)$ to an Equivalent Circuit	684
	15.3.3 Discussion: Choice of Methods	685
15.4	Inductance of Complex Power-Distribution Systems	685
	15.4.1 Method Description	685
	15.4.2 Example: Multiplane Meshed Printed-Circuit Board	687
	15.4.3 Discussion	688
15.5	Parallel Coplanar Microstrips	688
15.6	Multilayered Interconnect Modeling	690
15.7	S-Parameter Extraction for General Waveguides	692
15.8	Digital Signal Processing and Spectrum Estimation	694
	15.8.1 Prony's Method	695
	15.8.2 Autoregressive Models	697
	15.8.3 Padé Approximation	702
15.9	Modeling of Lumped Circuit Elements	706
	15.9.1 FDTD Formulation Extended to Circuit Elements	706
	15.9.2 The Resistor	708
	15.9.3 The Resistive Voltage Source	708
	15.9.4 The Capacitor	709
	15.9.5 The Inductor	711
	15.9.6 The Arbitrary Two-Terminal Linear Lumped Network	711
	15.9.7 The Diode	714
	15.9.8 The Bipolar Junction Transistor	715
15.10	Direct Linking of FDTD and SPICE	717
	15.10.1 Basic Idea	718
	15.10.2 Norton Equivalent Circuit "Looking Into" the FDTD Space Lattice	719
	15.10.3 Thevenin Equivalent Circuit "Looking Into" the FDTD Space Lattice	721

15.11 Case Study: A 6-GHz MESFET Amplifier Model	723
15.11.1 Large-Signal Nonlinear Model	723
15.11.2 Amplifier Configuration	725
15.11.3 Analysis of the Circuit without the Packaging Structure	726
15.11.4 Analysis of the Circuit with the Packaging Structure	728
15.12 Emerging Topic: Wireless High-Speed Digital Interconnects Using Defect-Mode	
Electromagnetic Bandgap Waveguides	731
15.12.1 Stopband of the Defect-Free Two-Dimensional EBG Structure	732
15.12.2 Passband of the Two-Dimensional EBG Structure with Waveguiding Defect	732
15.12.3 Laboratory Experiments and Supporting FDTD Modeling	734
15.13 Summary and Conclusions	736
Acknowledgments	737
References	737
Selected Bibliography	
Projects	741

16 Photonics

Geoffrey Burr, Susan Hagness, and Allen Taflove	743
16.1 Introduction	743
16.2 Introduction to Index-Contrast Guided-Wave Structures	743
16.3 FDTD Modeling Issues	744
16.3.1 Optical Waveguides	744
16.3.2 Material Dispersion and Nonlinearities	747
16.4 Laterally Coupled Microcavity Ring Resonators	747
16.4.1 Modeling Considerations: Two-Dimensional FDTD Simulations	748
16.4.2 Coupling to Straight Waveguides	750
16.4.3 Coupling to Curved Waveguides	750
16.4.4 Elongated Ring Designs ("Racetracks")	752
16.4.5 Resonances of the Circular Ring	752
16.5 Laterally Coupled Microcavity Disk Resonators	756
16.5.1 Resonances	756
16.5.2 Suppression of Higher-Order Radial Whispering-Gallery Modes	760
16.6 Vertically Coupled Racetrack	761
16.7 Introduction to Distributed Bragg Reflector Devices	765
16.8 Application to Vertical-Cavity Surface-Emitting Lasers	765
16.8.1 Passive Studies	766
16.8.2 Active Studies: Application of the Classical Gain Model	767
16.8.3 Application of a New Semiclassical Gain Model	769
16.9 Quasi-One-Dimensional DBR Structures	770
16.10 Introduction to Photonic Crystals	772
16.11 Calculation of Band Structure	774
16.11.1 The "Order-N" Method	775
16.11.2 Frequency Resolution	778
16.11.3 Filter Diagonalization Method	780
16.11.4 The Triangular Photonic Crystal Lattice	782
16.11.5 Sources of Error and Their Mitigation	784
16.12 Calculation of Mode Patterns	787
16.13 Variational Approach	790
16.14 Modeling of Defect-Mode Photonic Crystal Waveguides	791
16.14.1 Band Diagram of a Photonic Crystal Slab	793
16.14.2 Band Diagram of a Photonic Crystal Waveguide	795

	16.14.3 Intrinsic Loss in Photonic Crystal Waveguides	798
	16.14.4 Transmission in Photonic Crystal Waveguides	803
	16.14.5 Aperiodic Photonic-Crystal Waveguides	806
	16.14.6 Photonic Crystal Waveguide Extrinsic Scattering Loss from the Green Function	806
16.15	Modeling of Photonic Crystal Resonators	807
16.16	Modeling Examples of Photonic Crystal Resonators	810
	16.16.1 Electrically Driven Microcavity Laser	810
	16.16.2 Photonic Crystal Cross-Waveguide Switch	812
16.17	Introduction to Frequency Conversion in Second-Order Nonlinear Optical	
	Materials	813
16.18	PSTD-4 Algorithm	813
16.19	Extension to Second-Order Nonlinear Media	814
16.20	Application to a Nonlinear Waveguide with a QPM Grating	814
16.21	Application to Nonlinear Photonic Crystals	817
16.22	Introduction to Nanoplasmonic Devices	820
16.23	FDTD Modeling Considerations	820
16.24	FDTD Modeling Applications	821
16.25	Introduction to Biophotonics	822
16.26	FDTD Modeling Applications	822
	16.26.1 Vertebrate Retinal Rod	822
	16.26.2 Precancerous Cervical Cells	824
	16.26.3 Sensitivity of Backscattering Signatures to Nanometer-Scale Cellular Changes	827
16.27	PSTD Modeling Application to Tissue Optics	828
16.28	Summary	830
Ackno	wledgments	830
Refere	nces	830

17 Advances in PSTD Techniques *Qing Liu and Gang Zhao*

847

17.1	Introduction	847
17.2	Approximation of Derivatives	847
	17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method	848
	17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods	849
	17.2.3 Trigonometric Interpolation and FFT Method	850
	17.2.4 Nonperiodic Functions and Chebyshev Method	851
17.3	Single-Domain Fourier PSTD Method	854
	17.3.1 Approximation of Spatial Derivatives	855
	17.3.2 Numerical Stability and Dispersion	856
17.4	Single-Domain Chebyshev PSTD Method	857
	17.4.1 Spatial and Temporal Grids	857
	17.4.2 Maxwell's Equations in Curvilinear Coordinates	858
	17.4.3 Spatial Derivatives	860
	17.4.4 Time-Integration Scheme	861
17.5	Multidomain Chebyshev PSTD Method	861
	17.5.1 Subdomain Spatial Derivatives and Time Integration	862
	17.5.2 Subdomain Patching by Characteristics	863
	17.5.3 Subdomain Patching by Physical Conditions	864
	17.5.4 Filter Design for Corner Singularities	864
	17.5.5 Multidomain PSTD Results for 2.5-Dimensional Problems	866
	17.5.6 Multidomain PSTD Results for Three-Dimensional Problems	868
17.6	Penalty Method for Multidomain PSTD Algorithm	868

17.7 Discontinuous Galerkin Method for PSTD Boundary Patching	873
17.7.1 Weak Form of Maxwell's Equations	873
17.7.2 Space Discretization and Domain Transformation	873
17.7.3 Mass Matrix and Stiffness Matrix	874
17.7.4 Flux on the Boundary	876
17.7.5 Numerical Results for DG-PSTD Method	876
17.8 Summary and Conclusions	879
Appendix 17A: Coefficients for the Five-Stage, Fourth-Order Runge-Kutta Method	879
References	

18 Advances in Unconditionally Stable Techniques

Auvances in Unconditionally Stable Techniques				
Hans De Raedt				
18.1 Introduction	883			
18.2 General Framework	883			
18.3 Matrix-Exponential Concepts	884			
18.4 Product-Formula Approach	887			
18.4.1 The Classic Yee Algorithm as a Particular Realization	887			
18.4.2 The ADI Method as a Second Realization	888			
18.4.3 Unconditionally Stable Algorithms: Real-Space Approach	889			
18.4.4 Unconditionally Stable Algorithms: Fourier-Space Approach	891			
18.5 Chebyshev Polynomial Algorithm	892			
18.6 Extension to Linear Dispersive Media	895			
18.7 Extension to Perfectly Matched Layer Absorbing Boundary Conditions	898			
18.8 Summary	899			
Appendix 18A: Some Technical Details				
Appendix 18B: Stability Analysis of Equation (18.17)				
Appendix 18C: Stability Analysis of Equation (18.19)				
References				
Projects				

19 Advances in Hybrid FDTD-FE Techniques

Thomas Rylander, Fredrik Edelvik, Anders Bondeson, and Douglas Riley			
19.1 Introduction	907		
19.2 Time-Domain Finite Elements	910		
19.2.1 Coupled Curl Equations	910		
19.2.2 Wave Equation	913		
19.2.3 Equivalences Between Finite Elements and FDTD	917		
19.3 Tetrahedral, Hexahedral (Brick), and Pyramidal Zeroth-Order Edge and Facet Elements	918		
19.3.1 Tetrahedral Finite Elements	919		
19.3.2 Hexahedral (Brick) Finite Elements	921		
19.3.3 Pyramidal Finite Elements	922		
19.4 Stable Hybrid FDTD-FE Interface	924		
19.4.1 Spatial Discretization	924		
19.4.2 Time-Stepping on a Hybrid Space Lattice	927		
19.4.3 Generalized Newmark Scheme	928		
19.4.4 Proof of Stability	929		
19.4.5 Alternative Time-Stepping Schemes	930		
19.4.6 Extensions of the Hybrid FDTD-FE Concept	931		
19.4.7 Reflection at the Interface of FDTD and FE Regions of a Hybrid Space Lattice	931		
19.4.8 Scattering from the PEC Sphere	933		
19.5 Mesh-Generation Approaches	935		

19.6	Subcell Wire and Slot Algorithms for Time-Domain Finite Elements	936
	19.6.1 Modeling Thin Wires	936
	19.6.2 Modeling Thin Slots	939
	19.6.3 Numerical Results for Thin Wires and Slots	941
19.7	Application to Advanced Scattering and Radiation Problems	943
	19.7.1 Monostatic RCS of the NASA Almond	943
	19.7.2 Bistatic RCS of the Saab Trainer Aircraft	945
	19.7.3 Input Impedance of the Four-Arm Sinuous Antenna	948
19.8	Summary	949
Acknowledgments		
References		

20 Advances in Hardware Acceleration for FDTD Ryan Schneider, Sean Krakiwsky, Laurence Turner, and Michal Okoniewski

	Ryan	Schneider, Sean Krakiwsky, Laurence Turner, and Michal Okoniewski	955
	20.1	Introduction	955
	20.2	Background Literature	956
	20.3	Fundamental Design Considerations	957
	20.4	Conceptual Massively Parallel FPGA Implementation	958
	20.5	Case Study of Using the FPGA as a Coprocessor	962
	20.6	Performance of Custom Hardware Implementations	964
	20.7	Fundamentals of Graphics Processor Units	965
		20.7.1 Overview	965
		20.7.2 Graphics Pipeline	965
		20.7.3 Memory Interface	967
		20.7.4 Programmable Fragment and Vertex Processors	968
	20.8	Implementing FDTD on a Graphics Processor Unit	969
		20.8.1 Initialization	969
		20.8.2 Electric and Magnetic Field Updates	970
		20.8.3 Boundaries	972
		20.8.4 Source Excitation	974
		20.8.5 Archiving Observation Nodes	975
		20.8.6 Multipass Rendering	975
		20.8.7 Display	977
	20.9	Performance Measurements of the GPU Accelerator	977
	20.10	Summary and Conclusions	978
	Refe	rences	978
Acronyms and Common Symbols About the Authors		981	
		985	
Inc	lex		997

Preface to the Third Edition

The first and second editions of this book were published in 1995 and 2000, respectively. We are gratified with their high level of use by both the university and industrial-research communities. The second edition is often the text in senior year and graduate electrical engineering courses in computational electrodynamics, and both editions are frequently cited in refereed journal papers as primary background references for FDTD methods and applications.

This new third edition is extensively revised and expanded. We have had two primary goals in this regard. First, we have worked to update the book's discussions of FDTD theory and applications to keep pace with the continuing, rapid changes in these areas since 2000. This allows the professional engineer or scientist to have a convenient single-source reference concerning the latest FDTD techniques and research problems. Second, we have worked to further enhance the educational content of the book from both a fundamental theoretical perspective, and from the standpoint of the course instructor's ease of use.

New Material: Advances in FDTD Theory and Numerical Algorithms

Specifically, this third edition contains a large body of new material that discusses in great detail the following recent advances in FDTD theory and numerical algorithms:

- New invited Chapter 17, "Advances in PSTD Techniques," by Qing Liu and Gang Zhao, who have pioneered the theory and application of pseudospectral time-domain computational solutions of Maxwell's equations;
- New invited Chapter 18, "Advances in Unconditionally Stable Techniques," by Hans De Raedt, who, within the framework of the matrix-exponential technique, has pioneered the unification of existing algorithms, as well as the synthesis of completely novel algorithms, for unconditionally stable computational solutions of the time-dependent Maxwell's equations;
- New invited Chapter 19, "Advances in Hybrid FDTD-FE Techniques," by Thomas Rylander, Fredrik Edelvik, Anders Bondeson, and Douglas Riley, who have pioneered the development and application of provably stable hybrids of FDTD and finite-element time-domain techniques;
- New invited Chapter 20, "Advances in Hardware Acceleration for FDTD," by Ryan Schneider, Sean Krakiwsky, Laurence Turner, and Michal Okoniewski, who have led the development of computer hardware / software that promise one order-of-magnitude speedups of FDTD solutions implemented on normal laboratory computers;
- New invited Section 5.9 in Chapter 5, by John Schneider, describing his development of advanced numerical dispersion-compensation techniques for the total-field / scattered-field FDTD wave-source condition;

- New invited Sections 7.7 and 7.9 to 7.11 in Chapter 7 by Stephen Gedney, describing the theory, numerical implementation, and illustrative results of his convolutional PML absorbing boundary condition, the most effective such technique yet for terminating open-region FDTD computational modeling spaces;
- New invited Section 8.7 in Chapter 8 by Xu Li, who has solved the puzzle of why FDTD had previously not properly modeled the backscattering of certain weakly backscattering objects;
- New Sections 9.2.3 and 9.4.3 in Chapter 9 on Drude media, so important for FDTD modeling of metals at optical frequencies;
- New invited Section 9.5 in Chapter 9 by Wojciech Gwarek, who has pioneered the efficient circuit model of linear magnetized ferrites in FDTD simulations;
- New invited Sections 9.6.1 to 9.6.5 in Chapter 9 by Masafumi Fujii, who has led the development of improved FDTD algorithms for nonlinear dispersive media;
- New invited Section 9.8 in Chapter 9 by Shih-Hui Chang on advances in FDTD modeling of quantum-gain materials characterized by a four-level, two-electron atomic system constrained by the Pauli Exclusion Principle;
- New Sections 10.6.1 and 10.6.3 in Chapter 10 on the simple, robust, Yu-Mittra techniques for modeling curved surfaces comprised of either a perfect electric conductor or a dielectric material;
- New invited Section 10.8.3 in Chapter 10 by Malgorzata Celuch-Marcysiak on her simple, robust, ultrawideband equivalent-circuit model of the frequency-dependent skin effect;
- New invited Section 11.8 in Chapter 11 by Nicolas Chavannes on his robust subgridding technique that allows numerically stable local mesh refinement;
- New invited Section 15.7 in Chapter 15 by Wojciech Gwarek, who has pioneered efficient and accurate *S*-parameter extraction from FDTD models of general waveguides;
- New invited Section 15.9.6 in Chapter 15 by Tzong-Lin Wu, who has innovated an efficient FDTD subcell model of the arbitrary two-terminal linear lumped network;
- New invited Sections 16.10 to 16.16 in Chapter 16 by Geoffrey Burr, who has helped to lead the development of FDTD techniques for modeling photonic crystals.

New Material: Advances in FDTD Modeling Applications

In addition to theoretical advances, the third edition contains significant new material that discusses in detail the following recent advances in FDTD modeling applications:

- New invited Section 3.8 in Chapter 3 by Jamesina Simpson, who describes her FDTD models of around-the-world electromagnetic wave propagation at extremely low frequencies;
- New invited Section 14.9 in Chapter 14 by Nicolas Chavannes, who describes his detailed FDTD modeling case study of the electromagnetic wave performance characteristics of the Motorola T250 tri-band cellphone;
- New Section 14.10.4 in Chapter 14, which describes work by Susan Hagness' group on the application of FDTD modeling of ultrawideband radar techniques for the early-stage detection of breast cancer;
- New invited Section 15.12 in Chapter 15 by Jamesina Simpson, who describes her FDTD models of potential hyperspeed digital interconnects in circuit boards realized by defect-mode waveguides in electromagnetic bandgap structures;
- New Sections 16.17 to 16.21 in Chapter 16, which describes work by Susan Hagness' group in PSTD modeling of frequency conversion in second-order nonlinear optical materials, including photonic crystals;
- New invited Sections 16.22 to 16.24 in Chapter 16 by Geoffrey Burr, who describes recent FDTD modeling applications in nanoplasmonics;
- New Sections 16.25 to 16.27 in Chapter 16, which describe applications of FDTD and PSTD modeling in biophotonics, especially in advancing the detection of early stage cervical and colon cancer.

These new examples serve not only to illustrate the power and beauty of FDTD modeling, but also to inform and excite the reader about the *integral role* that electromagnetic wave phenomena play in the design and operation of our society's most advanced electronics and photonics technologies.

New Feature: A Web Site Dedicated to This Book

To supplement this third edition, we and the publisher have created a Web site where, with the proper personal identification number (PIN), instructors can download solutions to the homework problems. This PIN also enables downloads of color graphics, videos, and text updates / errata, as generated by the authors. For details, visit www.artechhouse.com or contact the publisher via email at artech@artechhouse.com. While subject to copyright protection, the color graphics, videos, and text updates / errata downloaded in this manner can be freely distributed by the course instructor to his or her students. We believe that this feature greatly enhances the usefulness of this book as an instructional tool.

Structuring University Courses Around This Book

In our respective teaching experiences at Northwestern University and the University of Wisconsin-Madison, we have found that the material covered in this third edition is most appropriate for senior-year undergraduate students who have already taken at least one course in

electromagnetics. Having said that, our personal experience is that even students without the first course in electromagnetics can access most of the material in the first seven chapters, assuming that they have a strong background in vector calculus and computer programming. However, such students would require supplemental assistance to understand the basis of Maxwell's equations.

When used in a semester-length, senior year undergraduate course (i.e., UW-Madison), there is sufficient time to cover the first ten chapters. This includes time for the students to write working FDTD codes in one and two dimensions, with absorbing boundary conditions and total-field / scattered-field grid zoning. When used in a quarter-length, senior year undergraduate course (i.e., Northwestern), there is sufficient time to cover the first seven chapters.

We recommend that the final ten chapters be covered in a second semester or quarter at the graduate level. Some of the advanced new material in Chapters 17, 18, and 19 is appropriate for a special-topics course at the graduate level.

Acknowledgments

In accomplishing this major rewrite and update of the second edition, we gratefully acknowledge all of our contributing chapter authors and coauthors. Their biographical sketches appear in the About the Authors section.

Finally, we acknowledge our respective family members who exhibited great patience and kept their good spirits while we worked long hours on this book. The first author appreciates the understanding and forbearance of his wife, Sylvia, during this past year of hyperintensive effort. The second author thanks her husband, Tim, for his love, friendship, and support. We may try their patience yet one more time in about five years, when fast-moving advances in FDTD theory and applications may indicate the need for a *fourth edition*.

Allen Taflove, Evanston, Illinois Susan C. Hagness, Madison, Wisconsin June 2005