ALLEN TAFLOVE, SUSAN C. HAGNESS

COMPUTATIONAL ELECTRODYNAMICS

the finitedifference time-domain

method second edition

SOFTWARE INCLUDED

Contents

Preface to the Second Edition			xvii
P	refa	ce to the First Edition	xxi
1	Ele	ectrodynamics Entering the 21st Century	1
	1.1	Introduction	1
	1.2	The Heritage of Military Defense Applications	2
	1.3	Frequency-Domain Solution Techniques	3
	1.4	Rise of Finite-Difference Time-Domain Methods	3
		History of FDTD Techniques for Maxwell's Equations	5
	1.6	Characteristics of FDTD and Related Space-Grid Time-Domain Techniques	7
		1.6.1 Classes of Algorithms	7
		1.6.2 Predictive Dynamic Range	17
		1.6.3 Scaling to Very Large Problem Sizes	18
	1.7	Examples of Applications (including Color Plate Section, pages 9-16)	19
		1.7.1 Radar-Guided Missile	9, 20
		1.7.2 High-Speed Computer Circuit-Board Module	10, 21
		1.7.3 Power-Distribution System for a High-Speed Computer Multichip Module	11, 22
		1.7.4 Microwave Amplifier	12, 23
		1.7.5 Cellular Telephone	13, 24
		1.7.6 Optical Microdisk Resonator	14, 25
		1.7.7 Photonic Bandgap Microcavity Laser	15, 27
		1.7.8 Colliding Spatial Solitons	16, 28
	1.8	Conclusions	29
		References	30
2	Th	e One-Dimensional Scalar Wave Equation	35
	2.1	Introduction	35
	2.2	Propagating-Wave Solutions	35
	2.3	Dispersion Relation	36
		Finite Differences	38
	2.5	Finite-Difference Approximation of the Scalar Wave Equation	39
	2.6	Numerical Dispersion Relation	42
		2.6.1 Case 1: Very Fine Sampling in Time and Space $(\Delta t \rightarrow 0, \Delta x \rightarrow 0)$	43
		2.6.2 Case 2: Magic Time-Step ($c \Delta t = \Delta x$)	43
		2.6.3 Case 3: Dispersive Wave Propagation	44
		2.6.4 Example of Calculation of Numerical Phase Velocity and Attenuation	49
		2.6.5 Examples of Calculations of Pulse Propagation	51
	2.7		55
		2.7.1 Complex-Frequency Analysis	55
		2.7.2 Examples of Calculations Involving Numerical Instability	59
	2.8	Summary	61

		Appendix 2A: Order of Accuracy	63
		2A.1 Lax-Richtmyer Equivalence Theorem	63
		2A.2 Limitations	64
		References	64
		Bibliography on Stability of Finite-Difference Methods	65
		Problems	65
3	Int	roduction to Maxwell's Equations and the Yee Algorithm	67
	3.1	Introduction	67
		Maxwell's Equations in Three Dimensions	67
	3.3	Reduction to Two Dimensions	70
		3.3.1 TM _z Mode	71
		3.3.2 TE, Mode	71
	3.4		72
		3.4.1 x-Directed, z-Polarized TEM Mode	72
		3.4.2 x-Directed, y-Polarized TEM Mode	73
	3.5	Equivalence to the Wave Equation in One Dimension	74
		The Yee Algorithm	75
		3.6.1 Basic Ideas	75
		3.6.2 Finite Differences and Notation	77
		3.6.3 Finite-Difference Expressions for Maxwell's Equations in Three Dimensions	80
		3.6.4 Space Region With a Continuous Variation of Material Properties	85
		3.6.5 Space Region With a Finite Number of Distinct Media	87
		3.6.6 Space Region With Nonpermeable Media	89
		3.6.7 Reduction to the Two-Dimensional TM, and TE, Modes	91
		3.6.8 Interpretation as Faraday's and Ampere's Laws in Integral Form	93
		3.6.9 Divergence-Free Nature	96
	3.7	Alternative Finite-Difference Grids	98
		3.7.1 Cartesian Grids	99
		3.7.2 Hexagonal Grids	101
		3.7.3 Tetradecahedron / Dual-Tetrahedron Mesh in Three Dimensions	104
	3.8	Summary	105
		References	106
		Problems	106

4 Numerical Dispersion and Stability

4.1	Introduction	109
4.1	Derivation of the Numerical Dispersion Relation for Two-Dimensional Wave Propagation	110
4.2	Extension to Three Dimensions	112
4.3		113
4.4	Comparison With the Ideal Dispersion Case	114
4.5	Anisotropy of the Numerical Phase Velocity	114
	4.5.1 Sample Values of Numerical Phase Velocity	120
	4.5.2 Intrinsic Grid Velocity Anisotropy	
4.6	Complex-Valued Numerical Wavenumbers	124
	4.6.1 Case 1: Numerical Wave Propagation Along the Principal Lattice Axes	124
	4.6.2 Case 2: Numerical Wave Propagation Along a Grid Diagonal	127
	4.6.3 Example of Calculation of Numerical Phase Velocity and Attenuation	129
	4.6.4 Example of Calculation of Wave Propagation	131

۱

	4.7	Numerical Stability	133
		4.7.1 Complex-Frequency Analysis	133
		4.7.2 Example of a Numerically Unstable Two-Dimensional FDTD Model	139
	4.8	Generalized Stability Problem	141
		4.8.1 Boundary Conditions	141
		4.8.2 Variable and Unstructured Meshing	142
		4.8.3 Lossy, Dispersive, Nonlinear, and Gain Materials	142
	4.9	Modified Yee-Based Algorithms for Improved Numerical Dispersion	142
		4.9.1 Strategy 1: Center a Specific Numerical Phase-Velocity Curve About c	143
		4.9.2 Strategy 2: Use Fourth-Order-Accurate Spatial Differences	143
		4.9.3 Strategy 3: Use Hexagonal Grids	152
		4.9.4 Strategy 4: Use Discrete Fourier Transforms to Calculate the Spatial Derivatives	156
	4.10	Alternating-Direction-Implicit Time-Stepping Algorithm for Operation	
		Beyond the Courant Limit	160
		4.10.1 Numerical Formulation of the Zheng/Chen/Zhang Algorithm	162
		4.10.2 Numerical Stability	169
		4.10.3 Numerical Dispersion	171
		4.10.4 Discussion	171
	4.11	Summary	172
		References	172
		Problems	173
		Projects	174
5	Inc	ident Wave Source Conditions	175
	5.1	Introduction	175
			115
	5.2		175
		Pointwise \vec{E} and \vec{H} Hard Sources in One Dimension Pointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions	
		Pointwise \vec{E} and \vec{H} Hard Sources in One Dimension	176
		Pointwise \vec{E} and \vec{H} Hard Sources in One Dimension Pointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions	176 178
		Pointwise \vec{E} and \vec{H} Hard Sources in One Dimension Pointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions 5.3.1 Green's Function for the Scalar Wave Equation in Two Dimensions	176 178 178
	5.3	Pointwise \vec{E} and \vec{H} Hard Sources in One Dimension Pointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions 5.3.1 Green's Function for the Scalar Wave Equation in Two Dimensions 5.3.2 Obtaining Comparative FDTD Data	176 178 178 179
	5.3	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1 Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2 Obtaining Comparative FDTD Data5.3.3 Results for Effective Action Radius of a Hard-Sourced Field Component	176 178 178 179 180
	5.3	 Pointwise E and H Hard Sources in One Dimension Pointwise E and H Hard Sources in Two Dimensions 5.3.1 Green's Function for the Scalar Wave Equation in Two Dimensions 5.3.2 Obtaining Comparative FDTD Data 5.3.3 Results for Effective Action Radius of a Hard-Sourced Field Component J and M Current Sources in Three Dimensions 	176 178 178 179 180 182
	5.3	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1 Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2 Obtaining Comparative FDTD Data5.3.3 Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1 Sources and Charging	176 178 178 179 180 182 183
	5.3	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1 Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2 Obtaining Comparative FDTD Data5.3.3 Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1 Sources and Charging5.4.2 Sinusoidal Sources	176 178 178 179 180 182 183 184
	5.3	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2Obtaining Comparative FDTD Data5.3.3Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1Sources and Charging5.4.2Sinusoidal Sources5.4.3Transient (Pulse) Sources5.4.4Intrinsic Lattice Capacitance5.4.5Intrinsic Lattice Inductance	176 178 178 179 180 182 183 184 185
	5.3	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2Obtaining Comparative FDTD Data5.3.3Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1Sources and Charging5.4.2Sinusoidal Sources5.4.3Transient (Pulse) Sources5.4.4Intrinsic Lattice Capacitance5.4.5Intrinsic Lattice Inductance5.4.6Impact Upon FDTD Simulations of Lumped-Element Capacitors and Inductors	176 178 178 179 180 182 183 184 185 189 190 191
	5.3	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2Obtaining Comparative FDTD Data5.3.3Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1Sources and Charging5.4.2Sinusoidal Sources5.4.3Transient (Pulse) Sources5.4.4Intrinsic Lattice Capacitance5.4.5Intrinsic Lattice Inductance	176 178 178 179 180 182 183 184 185 189 190
	5.3	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2Obtaining Comparative FDTD Data5.3.3Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1Sources and Charging5.4.2Sinusoidal Sources5.4.3Transient (Pulse) Sources5.4.4Intrinsic Lattice Capacitance5.4.5Intrinsic Lattice Inductance5.4.6Impact Upon FDTD Simulations of Lumped-Element Capacitors and InductorsThe Plane-Wave Source ConditionThe Total-Field / Scattered-Field Technique: Ideas and One-Dimensional Formulation	176 178 178 179 180 182 183 184 185 189 190 191 193 194
	5.3 5.4	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2Obtaining Comparative FDTD Data5.3.3Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1Sources and Charging5.4.2Sinusoidal Sources5.4.3Transient (Pulse) Sources5.4.4Intrinsic Lattice Capacitance5.4.5Intrinsic Lattice Inductance5.4.6Impact Upon FDTD Simulations of Lumped-Element Capacitors and InductorsThe Plane-Wave Source ConditionThe Total-Field / Scattered-Field Technique: Ideas and One-Dimensional Formulation5.6.1Ideas	176 178 178 179 180 182 183 184 185 189 190 191 193 194 194
	5.3 5.4 5.5 5.6	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2Obtaining Comparative FDTD Data5.3.3Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1Sources and Charging5.4.2Sinusoidal Sources5.4.3Transient (Pulse) Sources5.4.4Intrinsic Lattice Capacitance5.4.5Intrinsic Lattice Inductance5.4.6Impact Upon FDTD Simulations of Lumped-Element Capacitors and InductorsThe Plane-Wave Source ConditionThe Total-Field / Scattered-Field Technique: Ideas and One-Dimensional Formulation5.6.1Ideas5.6.2One-Dimensional Formulation	176 178 178 179 180 182 183 184 185 189 190 191 193 194 194
	5.3 5.4	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2Obtaining Comparative FDTD Data5.3.3Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1Sources and Charging5.4.2Sinusoidal Sources5.4.3Transient (Pulse) Sources5.4.4Intrinsic Lattice Capacitance5.4.5Intrinsic Lattice Inductance5.4.6Impact Upon FDTD Simulations of Lumped-Element Capacitors and InductorsThe Plane-Wave Source ConditionThe Total-Field / Scattered-Field Technique: Ideas and One-Dimensional Formulation5.6.2One-Dimensional FormulationTwo-Dimensional Formulation of the TF / SF Technique	176 178 178 179 180 182 183 184 185 189 190 191 193 194 194 197 201
	5.3 5.4 5.5 5.6	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2Obtaining Comparative FDTD Data5.3.3Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1Sources and Charging5.4.2Sinusoidal Sources5.4.3Transient (Pulse) Sources5.4.4Intrinsic Lattice Capacitance5.4.5Intrinsic Lattice Inductance5.4.6Impact Upon FDTD Simulations of Lumped-Element Capacitors and InductorsThe Plane-Wave Source ConditionThe Total-Field / Scattered-Field Technique: Ideas and One-Dimensional Formulation5.6.2One-Dimensional FormulationTwo-Dimensional FormulationTwo-Dimensional Formulation5.7.1Consistency Conditions	176 178 178 179 180 182 183 184 185 189 190 191 193 194 194 197 201 203
	5.3 5.4 5.5 5.6	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2Obtaining Comparative FDTD Data5.3.3Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1Sources and Charging5.4.2Sinusoidal Sources5.4.3Transient (Pulse) Sources5.4.4Intrinsic Lattice Capacitance5.4.5Intrinsic Lattice Inductance5.4.6Impact Upon FDTD Simulations of Lumped-Element Capacitors and InductorsThe Plane-Wave Source ConditionThe Total-Field / Scattered-Field Technique: Ideas and One-Dimensional Formulation5.6.2One-Dimensional FormulationTwo-Dimensional FormulationTwo-Dimensional Formulation of the TF / SF Technique5.7.1Consistency Conditions5.7.2Calculation of the Incident Field	176 178 178 179 180 182 183 184 185 189 190 191 193 194 194 197 201 203 207
	5.3 5.4 5.5 5.6 5.7	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2Obtaining Comparative FDTD Data5.3.3Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1Sources and Charging5.4.2Sinusoidal Sources5.4.3Transient (Pulse) Sources5.4.4Intrinsic Lattice Capacitance5.4.5Intrinsic Lattice Inductance5.4.6Impact Upon FDTD Simulations of Lumped-Element Capacitors and InductorsThe Plane-Wave Source ConditionThe Total-Field / Scattered-Field Technique: Ideas and One-Dimensional Formulation5.6.2One-Dimensional FormulationTwo-Dimensional Formulation of the TF / SF Technique5.7.1Consistency Conditions5.7.2Calculation of the Incident Field5.7.3Illustrative Example	176 178 178 179 180 182 183 184 185 189 190 191 193 194 194 197 201 203 207 212
	5.3 5.4 5.5 5.6	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2Obtaining Comparative FDTD Data5.3.3Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1Sources and Charging5.4.2Sinusoidal Sources5.4.3Transient (Pulse) Sources5.4.4Intrinsic Lattice Capacitance5.4.5Intrinsic Lattice Inductance5.4.6Impact Upon FDTD Simulations of Lumped-Element Capacitors and InductorsThe Plane-Wave Source ConditionThe Total-Field / Scattered-Field Technique: Ideas and One-Dimensional Formulation5.6.2One-Dimensional FormulationTwo-Dimensional Formulation of the TF / SF Technique5.7.1Consistency Conditions5.7.2Calculation of the Incident Field5.7.3Illustrative ExampleThree-Dimensional Formulation of the TF / SF Technique	176 178 178 179 180 182 183 184 185 189 190 191 193 194 194 197 201 203 207 212 212
	5.3 5.4 5.5 5.6 5.7	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2Obtaining Comparative FDTD Data5.3.3Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1Sources and Charging5.4.2Sinusoidal Sources5.4.3Transient (Pulse) Sources5.4.4Intrinsic Lattice Capacitance5.4.5Intrinsic Lattice Inductance5.4.6Impact Upon FDTD Simulations of Lumped-Element Capacitors and InductorsThe Plane-Wave Source ConditionThe Total-Field / Scattered-Field Technique: Ideas and One-Dimensional Formulation5.6.2One-Dimensional FormulationTwo-Dimensional Formulation of the TF / SF Technique5.7.1Consistency Conditions5.7.2Calculation of the Incident Field5.7.3Illustrative ExampleThree-Dimensional Formulation of the TF / SF Technique5.8.1Consistency Conditions	176 178 178 179 180 182 183 184 185 189 190 191 193 194 194 197 201 203 207 212 212 216
	 5.3 5.4 5.5 5.6 5.7 5.8 	Pointwise \vec{E} and \vec{H} Hard Sources in One DimensionPointwise \vec{E} and \vec{H} Hard Sources in Two Dimensions5.3.1Green's Function for the Scalar Wave Equation in Two Dimensions5.3.2Obtaining Comparative FDTD Data5.3.3Results for Effective Action Radius of a Hard-Sourced Field Component \vec{J} and \vec{M} Current Sources in Three Dimensions5.4.1Sources and Charging5.4.2Sinusoidal Sources5.4.3Transient (Pulse) Sources5.4.4Intrinsic Lattice Capacitance5.4.5Intrinsic Lattice Inductance5.4.6Impact Upon FDTD Simulations of Lumped-Element Capacitors and InductorsThe Plane-Wave Source ConditionThe Total-Field / Scattered-Field Technique: Ideas and One-Dimensional Formulation5.6.2One-Dimensional FormulationTwo-Dimensional Formulation of the TF / SF Technique5.7.1Consistency Conditions5.7.2Calculation of the Incident Field5.7.3Illustrative ExampleThree-Dimensional Formulation of the TF / SF Technique	176 178 178 179 180 182 183 184 185 189 190 191 193 194 194 197 201 203 207 212 212

		5.9.1 Application to PEC Structures	224
		5.9.2 Application to Lossy Dielectric Structures	225
		5.9.3 Choice of Incident Plane-Wave Formulation	227
	5 10	Waveguide Source Conditions	227
	5.10	5.10.1 Pulsed Electric Field Modal Hard Source	228
		5.10.2 Total-Field / Reflected-Field Modal Formulation	229
		5.10.3 Resistive Source and Load Conditions	230
	5 1 1	Summary	231
	5.11	References	232
		Problems	232
		Projects	232
6	An	alytical Absorbing Boundary Conditions	235
	6.1	Introduction	235
	6.2	Bayliss-Turkel Radiation Operators	237
		6.2.1 Spherical Coordinates	238
		6.2.2 Cylindrical Coordinates	241
	6.3	Engquist-Majda One-Way Wave Equations	244
		6.3.1 One-Term and Two-Term Taylor Series Approximations	245
		6.3.2 Mur Finite-Difference Scheme	248
		6.3.3 Trefethen-Halpern Generalized and Higher Order ABCs	251
		6.3.4 Theoretical Reflection Coefficient Analysis	253
		6.3.5 Numerical Experiments	256
	6.4	Higdon Radiation Operators	261
		6.4.1 Formulation	261
		6.4.2 First Two Higdon Operators	263
		6.4.3 Discussion	264
	6.5	Liao Extrapolation in Space and Time	265
		6.5.1 Formulation	265
		6.5.2 Discussion	267
	6.6	Ramahi Complementary Operators	269
		6.6.1 Basic Idea	269
		6.6.2 Complementary Operators	270
		6.6.3 Effect of Multiple Wave Reflections	271
		6.6.4 Basis of the Concurrent Complementary Operator Method	273
		6.6.5 Illustrative FDTD Modeling Results Obtained Using the C-COM	278
	6.7	Summary	281
		References	281
		Problems	282
7	Pe	rfectly Matched Layer Absorbing Boundary Conditions	
•	(Ste	ephen D. Gedney and Allen Taflove)	285
	7.1	Introduction	285
	7.2		286
	7.3	Plane Wave Incident Upon Berenger's PML Medium	288
		7.3.1 Two-Dimensional TE _z Case	289
		7.3.2 Two-Dimensional TM _z Case	293
		7.3.3 Three-Dimensional Case	294

	7.4	Stretched-Coordinate Formulation of Berenger's PML	295
	7.5	An Anisotropic PML Absorbing Medium	298
		7.5.1 Perfectly Matched Uniaxial Medium	298
		7.5.2 Relationship to Berenger's Split-Field PML	301
		7.5.3 A Generalized Three-Dimensional Formulation	302
		7.5.4 Inhomogeneous Media	304
	7.6	Theoretical Performance of the PML	305
		7.6.1 The Continuous Space	305
		7.6.2 The Discrete Space	305
	7.7	Efficient Implementation of UPML in FDTD	308
		7.7.1 Derivation of the Finite-Difference Expressions	308
		7.7.2 Computer Implementation of the UPML	311
	7.8	Numerical Experiments With Berenger's Split-Field PML	314
		7.8.1 Outgoing Cylindrical Wave in a Two-Dimensional Open-Region Grid	314
		7.8.2 Outgoing Spherical Wave in a Three-Dimensional Open-Region Lattice	316
		7.8.3 Dispersive Wave Propagation in Metal Waveguides	318
		7.8.4 Dispersive and Multimode Wave Propagation in Dielectric Waveguides	320
	7.9	Numerical Experiments With UPML	322
		7.9.1 Current Source Radiating in an Unbounded Two-Dimensional Region	322
		7.9.2 Highly Elongated Domains	327
		7.9.3 Microstrip Transmission Line	330
	7.10	UPML Termination for Conductive Media	332
		7.10.1 Theory	332
		7.10.2 Numerical Example: Termination of a Conductive Half-Space Medium	335
	7.11	UPML Termination for Dispersive Media	338
		7.11.1 Theory	338
		7.11.2 Numerical Example: Reflection by a Lorentz Medium	343
	7.12	Summary and Conclusions	343
		References	345
		Projects	347
8	Nea	ar-to-Far-Field Transformation	349
	8.1	Introduction	349
		Two-Dimensional Transformation, Phasor Domain	350
	0.2	8.2.1 Application of Green's Theorem	351
		8.2.2 Far-Field Limit	352
		8.2.3 Reduction to Standard Form	354
	8.3	Obtaining Phasor Quantities Via Discrete Fourier Transformation	356
	8.4	Surface Equivalence Theorem	359
	8.5	Extension to Three Dimensions, Phasor Domain	361
	8.6	Time-Domain Near-to-Far-Field Transformation	366
	8.7	Summary	371
		References	372
		Project	372
9	Dis	spersive and Nonlinear Materials	373
	9.1	Introduction	373
		Types of Dispersions Considered	374

x Computational Electrodynamics: The Finite-Difference Time-Domain Method

		001 Deter Matie	374
		9.2.1 Debye Media	375
		9.2.2 Lorentz Media Piecewise-Linear Recursive Convolution Method, Linear Material Case	375
		9.3.1 General Formulation of the Method	375
		9.3.2 Application to Debye Media	378
		9.3.3 Application to Lorentz Media	379
		9.3.4 Numerical Results	380
		Piecewise-Linear Recursive Convolution Method, Nonlinear Dispersive Material Case	382
		9.4.1 Governing Equations	382
		9.4.2 General Formulation of the Method	384
		9.4.3 FDTD Realization in One Dimension	386
		9.4.4 Numerical Results	388
		Auxiliary Differential Equation Method, Linear Material Case	392
2		9.5.1 Formulation for Multiple Debye Poles	392
		9.5.2 Formulation for Multiple Lorentz Pole Pairs	394
		9.5.3 Numerical Results	397
		Auxiliary Differential Equation Method, Nonlinear Dispersive Material Case	398
	9.0	9.6.1 Formulation for Multiple Lorentz Pole Pairs, TM _z Case	398
		9.6.2 Numerical Results for Temporal Solitons	401
		9.6.3 Numerical Results for Spatial Solitons	404
	9.7	Summary and Conclusions	407
	2.1	References	408
		Problems	409
		Projects	410
10	Lo	cal Subcell Models of Fine Geometrical Features	411
10			
10	10.1	I Introduction	411
10	10.1 10.2	I Introduction 2 Basis of Contour-Path FDTD Modeling	411 412
10	10.1	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 	411 412 413
10	10.1 10.2	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 	411 412 413 413
10	10.1 10.2 10.3	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces 	411 412 413
10	10.1 10.2 10.3	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot 	411 412 413 413 415
10	10.1 10.2 10.3	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire 	411 412 413 413 413 415 416
10	10.1 10.2 10.3	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 	411 412 413 413 415 416 420
10	10.1 10.2 10.3	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 	411 412 413 413 415 416 420 424
10	10.1 10.2 10.3	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 10.6.2 Illustrative Results for PEC Structures 	411 412 413 413 415 416 420 424 424
10	10.1 10.2 10.3 10.4 10.5 10.6	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 10.6.3 Dey-Mittra Technique for Material Structures 	411 412 413 413 415 416 420 424 424 427
10	10.1 10.2 10.3	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 10.6.3 Dey-Mittra Technique for Material Structures Maloney-Smith Technique for Thin Material Sheets 	411 412 413 413 415 416 420 424 424 424 427 433
10	10.1 10.2 10.3 10.4 10.5 10.6	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 10.6.3 Dey-Mittra Technique for Material Structures Maloney-Smith Technique for Thin Material Sheets 10.7.1 Basis 	411 412 413 413 415 416 420 424 424 424 427 433 434
10	10.1 10.2 10.3 10.4 10.5 10.6	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 10.6.3 Dey-Mittra Technique for Material Structures Maloney-Smith Technique for Thin Material Structures 10.7.1 Basis 10.7.2 Illustrative Results 	411 412 413 413 415 416 420 424 424 427 433 434 434
10	10.1 10.2 10.3 10.4 10.5 10.6	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 10.6.3 Dey-Mittra Technique for Material Structures Maloney-Smith Technique for Thin Material Sheets 10.7.1 Basis 10.7.2 Illustrative Results Basis Dispersive Surface Impedance 	411 412 413 413 415 416 420 424 424 427 433 434 434 438
10	10.1 10.2 10.3 10.4 10.5 10.6	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 10.6.3 Dey-Mittra Technique for Material Structures Maloney-Smith Technique for Thin Material Sheets 10.7.1 Basis 10.7.2 Illustrative Results Dispersive Surface Impedance 10.8.1 Maloney-Smith Method 	411 412 413 413 415 416 420 424 424 424 427 433 434 434 438 442
10	10.1 10.2 10.3 10.4 10.5 10.6	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 10.6.2 Illustrative Results for PEC Structures 10.6.3 Dey-Mittra Technique for Material Structures 7 Maloney-Smith Technique for Thin Material Sheets 10.7.2 Illustrative Results 8 Dispersive Surface Impedance 10.8.1 Maloney-Smith Method 10.8.2 Beggs Method 	411 412 413 413 415 416 420 424 424 427 433 434 434 438 442 442
10	10.1 10.2 10.3 10.4 10.5 10.6 10.7	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 10.6.3 Dey-Mittra Technique for Material Structures Maloney-Smith Technique for Thin Material Structures 10.7.1 Basis 10.7.2 Illustrative Results Dispersive Surface Impedance 10.8.1 Maloney-Smith Method 10.8.3 Lee Method 	411 412 413 413 415 416 420 424 424 427 433 434 434 438 442 442 442 449
10	10.1 10.2 10.3 10.4 10.5 10.6 10.7	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 10.6.2 Illustrative Results for PEC Structures 10.6.3 Dey-Mittra Technique for Material Structures 7 Maloney-Smith Technique for Thin Material Sheets 10.7.1 Basis 10.7.2 Illustrative Results 8 Dispersive Surface Impedance 10.8.1 Maloney-Smith Method 10.8.3 Lee Method 9 Relativistic Motion of PEC Boundaries 	411 412 413 413 415 416 420 424 424 427 433 434 434 438 442 442 449 457
10	10.1 10.2 10.3 10.4 10.5 10.6 10.7	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 10.6.2 Illustrative Results for PEC Structures 10.6.3 Dey-Mittra Technique for Material Structures 7 Maloney-Smith Technique for Thin Material Sheets 10.7.1 Basis 10.7.2 Illustrative Results 8 Dispersive Surface Impedance 10.8.1 Maloney-Smith Method 10.8.3 Lee Method 9 Relativistic Motion of PEC Boundaries 10.9.1 Basis 	411 412 413 413 415 416 420 424 424 427 433 434 434 438 434 438 442 449 457 461
10	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.7	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 10.6.2 Illustrative Results for PEC Structures 10.7.1 Basis 10.7.2 Illustrative Results Boispersive Surface Impedance 10.8.1 Maloney-Smith Method 10.8.2 Beggs Method 10.8.3 Lee Method Relativistic Motion of PEC Boundaries 10.9.1 Basis 10.9.2 Illustrative Results 	411 412 413 413 415 416 420 424 424 427 433 434 434 438 434 438 442 442 449 457 461 461
10	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.7	 Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces 10.3.2 Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces 10.6.1 Dey-Mittra Technique for PEC Structures 10.6.2 Illustrative Results for PEC Structures 10.6.3 Dey-Mittra Technique for Material Structures 7 Maloney-Smith Technique for Thin Material Sheets 10.7.1 Basis 10.7.2 Illustrative Results 8 Dispersive Surface Impedance 10.8.1 Maloney-Smith Method 10.8.3 Lee Method 9 Relativistic Motion of PEC Boundaries 10.9.1 Basis 	411 412 413 413 415 416 420 424 424 427 433 434 434 438 434 438 442 449 457 461 461 465

		Contents	s xi
		Bibliography	471
		Projects	472
11	Non	orthogonal and Unstructured Grids	
		phen D. Gedney and Faiza Lansing)	473
	11.1	Introduction	473
		Nonuniform Orthogonal Grids	474
		Locally Conformal Grids, Globally Orthogonal	482
	11.4	Global Curvilinear Coordinates	484
		11.4.1 Nonorthogonal Curvilinear FDTD Algorithm	484
		11.4.2 Stability Criterion	490
		Irregular Nonorthogonal Structured Grids	493 500
	11.6	Irregular Nonorthogonal Unstructured Grids	500
		11.6.1 Generalized Yee Algorithm	506
		11.6.2 Inhomogeneous Media11.6.3 Practical Implementation of the Generalized Yee Algorithm	508
	117	A Planar Generalized Yee Algorithm	509
	11.7	11.7.1 Time-Stepping Expressions	510
		11.7.2 Projection Operators	511
		11.7.3 Efficient Time-Stepping Implementation	513
	11.8	Examples of Passive-Circuit Modeling Using the Planar Generalized Yee Algorithm	514
	11.0	11.8.1 32-GHz Wilkinson Power Divider	514
		11.8.2 32-GHz Gysel Power Divider	517
		11.8.3 Signal Lines in an IBM Thermal Conduction Module	518
	11.9	Summary and Conclusions	522
		References	523
		Problems	525
		Projects	527
12	Bod	lies of Revolution	
14		omas G. Jurgens, Jeffrey G. Blaschak, and Gregory W. Saewert)	529
		Introduction	529
		Field Expansion	530
		Difference Equations for Off-Axis Cells	530
	12.5	12.3.1 Ampere's Law Contour Path Integral to Calculate e_r	532
		12.3.2 Ampere's Law Contour Path Integral to Calculate e_{ϕ}	534
		12.3.3 Ampere's Law Contour Path Integral to Calculate e_z	536
		12.3.4 Difference Equations	539
		12.3.5 Surface-Conforming Contour Path Integrals	542
	12.4	Difference Equations for On-Axis Cells	544
		12.4.1 Ampere's Law Contour Path Integral to Calculate e_z on the z-Axis	544
		12.4.2 Ampere's Law Contour Path Integral to Calculate e_{ϕ} on the z-Axis	546
		12.4.3 Faraday's Law Calculation of h_r on the z-Axis	548
	12.5		549
	12.6	PML Absorbing Boundary Condition	549
		12.6.1 BOR-FDTD Background	549
		12.6.2 Extension of PML to the General BOR Case	552
		12.6.3 Examples	558

	12.7	Application to Particle Accelerator Physics	560
		12.7.1 Definitions and Concepts	560
		12.7.2 Examples	563
	12.8	Summary	566
		References	566
		Problems	567
		Projects	568
13	Ana	lysis of Periodic Structures	
10		es G. Maloney and Morris P. Kesler)	569
	13.1	Introduction	569
	13.2	Review of Scattering From Periodic Structures	572
	13.3	Direct Field Methods	575
		13.3.1 Normal Incidence Case	575
		13.3.2 Multiple Unit Cells for Oblique Incidence	577
		13.3.3 Sine-Cosine Method	579
		13.3.4 Angled-Update Method	580
	13.4	Introduction to the Field-Transformation Technique	584
	13.5	Multiple-Grid Approach	589
		13.5.1 Formulation	589
		13.5.2 Numerical Stability Analysis	591
		13.5.3 Numerical Dispersion Analysis	592
		13.5.4 Lossy Materials	593
		13.5.5 Lossy Screen Example	595
	13.6	Split-Field Method, Two Dimensions	596
		13.6.1 Formulation	596
		13.6.2 Numerical Stability Analysis	598
		13.6.3 Numerical Dispersion Analysis	600
		13.6.4 Lossy Materials	601
		13.6.5 Lossy Screen Example	602
	13.7	Split-Field Method, Three Dimensions	603
		13.7.1 Formulation	603
		13.7.2 Numerical Stability Analysis	607
		13.7.3 UPML Absorbing Boundary Condition	610
	13.8		614
		13.8.1 Photonic Bandgap Structures	614
		13.8.2 Frequency-Selective Surfaces	616
		13.8.3 Antenna Arrays	618
	13.9	Summary and Conclusions	623
		Acknowledgments	623
		References	623
		Projects	625
14	Mo	deling of Antennas	
_ •	(Jar	nes G. Maloney, Glenn S. Smith, Eric T. Thiele, and Om P. Gandhi)	627

14.1	Introduction	627
	Formulation of the Antenna Problem	628
	14.2.1 Transmitting Antenna	628

		14.2.2	Receiving Antenna	630
			Symmetry	630
			Excitation	632
	14.3	Antenr	na Feed Models	634
		14.3.1	Detailed Modeling of the Feed	634
		14.3.2	Simple Gap Feed Model for a Monopole Antenna	636
		14.3.3	Improved Simple Feed Model	639
	14.4	Near-to	o-Far-Field Transformations	644
			Use of Symmetry	645
			Time-Domain Near-to-Far-Field Transformation	646
		14.4.3	Frequency-Domain Near-Field to Far-Field Transformation	648
	14.5	Plane-	Wave Source	649
		14.5.1	Effect of an Incremental Displacement of the Surface Currents	649
		14.5.2	Effect of an Incremental Time Shift	651
		14.5.3	Relation to Total-Field / Scattered-Field Lattice Zoning	652
	14.6	Case S	tudy I: The Standard-Gain Horn	653
	14.7	Case S	tudy II: The Vivaldi Slotline Array	659
		14.7.1	Background	659
		14.7.2	The Planar Element	660
		14.7.3	The Vivaldi Pair	665
		14.7.4	The Vivaldi Quad	665
		14.7.5	The Linear Phased Array	668
		14.7.6	Phased-Array Radiation Characteristics Indicated by the FDTD Modeling	669
		14.7.7	Active Impedance of the Phased Array	669
	14.8	Near-F	ield Simulations	675
		14.8.1	Generic 900-MHz Cellphone Handset in Free Space	675
		14.8.2	900-MHz Dipole Antenna Near a Layered Bone-Brain Half-Space	676
		14.8.3	840-MHz Dipole Antenna Near a Rectangular Brain Phantom	678
		14.8.4	900-MHz Infinitesimal Dipole Antenna Near a Spherical Brain Phantom	680
		14.8.5	1,900-MHz Half-Wavelength Dipole Near a Spherical Brain Phantom	681
	14.9	Selecte	d Recent Applications	682
		14.9.1	Use of Photonic-Bandgap Materials	682
		14.9.2	Ground-Penetrating Radar	682
		14.9.3	Antenna-Radome Interaction	687
		14.9.4	Personal Wireless Communications Devices	690
		14.9.5	Biomedical Applications of Antennas	696
	14.10	Summa	ary and Conclusions	697
		Refere	nces	697
		Project	S	701
1 /	TT .			
15	<u> </u>	h-Spe apone	ed Electronic Circuits With Active and Nonlinear	
	COL	pom		

(Me	703	
15.1	Introduction	703
15.2	Basic Circuit Parameters	705
	15.2.1 Transmission Line Parameters	706
	15.2.2 Impedance	706
	15.2.3 S Parameters	707

	15.3	Differential Capacitance Calculation	708
		Differential Inductance Calculation	709
	15.5	Lumped Inductance Due to a Discontinuity	711
		15.5.1 Flux / Current Definition	711
		15.5.2 Fitting $Z(\omega)$ or $S(\omega)$ to an Equivalent Circuit	712
		15.5.3 Discussion: Choice of Methods	712
	15.6	Inductance of Complex Power-Distribution Systems	713
		15.6.1 Method Description	713
		15.6.2 Example: Multiplane Meshed Printed-Circuit Board	715
		15.6.3 Discussion	718
	15.7	Parallel Coplanar Microstrips	718
	15.8	Multilayered Interconnect Modeling Example	720
	15.9	Digital Signal Processing and Spectrum Estimation	721
		15.9.1 Prony's Method	721
		15.9.2 Autoregressive Models	725
		15.9.3 Padé Approximation	729
	15.10	Modeling of Lumped Circuit Elements	734
		15.10.1 FDTD Formulation Extended to Circuit Elements	734
		15.10.2 The Resistor	736
		15.10.3 The Resistive Voltage Source	737
		15.10.4 The Capacitor	737
		15.10.5 The Inductor	738
		15.10.6 The Diode	740
		15.10.7 The Bipolar Junction Transistor	741
	15.11	Direct Linking of FDTD and SPICE	743
		15.11.1 Basic Idea	745
		15.11.2 Norton Equivalent Circuit "Looking Into" the FDTD Space Lattice	745
		15.11.3 Thevenin Equivalent Circuit "Looking Into" the FDTD Space Lattice	748
	15.12	Case Study: A 6-GHz MESFET Amplifier Model	750
		15.12.1 Large-Signal Model	750
		15.12.2 Amplifier Configuration	753
		15.12.3 Analysis of the Circuit Without the Packaging Structure	754
		15.12.4 Analysis of the Circuit With the Packaging Structure	756
	15.13	Summary and Conclusions	759
		Acknowledgments	760
		References	761
		Additional Bibliography	763
		Projects	764
16	Mic	crocavity Optical Resonators	767
	16.1	Introduction	767
	16.2		768
		16.2.1 Optical Waveguides	768
		16.2.2 Material Dispersion and Nonlinearities	772
	16.3	Macroscopic Modeling of Optical Gain Media	772
		16.3.1 Theory	773
		16.3.2 Validation Studies	776
	16.4	Application to Vertical-Cavity Surface-Emitting Lasers	780
		16.4.1 Passive Studies	782

	16.4.2 Active Studies	784	
16.5	Microcavities Based on Photonic Bandgap Structures, Quasi One-Dimensional Case	788	
16.6	Microcavities Based on Photonic Bandgap Structures, Two-Dimensional Case	793	
16.7	Microcavity Ring Resonators	797	
	16.7.1 FDTD Modeling Considerations	797	
	16.7.2 Coupling to Straight Waveguides	800	
	16.7.3 Coupling to Curved Waveguides	802	
	16.7.4 Elongated Ring Designs	804	
	16.7.5 Resonances	806	
16.8	Microcavity Disk Resonators	810	
	16.8.1 Resonance Behavior	811	
	16.8.2 Suppression of Higher Order Radial Whispering-Gallery Modes	815	
	16.8.3 Additional FDTD Modeling Studies	819	
16.9	Summary and Conclusions	819	
	References	822	
	Additional Bibliography	825	
	Projects	826	
Acronyms			
About the Authors			
Index			

Preface to the Second Edition

The first edition of this book was published in 1995. We are gratified with its high level of use by both the university and industrial-research communities. It is often the text in senior-year undergraduate and first-year graduate electrical engineering courses in computational electromagnetics, and is also frequently cited in refereed journal papers as a primary background reference for FDTD methods and applications.

We have had two primary goals in creating this second edition. First, we have worked to update the book's discussions of FDTD theory and applications to account for the continuing, rapid changes in these areas since 1995. This allows the professional engineer or scientist to have a convenient single-source reference concerning the latest FDTD techniques and research problems. Second, we have worked to enhance the educational content of the book from both a fundamental theoretical perspective and from the standpoint of the course instructor's ease of use.

Coverage of Advances in FDTD Theory and Numerical Algorithms

Specifically, this second edition contains a large body of new material that discusses in detail the following recent advances in FDTD theory and numerical algorithms:

- Complex-wavenumber theory, which places our understanding of numerical dispersion on rigorous grounds and further provides a complete picture of numerical wave propagation and possible attenuation in the FDTD space lattice;
- Complex-frequency theory, an alternative rigorous approach to numerical stability, which yields key insights into the nature of unstable numerical modes in the space lattice;
- Pseudospectral time-domain algorithms, which permit the spatial discretization to approach the Nyquist limit of two points per wavelength;

- Alternating-direction implicit algorithms, which yield provable, unconditional numerical stability in three dimensions, regardless of the size of the time step;
- Electric and magnetic current-source theory, which yields key insights into the nature of the intrinsic capacitance and inductance of lattice space cells;
- Complementary-operator and concurrent complementary-operator absorbing boundary conditions, which increase the effectiveness of analytical absorbing boundary conditions by orders of magnitude;
- Uniaxial perfectly matched layer absorbing boundary conditions for terminating space lattices containing general materials, including lossy, dispersive, and inhomogeneous dielectrics;
- Piecewise-linear recursive-convolution and simplified auxiliarydifferential equation techniques for modeling dispersive and nonlinear dispersive materials;
- Simplified, numerically stable subcell models of diagonal and curved perfect electric conductor surfaces in the space lattice;
- Theory and algorithms for the analysis of periodic structures;
- Padé approximations for simple, rapid, accurate calculation of the resonant frequencies and quality factors of high-Q cavities and similar structures;
- Enhanced discussion of interfacing SPICE electronic circuits models with the FDTD space lattice, including Norton's and Thevenin's equivalent circuits for the lattice.

Coverage of Advances in FDTD Modeling Applications

In addition to theoretical advances, this second edition contains significant new material that discusses in detail the following recent advances in FDTD modeling applications:

- Periodic structures, including antenna arrays, frequency-selective surfaces, and photonic bandgap structures;
- Antennas, including the standard-gain horn, whips (monopoles) mounted on cellphones, radome interactions, ground-penetrating radar, and use of photonic bandgap materials to realize all-dielectric reflectors;
- High-speed electronic circuits, including a multiplane, meshed printedcircuit board feeding power to a multichip module, and a 6-GHz MESFET amplifier analyzed for both linear and nonlinear performance;

• Microcavity optical resonators, including microrings and microdisks for wavelength-division multiplexing, vertical-cavity surface-emitting lasers, and lasers based upon photonic-bandgap structures.

In all, this book provides 57 wide-ranging examples of FDTD modeling applications that:

- Cover the electromagnetic spectrum from radio frequencies to optical frequencies;
- Include the most exciting contemporary applications of electromagnetic wave engineering, ranging from the analysis and design of modern GHz-regime computers and personal wireless communications systems, to advanced photonic devices such as the world's smallest lasers.

These 57 examples serve not only to illustrate the power and beauty of FDTD modeling, but also to inform and excite the reader about the *integral role* that electromagnetic wave phenomena play in the design and operation of our society's most advanced electronics and photonics technologies.

Enhanced Educational Features

Finally, this second edition provides enhanced educational features including:

- Worked examples of FDTD modeling results contained within the text, which serve as answers to selected homework problems and projects;
- A CD-ROM containing MATLAB[™] software for one-, two, and threedimensional FDTD codes which readers can exercise to generate modeling examples of their own choosing. The two-dimensional code has a perfectly matched layer absorbing boundary condition. The CD-ROM also contains a mesh generator in executable form for conformal modeling of a two-dimensional perfectly conducting structure using the Dey-Mittra technique, and a separate FDTD solver incorporating this structure. Finally, the CD-ROM contains images of *all* of the figures and tables in the book as downloadable portable document format (PDF) files.

In our respective teaching experiences at Northwestern University and the University of Wisconsin–Madison, we have found that the second edition provides students with improved prospects for learning and eases the burden on their instructors. When used in a semester-length course (i.e., UW–Madison), there is sufficient time to cover in detail the first seven chapters plus the instructor's choice of an additional three chapters of interest in the remainder of the book. This includes time for the students to learn to write their own working FDTD software in one and two dimensions.

When used in a quarter-length course (i.e., Northwestern), there is sufficient time to cover the first seven chapters plus the instructor's choice of one additional chapter of interest in the remainder of the book. The entirety of the book can be covered in excellent detail in a two-semester course, leading to sufficient student background to begin Ph.D. research efforts in virtually the full range of current FDTD topics.

Acknowledgments

In accomplishing this major rewrite and update of the first edition, we gratefully acknowledge the authors of our invited chapters:

- Chapter 7- Prof. Stephen Gedney
- Chapter 11—Prof. Stephen Gedney and Dr. Faiza Lansing
- Chapter 12-Dr. Thomas Jurgens, Dr. Jeffrey Blaschak, and Mr. Gregory Saewert
- Chapter 13-Dr. James Maloney and Dr. Morris Kesler
- Chapter 14— Dr. James Maloney, Prof. Glenn Smith, Dr. Eric Thiele, and Prof. Om Gandhi
- Chapter 15—Prof. Melinda Piket-May, Dr. Bijan Houshmand, and Prof. Tatsuo Itoh

We also gratefully acknowledge the authors of our invited chapter sections: Prof. Eli Turkel (Chapter 2, Appendix 2A); Mr. Christopher Wagner and Prof. John Schneider (Chapter 5, Section 5.4); Dr. S. J. Yakura (Chapter 9, Section 9.4); and Mr. Geoffrey Waldschmidt (CD-ROM, Dey-Mittra software). Biographical sketches of all of the contributing authors appear following page 831.

Also acknowledged are the helpful contributions of our graduate students, including Milica Popovic and Snow Tseng at Northwestern University, and Tae-Woo Lee, Kristen Leininger, Xu Li, and Chonlarat Wichaidit at UW-Madison.

Finally, we acknowledge our respective family members who exhibited great patience and kept their good spirits while we worked long hours on this book. The first author appreciates the understanding and forbearance of his wife, Sylvia; 21-year old son, Michael; and 18-year old son, Nathan. The second author thanks her husband, Tim, for his love, friendship, and support. We may try their patience yet one more time in about five years, when fast-moving advances in FDTD theory and applications may indicate the need for a *third edition*.

Allen Taflove, Wilmette, Illinois Susan C. Hagness, Madison, Wisconsin April 10, 2000