Contents

Preface to the Third Edition

1 Electrodynamics Entering the 21st Century
1.1 Introduction
1.2 The Heritage of Military Defense Applications
1.3 Frequency-Domain Solution Techniques
1.4 Rise of Finite-Difference Time-Domain Methods
1.5 History of FDTD Techniques for Maxwell’s Equations
1.6 Characteristics of FDTD and Related Space-Grid Time-Domain Techniques
1.6.1 Classes of Algorithms
1.6.2 Predictive Dynamic Range
1.6.3 Scaling to Very Large Problem Sizes
1.7 Examples of Applications
1.7.1 Impulsive Around-the-World Extremely Low-Frequency Propagation
1.7.2 Cellphone Radiation Interacting with the Human Head
1.7.3 Early-Stage Detection of Breast Cancer Using an Ultrawideband Microwave Radar
1.7.4 Homing Accuracy of a Radar-Guided Missile
1.7.5 Electromagnetic Wave Vulnerabilities of a Military Jet Plane
1.7.6 Millimeter-Wave Propagation in a Defect-Mode Electromagnetic Bandgap Structure
1.7.7 Photonic Crystal Microcavity Laser
1.7.8 Photonic Crystal Cross-Waveguide Switch
1.8 Conclusions

References

2 The One-Dimensional Scalar Wave Equation
2.1 Introduction
2.2 Propagating-Wave Solutions
2.3 Dispersion Relation
2.4 Finite Differences
2.5 Finite-Difference Approximation of the Scalar Wave Equation
2.6 Numerical Dispersion Relation
2.6.1 Case 1: Very Fine Sampling in Time and Space
2.6.2 Case 2: Magic Time-Step
2.6.3 Case 3: Dispersive Wave Propagation
2.6.4 Example of Calculation of Numerical Phase Velocity and Attenuation
2.6.5 Examples of Calculations of Pulse Propagation
2.7 Numerical Stability
2.7.1 Complex-Frequency Analysis
2.7.2 Examples of Calculations Involving Numerical Instability
2.8 Summary

Appendix 2A: Order of Accuracy
2A.1 Lax-Richtmyer Equivalence Theorem
2A.2 Limitations

References

Selected Bibliography on Stability of Finite-Difference Methods
Problems
3 Introduction to Maxwell’s Equations and the Yee Algorithm

Allen Taflove and Jamesina Simpson

3.1 Introduction

3.2 Maxwell’s Equations in Three Dimensions

3.3 Reduction to Two Dimensions

3.3.1 TM Mode

3.3.2 TE Mode

3.4 Reduction to One Dimension

3.4.1 x-Directed, z-Polarized TEM Mode

3.4.2 x-Directed, y-Polarized TEM Mode

3.5 Equivalence to the Wave Equation in One Dimension

3.6 The Yee Algorithm

3.6.1 Basic Ideas

3.6.2 Finite Differences and Notation

3.6.3 Finite-Difference Expressions for Maxwell’s Equations in Three Dimensions

3.6.4 Space Region with a Continuous Variation of Material Properties

3.6.5 Space Region with a Finite Number of Distinct Media

3.6.6 Space Region with Nonpermeable Media

3.6.7 Reduction to the Two-Dimensional TM and TE Modes

3.6.8 Interpretation as Faraday’s and Ampere’s Laws in Integral Form

3.6.9 Divergence-Free Nature

3.7 Alternative Finite-Difference Grids

3.7.1 Cartesian Grids

3.7.2 Hexagonal Grids

3.8 Emerging Application: Gridding the Planet Earth

3.8.1 Background

3.8.2 The Latitude-Longitude Space Lattice

3.8.3 The Geodesic (Hexagon-Pentagon) Grid

3.9 Summary

References

Problems

4 Numerical Dispersion and Stability

4.1 Introduction

4.2 Derivation of the Numerical Dispersion Relation for Two-Dimensional Wave Propagation

4.3 Extension to Three Dimensions

4.4 Comparison with the Ideal Dispersion Case

4.5 Anisotropy of the Numerical Phase Velocity

4.5.1 Sample Values of Numerical Phase Velocity

4.5.2 Intrinsic Grid Velocity Anisotropy

4.6 Complex-Valued Numerical Wavenumbers

4.6.1 Case 1: Numerical Wave Propagation Along the Principal Lattice Axes

4.6.2 Case 2: Numerical Wave Propagation Along a Grid Diagonal

4.6.3 Example of Calculation of Numerical Phase Velocity and Attenuation

4.6.4 Example of Calculation of Wave Propagation

4.7 Numerical Stability

4.7.1 Complex-Frequency Analysis

4.7.2 Example of a Numerically Unstable Two-Dimensional FDTD Model

4.7.3 Linear Growth Mode When the Normalized Courant Factor Equals 1

4.8 Generalized Stability Problem

4.8.1 Absorbing and Impedance Boundary Conditions
4.8.2 Variable and Unstructured Meshing 137
4.8.3 Lossy, Dispersive, Nonlinear, and Gain Materials 138
4.9 Modified Yee-Based Algorithms for Mitigating Numerical Dispersion 138
4.9.1 Strategy 1: Center a Specific Numerical Phase-Velocity Curve About \(c \) 138
4.9.2 Strategy 2: Use Fourth-Order-Accurate Explicit Spatial Differences 139
4.9.3 Strategy 3: Use a Hexagonal Grid, If Possible 146
4.9.4 Strategy 4: Use Discrete Fourier Transforms to Calculate the Spatial Derivatives 150
4.10 Alternating-Direction-Implicit Time-Stepping Algorithm for Operation Beyond the Courant Limit 154
4.10.1 Numerical Formulation of the Zheng/Chen/Zhang Algorithm 155
4.10.2 Sources 161
4.10.3 Numerical Stability 161
4.10.4 Numerical Dispersion 163
4.10.5 Additional Accuracy Limitations and Their Implications 164
4.11 Summary 164
References 165
Problems 166
Projects 167

5 Incident Wave Source Conditions
Allen Taflove, Geoff Waldschmidt, Christopher Wagner, John Schneider, and Susan Hagness 169
5.1 Introduction 169
5.2 Pointwise \(E \) and \(H \) Hard Sources in One Dimension 169
5.3 Pointwise \(E \) and \(H \) Hard Sources in Two Dimensions 171
5.3.1 Green Function for the Scalar Wave Equation in Two Dimensions 171
5.3.2 Obtaining Comparative FDTD Data 172
5.3.3 Results for Effective Action Radius of a Hard-Sourced Field Component 173
5.4 \(J \) and \(M \) Current Sources in Three Dimensions 175
5.4.1 Sources and Charging 176
5.4.2 Sinusoidal Sources 178
5.4.3 Transient (Pulse) Sources 178
5.4.4 Intrinsic Lattice Capacitance 179
5.4.5 Intrinsic Lattice Inductance 183
5.4.6 Impact upon FDTD Simulations of Lumped-Element Capacitors and Inductors 183
5.5 The Plane-Wave Source Condition 185
5.6 The Total-Field / Scattered-Field Technique: Ideas and One-Dimensional Formulation 186
5.6.1 Ideas 186
5.6.2 One-Dimensional Formulation 188
5.7 Two-Dimensional Formulation of the TF/SF Technique 193
5.7.1 Consistency Conditions 193
5.7.2 Calculation of the Incident Field 197
5.7.3 Illustrative Example 201
5.8 Three-Dimensional Formulation of the TF/SF Technique 204
5.8.1 Consistency Conditions 204
5.8.2 Calculation of the Incident Field 210
5.9 Advanced Dispersion Compensation in the TF/SF Technique 213
5.9.1 Matched Numerical Dispersion Technique 214
5.9.2 Analytical Field Propagation 218
5.10 Scattered-Field Formulation 220
5.10.1 Application to PEC Structures 220
5.10.2 Application to Lossy Dielectric Structures 221
5.10.3 Choice of Incident Plane-Wave Formulation 223
5.11 Waveguide Source Conditions 223
 5.11.1 Pulsed Electric Field Modal Hard Source 223
 5.11.2 Total-Field / Reflected-Field Modal Formulation 225
 5.11.3 Resistive Source and Load Conditions 225
5.12 Summary 226
References 227
Problems 227
Projects 228

6 Analytical Absorbing Boundary Conditions 229
6.1 Introduction 229
6.2 Bayliss-Turkel Radiation Operators 230
 6.2.1 Spherical Coordinates 231
 6.2.2 Cylindrical Coordinates 234
6.3 Engquist-Majda One-Way Wave Equations 236
 6.3.1 One-Term and Two-Term Taylor Series Approximations 237
 6.3.2 Mur Finite-Difference Scheme 240
 6.3.3 Trefethen-Halpern Generalized and Higher-Order ABCs 243
 6.3.4 Theoretical Reflection Coefficient Analysis 245
 6.3.5 Numerical Experiments 247
6.4 Higdon Radiation Operators 252
 6.4.1 Formulation 252
 6.4.2 First Two Higdon Operators 253
 6.4.3 Discussion 254
6.5 Liao Extrapolation in Space and Time 255
 6.5.1 Formulation 255
 6.5.2 Discussion 257
6.6 Ramahi Complementary Operators 259
 6.6.1 Basic Idea 259
 6.6.2 Complementary Operators 260
 6.6.3 Effect of Multiple Wave Reflections 260
 6.6.4 Basis of the Concurrent Complementary Operator Method 261
 6.6.5 Illustrative FDTD Modeling Results Obtained Using the C-COM 267
6.7 Summary 270
References 270
Problems 270

7 Perfectly Matched Layer Absorbing Boundary Conditions 273
Stephen Gedney
7.1 Introduction 273
7.2 Plane Wave Incident upon a Lossy Half-Space 274
7.3 Plane Wave Incident upon Berenger’s PML Medium 276
 7.3.1 Two-Dimensional TE₀ Case 276
 7.3.2 Two-Dimensional TM₀ Case 281
 7.3.3 Three-Dimensional Case 281
7.4 Stretched-Coordinate Formulation of Berenger’s PML 282
7.5 An Anisotropic PML Absorbing Medium 285
 7.5.1 Perfectly Matched Uniaxial Medium 285
 7.5.2 Relationship to Berenger’s Split-Field PML 288
 7.5.3 A Generalized Three-Dimensional Formulation 289
 7.5.4 Inhomogeneous Media 290
7.6 Theoretical Performance of the PML 291
 7.6.1 The Continuous Space 291
 7.6.2 The Discrete Space 292
7.7 Complex Frequency-Shifted Tensor 294
 7.7.1 Introduction 294
 7.7.2 Strategy to Reduce Late-Time (Low-Frequency) Reflections 296
7.8 Efficient Implementation of UPML in FDTD 297
 7.8.1 Derivation of the Finite-Difference Expressions 298
 7.8.2 Computer Implementation of the UPML 301
7.9 Efficient Implementation of CPML in FDTD 302
 7.9.1 Derivation of the Finite-Difference Expressions 302
 7.9.2 Computer Implementation of the CPML 307
7.10 Application of CPML in FDTD to General Media 310
 7.10.1 Introduction 310
 7.10.2 Example: Application of CPML to the Debye Medium 310
7.11 Numerical Experiments with PML 313
 7.11.1 Current Source Radiating in an Unbounded Two-Dimensional Region 313
 7.11.2 Highly Elongated Domains and Edge Singularities 317
 7.11.3 Microstrip Patch Antenna Array 320
 7.11.4 Dispersive Media 322
7.12 Summary and Conclusions 324
 References 324
 Projects 327

8 Near-to-Far-Field Transformation 329
 Allen Taflove, Xu Li, and Susan Hagness 329
 8.1 Introduction 329
 8.2 Two-Dimensional Transformation, Phasor Domain 329
 8.2.1 Application of Green’s Theorem 330
 8.2.2 Far-Field Limit 332
 8.2.3 Reduction to Standard Form 334
 8.3 Obtaining Phasor Quantities Via Discrete Fourier Transformation 335
 8.4 Surface Equivalence Theorem 338
 8.5 Extension to Three Dimensions, Phasor Domain 340
 8.6 Time-Domain Near-to-Far-Field Transformation 343
 8.7 Modified NTFF Procedure to More Accurately Calculate Backscattering from Strongly Forward-Scattering Objects 348
 8.8 Summary 351
 References 351
 Project 352

9 Dispersive, Nonlinear, and Gain Materials 353
 Allen Taflove, Susan Hagness, Wojciech Gwarek, Masafumi Fujii, and Shih-Hui Chang 353
 9.1 Introduction 353
 9.2 Generic Isotropic Material Dispersions 354
 9.2.1 Debye Media 354
 9.2.2 Lorentz Media 354
 9.2.3 Drude Media 355
 9.3 Piecewise-Linear Recursive-Convolution Method, Linear Material Case 355
 9.3.1 General Formulation 356
 9.3.2 Application to Debye Media 358
9.3.3 Application to Lorentz Media 358
9.3.4 Numerical Results 360
9.4 Auxiliary Differential Equation Method, Linear Material Case 361
 9.4.1 Formulation for Multiple Debye Poles 361
 9.4.2 Formulation for Multiple Lorentz Pole Pairs 363
 9.4.3 Formulation for Multiple Drude Poles 365
 9.4.4 Illustrative Numerical Results 367
9.5 Modeling of Linear Magnetized Ferrites 369
 9.5.1 Equivalent RLC Model 370
 9.5.2 Time-Stepping Algorithm 371
 9.5.3 Extension to the Three-Dimensional Case, Including Loss 373
 9.5.4 Illustrative Numerical Results 374
 9.5.5 Comparison of Computer Resources 375
9.6 Auxiliary Differential Equation Method, Nonlinear Dispersive Material Case 376
 9.6.1 Strategy 376
 9.6.2 Contribution of the Linear Debye Polarization 377
 9.6.3 Contribution of the Linear Lorentz Polarization 377
 9.6.4 Contributions of the Third-Order Nonlinear Polarization 378
 9.6.5 Electric Field Update 380
 9.6.6 Illustrative Numerical Results for Temporal Solitons 381
 9.6.7 Illustrative Numerical Results for Spatial Solitons 383
9.7 Auxiliary Differential Equation Method, Macroscopic Modeling of Saturable, Dispersive Optical Gain Materials 387
 9.7.1 Theory 387
 9.7.2 Validation Studies 390
9.8 Auxiliary Differential Equation Method, Modeling of Lasing Action in a Four-Level Two-Electron Atomic System 394
 9.8.1 Quantum Physics Basis 394
 9.8.2 Coupling to Maxwell’s Equations 398
 9.8.3 Time-Stepping Algorithm 398
 9.8.4 Illustrative Results 400
9.9 Summary and Conclusions 402
References 404
Problems 405
Projects 406

10 Local Subcell Models of Fine Geometrical Features

Allen Taflove, Malgorzata Celuch-Marcysiak, and Susan Hagness 407
10.1 Introduction 407
10.2 Basis of Contour-Path FDTD Modeling 408
10.3 The Simplest Contour-Path Subcell Models 408
 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 410
 10.3.2 Average Properties Model for Material Surfaces 410
10.4 The Contour-Path Model of the Narrow Slot 411
10.5 The Contour-Path Model of the Thin Wire 415
10.6 Locally Conformal Models of Curved Surfaces 420
 10.6.1 Yu-Mittra Technique for PEC Structures 420
 10.6.2 Illustrative Results for PEC Structures 421
 10.6.3 Yu-Mittra Technique for Material Structures 424
10.7 Maloney-Smith Technique for Thin Material Sheets 427
 10.7.1 Basis 427
 10.7.2 Illustrative Results 430
10.8 Surface Impedance
 10.8.1 The Monochromatic SIBC
 10.8.2 Convolution-Based Models of the Frequency-Dependent SIBC
 10.8.3 Equivalent-Circuit Model of the Frequency-Dependent SIBC
 10.8.4 Sources of Error
 10.8.5 Discussion

10.9 Thin Coatings on a PEC Surface
 10.9.1 Method of Lee et al.
 10.9.2 Method of Kärkkäinen

10.10 Relativistic Motion of PEC Boundaries
 10.10.1 Basis
 10.10.2 Illustrative Results

10.11 Summary and Discussion

References
Selected Bibliography
Projects

11 Nonuniform Grids, Nonorthogonal Grids, Unstructured Grids, and Subgrids
Stephan Gedney, Faiza Lansing, and Nicolas Chavannes

11.1 Introduction

11.2 Nonuniform Orthogonal Grids

11.3 Locally Conformal Grids, Globally Orthogonal

11.4 Global Curvilinear Coordinates
 11.4.1 Nonorthogonal Curvilinear FDTD Algorithm
 11.4.2 Stability Criterion

11.5 Irregular Nonorthogonal Structured Grids

11.6 Irregular Nonorthogonal Unstructured Grids
 11.6.1 Generalized Yee Algorithm
 11.6.2 Inhomogeneous Media
 11.6.3 Practical Implementation of the Generalized Yee Algorithm

11.7 A Planar Generalized Yee Algorithm
 11.7.1 Time-Stepping Expressions
 11.7.2 Projection Operators
 11.7.3 Efficient Time-Stepping Implementation
 11.7.4 Modeling Example: 32-GHz Wilkinson Power Divider

11.8 Cartesian Subgrids
 11.8.1 Geometry
 11.8.2 Time-Stepping Scheme
 11.8.3 Spatial Interpolation
 11.8.4 Numerical Stability Considerations
 11.8.5 Reflection from the Interface of the Primary Grid and Subgrid
 11.8.6 Illustrative Results: Helical Antenna on Generic Cellphone at 900 MHz
 11.8.7 Computational Efficiency

11.9 Summary and Conclusions

References
Problems
Projects
12 Bodies of Revolution

Thomas Jurgens, Jeffrey Blaschak, and Gregory Saewert

12.1 Introduction
12.2 Field Expansion
12.3 Difference Equations for Off-Axis Cells
 12.3.1 Ampere’s Law Contour Path Integral to Calculate e_r
 12.3.2 Ampere’s Law Contour Path Integral to Calculate e_ϕ
 12.3.3 Ampere’s Law Contour Path Integral to Calculate e_z
 12.3.4 Difference Equations
 12.3.5 Surface-Conforming Contour Path Integrals
12.4 Difference Equations for On-Axis Cells
 12.4.1 Ampere’s Law Contour Path Integral to Calculate e_z on the z-Axis
 12.4.2 Ampere’s Law Contour Path Integral to Calculate e_ϕ on the z-Axis
 12.4.3 Faraday’s Law Calculation of h_r on the z-Axis
12.5 Numerical Stability
12.6 PML Absorbing Boundary Condition
 12.6.1 BOR-FDTD Background
 12.6.2 Extension of PML to the General BOR Case
 12.6.3 Examples
12.7 Application to Particle Accelerator Physics
 12.7.1 Definitions and Concepts
 12.7.2 Examples
12.8 Summary

References
Problems
Projects

13 Periodic Structures

James Maloney and Morris Kesler

13.1 Introduction
13.2 Review of Scattering from Periodic Structures
13.3 Direct Field Methods
 13.3.1 Normal Incidence Case
 13.3.2 Multiple Unit Cells for Oblique Incidence
 13.3.3 Sine-Cosine Method
 13.3.4 Angled-Update Method
13.4 Introduction to the Field-Transformation Technique
13.5 Multiple-Grid Approach
 13.5.1 Formulation
 13.5.2 Numerical Stability Analysis
 13.5.3 Numerical Dispersion Analysis
 13.5.4 Lossy Materials
 13.5.5 Lossy Screen Example
13.6 Split-Field Method, Two Dimensions
 13.6.1 Formulation
 13.6.2 Numerical Stability Analysis
 13.6.3 Numerical Dispersion Analysis
 13.6.4 Lossy Materials
 13.6.5 Lossy Screen Example
13.7 Split-Field Method, Three Dimensions
 13.7.1 Formulation
 13.7.2 Numerical Stability Analysis
 13.7.3 UPML Absorbing Boundary Condition
13.8 Application of the Periodic FDTD Method
 13.8.1 Electromagnetic Bandgap Structures
 13.8.2 Frequency-Selective Surfaces
 13.8.3 Antenna Arrays
13.9 Summary and Conclusions
Acknowledgments
References
Projects

14 Antennas
James Maloney, Glenn Smith, Eric Thiele, Om Gandhi, Nicolas Chavannes, and Susan Hagness

14.1 Introduction
14.2 Formulation of the Antenna Problem
 14.2.1 Transmitting Antenna
 14.2.2 Receiving Antenna
 14.2.3 Symmetry
 14.2.4 Excitation
14.3 Antenna Feed Models
 14.3.1 Detailed Modeling of the Feed
 14.3.2 Simple Gap Feed Model for a Monopole Antenna
 14.3.3 Improved Simple Feed Model
14.4 Near-to-Far-Field Transformations
 14.4.1 Use of Symmetry
 14.4.2 Time-Domain Near-to-Far-Field Transformation
 14.4.3 Frequency-Domain Near-to-Far-Field Transformation
14.5 Plane-Wave Source
 14.5.1 Effect of an Incremental Displacement of the Surface Currents
 14.5.2 Effect of an Incremental Time Shift
 14.5.3 Relation to Total-Field / Scattered-Field Lattice Zoning
14.6 Case Study I: The Standard-Gain Horn
14.7 Case Study II: The Vivaldi Slotline Array
 14.7.1 Background
 14.7.2 The Planar Element
 14.7.3 The Vivaldi Pair
 14.7.4 The Vivaldi Quad
 14.7.5 The Linear Phased Array
 14.7.6 Phased-Array Radiation Characteristics Indicated by the FDTD Modeling
 14.7.7 Active Impedance of the Phased Array
14.8 Near-Field Simulations
 14.8.1 Generic 900-MHz Cellphone Handset in Free Space
 14.8.2 900-MHz Dipole Antenna Near a Layered Bone-Brain Half-Space
 14.8.3 840-MHz Dipole Antenna Near a Rectangular Brain Phantom
 14.8.4 900-MHz Infinitesimal Dipole Antenna Near a Spherical Brain Phantom
 14.8.5 1.9-GHz Half-Wavelength Dipole Near a Spherical Brain Phantom
14.9 Case Study III: The Motorola T250 Tri-Band Phone
 14.9.1 FDTD Phone Model
 14.9.2 Measurement Procedures
 14.9.3 Free-Space Near-Field Investigations and Assessment of Design Capabilities
14.9.4 Performance in Loaded Conditions (SAM and MRI-Based Human Head Model) 657
14.9.5 Radiation Performance in Free Space and Adjacent to the SAM Head 659
14.9.6 Computational Requirements 661
14.9.7 Overall Assessment 661
14.10 Selected Additional Applications 661
14.10.1 Use of Electromagnetic Bandgap Materials 662
14.10.2 Ground-Penetrating Radar 663
14.10.3 Antenna-Radome Interaction 667
14.10.4 Biomedical Applications of Antennas 669
14.11 Summary and Conclusions 671

References 671
Projects 676

15 High-Speed Electronic Circuits with Active and Nonlinear Components
Melinda Piket-May, Wojciech Gwarek, Tzong-Lin Wu, Bijan Houshmand, Tatsuo Itoh, and Jamesina Simpson

15.1 Introduction 677
15.2 Basic Circuit Parameters for TEM Striplines and Microstrips 679
15.2.1 Transmission Line Parameters 679
15.2.2 Impedance 680
15.2.3 S-Parameters 680
15.2.4 Differential Capacitance 681
15.2.5 Differential Inductance 682
15.3 Lumped Inductance Due to a Discontinuity 682
15.3.1 Flux / Current Definition 684
15.3.2 Fitting $Z(\omega)$ or $S(\omega)$ to an Equivalent Circuit 684
15.3.3 Discussion: Choice of Methods 685
15.4 Inductance of Complex Power-Distribution Systems 685
15.4.1 Method Description 685
15.4.2 Example: Multiplane Meshed Printed-Circuit Board 687
15.4.3 Discussion 688
15.5 Parallel Coplanar Microstrips 688
15.6 Multilayered Interconnect Modeling 690
15.7 S-Parameter Extraction for General Waveguides 692
15.8 Digital Signal Processing and Spectrum Estimation 694
15.8.1 Prony’s Method 695
15.8.2 Autoregressive Models 697
15.8.3 Padé Approximation 702
15.9 Modeling of Lumped Circuit Elements 706
15.9.1 FDTD Formulation Extended to Circuit Elements 706
15.9.2 The Resistor 708
15.9.3 The Resistive Voltage Source 708
15.9.4 The Capacitor 709
15.9.5 The Inductor 711
15.9.6 The Arbitrary Two-Terminal Linear Lumped Network 711
15.9.7 The Diode 714
15.9.8 The Bipolar Junction Transistor 715
15.10 Direct Linking of FDTD and SPICE 717
15.10.1 Basic Idea 718
15.10.2 Norton Equivalent Circuit “Looking Into” the FDTD Space Lattice 719
15.10.3 Thevenin Equivalent Circuit “Looking Into” the FDTD Space Lattice 721
15.11 Case Study: A 6-GHz MESFET Amplifier Model 723
 15.11.1 Large-Signal Nonlinear Model 723
 15.11.2 Amplifier Configuration 725
 15.11.3 Analysis of the Circuit without the Packaging Structure 726
 15.11.4 Analysis of the Circuit with the Packaging Structure 728
15.12 Emerging Topic: Wireless High-Speed Digital Interconnects Using Defect-Mode Electromagnetic Bandgap Waveguides 731
 15.12.1 Stopband of the Defect-Free Two-Dimensional EBG Structure 732
 15.12.2 Passband of the Two-Dimensional EBG Structure with Waveguiding Defect 732
 15.12.3 Laboratory Experiments and Supporting FDTD Modeling 734
15.13 Summary and Conclusions 736
Acknowledgments 737
References 737
Selected Bibliography 740
Projects 741
16 Photonics 743
 Geoffrey Burr, Susan Hagness, and Allen Taflove 743
16.1 Introduction 743
16.2 Introduction to Index-Contrast Guided-Wave Structures 743
16.3 FDTD Modeling Issues 744
 16.3.1 Optical Waveguides 744
 16.3.2 Material Dispersion and Nonlinearities 747
16.4 Laterally Coupled Microcavity Ring Resonators 747
 16.4.1 Modeling Considerations: Two-Dimensional FDTD Simulations 748
 16.4.2 Coupling to Straight Waveguides 750
 16.4.3 Coupling to Curved Waveguides 750
 16.4.4 Elongated Ring Designs (“Racetracks”) 752
 16.4.5 Resonances of the Circular Ring 752
16.5 Laterally Coupled Microcavity Disk Resonators 756
 16.5.1 Resonances 756
 16.5.2 Suppression of Higher-Order Radial Whispering-Gallery Modes 760
16.6 Vertically Coupled Racetrack 761
16.7 Introduction to Distributed Bragg Reflector Devices 765
16.8 Application to Vertical-Cavity Surface-Emitting Lasers 765
 16.8.1 Passive Studies 766
 16.8.2 Active Studies: Application of the Classical Gain Model 767
 16.8.3 Application of a New Semiclassical Gain Model 769
16.9 Quasi-One-Dimensional DBR Structures 770
16.10 Introduction to Photonic Crystals 772
16.11 Calculation of Band Structure 774
 16.11.1 The “Order-N” Method 775
 16.11.2 Frequency Resolution 778
 16.11.3 Filter Diagonalization Method 780
 16.11.4 The Triangular Photonic Crystal Lattice 782
 16.11.5 Sources of Error and Their Mitigation 784
16.12 Calculation of Mode Patterns 787
16.13 Variational Approach 790
16.14 Modeling of Defect-Mode Photonic Crystal Waveguides 791
 16.14.1 Band Diagram of a Photonic Crystal Slab 793
 16.14.2 Band Diagram of a Photonic Crystal Waveguide 795
16.14.3 Intrinsic Loss in Photonic Crystal Waveguides 798
16.14.4 Transmission in Photonic Crystal Waveguides 803
16.14.5 Aperiodic Photonic-Crystal Waveguides 806
16.14.6 Photonic Crystal Waveguide Extrinsic Scattering Loss from the Green Function 806
16.15 Modeling of Photonic Crystal Resonators 807
16.16 Modeling Examples of Photonic Crystal Resonators 810
16.16.1 Electrically Driven Microcavity Laser 810
16.16.2 Photonic Crystal Cross-Waveguide Switch 812
16.17 Introduction to Frequency Conversion in Second-Order Nonlinear Optical Materials 813
16.18 PSTD-4 Algorithm 813
16.19 Extension to Second-Order Nonlinear Media 814
16.20 Application to a Nonlinear Waveguide with a QPM Grating 814
16.21 Application to Nonlinear Photonic Crystals 817
16.22 Introduction to Nanoplasmonic Devices 820
16.23 FDTD Modeling Considerations 820
16.24 FDTD Modeling Applications 821
16.25 Introduction to Biophotonics 822
16.26 FDTD Modeling Applications 822
16.26.1 Vertebrate Retinal Rod 822
16.26.2 Precancerous Cervical Cells 824
16.26.3 Sensitivity of Backscattering Signatures to Nanometer-Scale Cellular Changes 827
16.27 PSTD Modeling Application to Tissue Optics 828
16.28 Summary 830
Acknowledgments 830
References 830

17 Advances in PSTD Techniques 847
Qing Liu and Gang Zhao

17.1 Introduction 847
17.2 Approximation of Derivatives 847
17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 848
17.2.2 Derivative Matrices for Fourth-Order and N’th-Order Finite-Difference Methods 849
17.2.3 Trigonometric Interpolation and FFT Method 850
17.2.4 Nonperiodic Functions and Chebyshev Method 851
17.3 Single-Domain Fourier PSTD Method 854
17.3.1 Approximation of Spatial Derivatives 855
17.3.2 Numerical Stability and Dispersion 856
17.4 Single-Domain Chebyshev PSTD Method 857
17.4.1 Spatial and Temporal Grids 857
17.4.2 Maxwell’s Equations in Curvilinear Coordinates 858
17.4.3 Spatial Derivatives 860
17.4.4 Time-Integration Scheme 861
17.5 Multidomain Chebyshev PSTD Method 861
17.5.1 Subdomain Spatial Derivatives and Time Integration 862
17.5.2 Subdomain Patching by Characteristics 863
17.5.3 Subdomain Patching by Physical Conditions 864
17.5.4 Filter Design for Corner Singularities 864
17.5.5 Multidomain PSTD Results for 2.5-Dimensional Problems 866
17.5.6 Multidomain PSTD Results for Three-Dimensional Problems 868
17.6 Penalty Method for Multidomain PSTD Algorithm 868
17.7 Discontinuous Galerkin Method for PSTD Boundary Patching
 17.7.1 Weak Form of Maxwell’s Equations
 17.7.2 Space Discretization and Domain Transformation
 17.7.3 Mass Matrix and Stiffness Matrix
 17.7.4 Flux on the Boundary
 17.7.5 Numerical Results for DG-PSTD Method
 17.8 Summary and Conclusions
 Appendix 17A: Coefficients for the Five-Stage, Fourth-Order Runge-Kutta Method
 References

18 Advances in Unconditionally Stable Techniques
 Hans De Raedt
 18.1 Introduction
 18.2 General Framework
 18.3 Matrix-Exponential Concepts
 18.4 Product-Formula Approach
 18.4.1 The Classic Yee Algorithm as a Particular Realization
 18.4.2 The ADI Method as a Second Realization
 18.4.3 Unconditionally Stable Algorithms: Real-Space Approach
 18.4.4 Unconditionally Stable Algorithms: Fourier-Space Approach
 18.5 Chebyshev Polynomial Algorithm
 18.6 Extension to Linear Dispersive Media
 18.7 Extension to Perfectly Matched Layer Absorbing Boundary Conditions
 18.8 Summary
 Appendix 18A: Some Technical Details
 Appendix 18B: Stability Analysis of Equation (18.17)
 Appendix 18C: Stability Analysis of Equation (18.19)
 References
 Projects

19 Advances in Hybrid FDTD-FE Techniques
 Thomas Rylander, Fredrik Edelvik, Anders Bondeson, and Douglas Riley
 19.1 Introduction
 19.2 Time-Domain Finite Elements
 19.2.1 Coupled Curl Equations
 19.2.2 Wave Equation
 19.2.3 Equivalences Between Finite Elements and FDTD
 19.3 Tetrahedral, Hexahedral (Brick), and Pyramidal Zeroth-Order Edge and Facet Elements
 19.3.1 Tetrahedral Finite Elements
 19.3.2 Hexahedral (Brick) Finite Elements
 19.3.3 Pyramidal Finite Elements
 19.4 Stable Hybrid FDTD-FE Interface
 19.4.1 Spatial Discretization
 19.4.2 Time-Stepping on a Hybrid Space Lattice
 19.4.3 Generalized Newmark Scheme
 19.4.4 Proof of Stability
 19.4.5 Alternative Time-Stepping Schemes
 19.4.6 Extensions of the Hybrid FDTD-FE Concept
 19.4.7 Reflection at the Interface of FDTD and FE Regions of a Hybrid Space Lattice
 19.4.8 Scattering from the PEC Sphere
 19.5 Mesh-Generation Approaches
19.6 Subcell Wire and Slot Algorithms for Time-Domain Finite Elements 936
 19.6.1 Modeling Thin Wires 936
 19.6.2 Modeling Thin Slots 939
 19.6.3 Numerical Results for Thin Wires and Slots 941
19.7 Application to Advanced Scattering and Radiation Problems 943
 19.7.1 Monostatic RCS of the NASA Almond 943
 19.7.2 Bistatic RCS of the Saab Traine Aircraft 945
 19.7.3 Input Impedance of the Four-Arm Sinuous Antenna 948
19.8 Summary 949
Acknowledgments 950
References 950

20 Advances in Hardware Acceleration for FDTD 955
Ryan Schneider, Sean Krakowsky, Laurence Turner, and Michal Okoniewski

20.1 Introduction 955
20.2 Background Literature 956
20.3 Fundamental Design Considerations 957
20.4 Conceptual Massively Parallel FPGA Implementation 958
20.5 Case Study of Using the FPGA as a Coprocessor 962
20.6 Performance of Custom Hardware Implementations 964
20.7 Fundamentals of Graphics Processor Units 965
 20.7.1 Overview 965
 20.7.2 Graphics Pipeline 965
 20.7.3 Memory Interface 967
 20.7.4 Programmable Fragment and Vertex Processors 968
20.8 Implementing FDTD on a Graphics Processor Unit 969
 20.8.1 Initialization 969
 20.8.2 Electric and Magnetic Field Updates 970
 20.8.3 Boundaries 972
 20.8.4 Source Excitation 974
 20.8.5 Archiving Observation Nodes 975
 20.8.6 Multipass Rendering 975
 20.8.7 Display 977
20.9 Performance Measurements of the GPU Accelerator 977
20.10 Summary and Conclusions 978
References 978

Acronyms and Common Symbols 981

About the Authors 985

Index 997
Preface to the Third Edition

The first and second editions of this book were published in 1995 and 2000, respectively. We are gratified with their high level of use by both the university and industrial-research communities. The second edition is often the text in senior and graduate electrical engineering courses in computational electrodynamics, and both editions are frequently cited in refereed journal papers as primary background references for FDTD methods and applications.

This new third edition is extensively revised and expanded. We have had two primary goals in this regard. First, we have worked to update the book’s discussions of FDTD theory and applications to keep pace with the continuing, rapid changes in these areas since 2000. This allows the professional engineer or scientist to have a convenient single-source reference concerning the latest FDTD techniques and research problems. Second, we have worked to further enhance the educational content of the book from both a fundamental theoretical perspective, and from the standpoint of the course instructor’s ease of use.

New Material: Advances in FDTD Theory and Numerical Algorithms

Specifically, this third edition contains a large body of new material that discusses in great detail the following recent advances in FDTD theory and numerical algorithms:

- New invited Chapter 17, “Advances in PSTD Techniques,” by Qing Liu and Gang Zhao, who have pioneered the theory and application of pseudospectral time-domain computational solutions of Maxwell’s equations;
- New invited Chapter 18, “Advances in Unconditionally Stable Techniques,” by Hans De Raedt, who, within the framework of the matrix-exponential technique, has pioneered the unification of existing algorithms, as well as the synthesis of completely novel algorithms, for unconditionally stable computational solutions of the time-dependent Maxwell’s equations;
- New invited Chapter 19, “Advances in Hybrid FDTD-FE Techniques,” by Thomas Rylander, Fredrik Edelvik, Anders Bondeson, and Douglas Riley, who have pioneered the development and application of provably stable hybrids of FDTD and finite-element time-domain techniques;
- New invited Chapter 20, “Advances in Hardware Acceleration for FDTD,” by Ryan Schneider, Sean Krakiewsky, Laurence Turner, and Michal Okoniewski, who have led the development of computer hardware / software that promise one order-of-magnitude speedups of FDTD solutions implemented on normal laboratory computers;
- New invited Section 5.9 in Chapter 5, by John Schneider, describing his development of advanced numerical dispersion-compensation techniques for the total-field / scattered-field FDTD wave-source condition;
• New invited Sections 7.7 and 7.9 to 7.11 in Chapter 7 by Stephen Gedney, describing the theory, numerical implementation, and illustrative results of his convolutional PML absorbing boundary condition, the most effective such technique yet for terminating open-region FDTD computational modeling spaces;

• New invited Section 8.7 in Chapter 8 by Xu Li, who has solved the puzzle of why FDTD had previously not properly modeled the backscattering of certain weakly backscattering objects;

• New Sections 9.2.3 and 9.4.3 in Chapter 9 on Drude media, so important for FDTD modeling of metals at optical frequencies;

• New invited Section 9.5 in Chapter 9 by Wojciech Gwarek, who has pioneered the efficient circuit model of linear magnetized ferrites in FDTD simulations;

• New invited Sections 9.6.1 to 9.6.5 in Chapter 9 by Masafumi Fujii, who has led the development of improved FDTD algorithms for nonlinear dispersive media;

• New invited Section 9.8 in Chapter 9 by Shih-Hui Chang on advances in FDTD modeling of quantum-gain materials characterized by a four-level, two-electron atomic system constrained by the Pauli Exclusion Principle;

• New Sections 10.6.1 and 10.6.3 in Chapter 10 on the simple, robust, Yu-Mitra techniques for modeling curved surfaces comprised of either a perfect electric conductor or a dielectric material;

• New invited Section 10.8.3 in Chapter 10 by Malgorzata Celuch-Marcysiak on her simple, robust, ultrawideband equivalent-circuit model of the frequency-dependent skin effect;

• New invited Section 11.8 in Chapter 11 by Nicolas Chavannes on his robust subgridding technique that allows numerically stable local mesh refinement;

• New invited Section 15.7 in Chapter 15 by Wojciech Gwarek, who has pioneered efficient and accurate S-parameter extraction from FDTD models of general waveguides;

• New invited Section 15.9.6 in Chapter 15 by Tzong-Lin Wu, who has innovated an efficient FDTD subcell model of the arbitrary two-terminal linear lumped network;

• New invited Sections 16.10 to 16.16 in Chapter 16 by Geoffrey Burr, who has helped to lead the development of FDTD techniques for modeling photonic crystals.

New Material: Advances in FDTD Modeling Applications

In addition to theoretical advances, the third edition contains significant new material that discusses in detail the following recent advances in FDTD modeling applications:
• New invited Section 3.8 in Chapter 3 by Jamesina Simpson, who describes her FDTD models of around-the-world electromagnetic wave propagation at extremely low frequencies;

• New invited Section 14.9 in Chapter 14 by Nicolas Chavannes, who describes his detailed FDTD modeling case study of the electromagnetic wave performance characteristics of the Motorola T250 tri-band cellphone;

• New Section 14.10.4 in Chapter 14, which describes work by Susan Hagness’ group on the application of FDTD modeling of ultrawideband radar techniques for the early-stage detection of breast cancer;

• New invited Section 15.12 in Chapter 15 by Jamesina Simpson, who describes her FDTD models of potential hyperspeed digital interconnects in circuit boards realized by defect-mode waveguides in electromagnetic bandgap structures;

• New Sections 16.17 to 16.21 in Chapter 16, which describes work by Susan Hagness’ group in PSTD modeling of frequency conversion in second-order nonlinear optical materials, including photonic crystals;

• New invited Sections 16.22 to 16.24 in Chapter 16 by Geoffrey Burr, who describes recent FDTD modeling applications in nanoplasmonics;

• New Sections 16.25 to 16.27 in Chapter 16, which describe applications of FDTD and PSTD modeling in biophotonics, especially in advancing the detection of early stage cervical and colon cancer.

These new examples serve not only to illustrate the power and beauty of FDTD modeling, but also to inform and excite the reader about the integral role that electromagnetic wave phenomena play in the design and operation of our society’s most advanced electronics and photonics technologies.

New Feature: A Web Site Dedicated to This Book

To supplement this third edition, we and the publisher have created a Web site where, with the proper personal identification number (PIN), instructors can download solutions to the homework problems. This PIN also enables downloads of color graphics, videos, and text updates/errata, as generated by the authors. For details, visit www.artechhouse.com or contact the publisher via email at artech@artechhouse.com. While subject to copyright protection, the color graphics, videos, and text updates/errata downloaded in this manner can be freely distributed by the course instructor to his or her students. We believe that this feature greatly enhances the usefulness of this book as an instructional tool.

Structuring University Courses Around This Book

In our respective teaching experiences at Northwestern University and the University of Wisconsin-Madison, we have found that the material covered in this third edition is most appropriate for senior-year undergraduate students who have already taken at least one course in
electromagnetics. Having said that, our personal experience is that even students without the first course in electromagnetics can access most of the material in the first seven chapters, assuming that they have a strong background in vector calculus and computer programming. However, such students would require supplemental assistance to understand the basis of Maxwell’s equations.

When used in a semester-length, senior year undergraduate course (i.e., UW-Madison), there is sufficient time to cover the first ten chapters. This includes time for the students to write working FDTD codes in one and two dimensions, with absorbing boundary conditions and total-field/scattered-field grid zoning. When used in a quarter-length, senior year undergraduate course (i.e., Northwestern), there is sufficient time to cover the first seven chapters.

We recommend that the final ten chapters be covered in a second semester or quarter at the graduate level. Some of the advanced new material in Chapters 17, 18, and 19 is appropriate for a special-topics course at the graduate level.

Acknowledgments

In accomplishing this major rewrite and update of the second edition, we gratefully acknowledge all of our contributing chapter authors and coauthors. Their biographical sketches appear in the About the Authors section.

Finally, we acknowledge our respective family members who exhibited great patience and kept their good spirits while we worked long hours on this book. The first author appreciates the understanding and forbearance of his wife, Sylvia, during this past year of hyperintensive effort. The second author thanks her husband, Tim, for his love, friendship, and support. We may try their patience yet one more time in about five years, when fast-moving advances in FDTD theory and applications may indicate the need for a fourth edition.

Allen Taflove, Evanston, Illinois
Susan C. Hagness, Madison, Wisconsin
June 2005